PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (858308)

Clipboard (0)
None

Related Articles

1.  Overview of a roundtable on NHANES monitoring of biomarkers of folate and vitamin B-12 status: measurement procedure issues123456 
A roundtable dialogue to discuss “NHANES Monitoring of Biomarkers of Folate and Vitamin B-12 Status” took place in July 2010. This article provides an overview of the meeting and this supplement issue. Although the focus of the roundtable dialogue was on the measurement of folate and vitamin B-12 status biomarkers in NHANES, this article also describes the relevance and importance of these issues for clinical and research laboratories. The roundtable identified the microbiological assay (MA) as the gold standard for measurement of serum and red blood cell folate concentrations. The roundtable noted that differences in results between the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA) that NHANES 1991–1994 and 1999–2006 used and the MA that NHANES 2007–2010 used will require adjustment equations to evaluate time trends. The roundtable found that the close agreement between the serum results for the MA and liquid chromatography–tandem mass spectrometry (LC-MS/MS) procedures supported the conversion to LC-MS/MS for serum folate in future NHANES. The roundtable recognized the uncertainty about whether subclinical vitamin B-12 deficiency is a public health concern but encouraged reinstatement of at least one circulating vitamin B-12 measure and one functional vitamin B-12 status measure in future NHANES. The use of serum vitamin B-12 and plasma methylmalonic acid would provide continuity with past NHANES. The roundtable supported the continued use of the National Institute of Standards and Technology (NIST) reference materials in NHANES biomarker analyses and the further development of additional reference materials by the NIST.
doi:10.3945/ajcn.111.017392
PMCID: PMC3127514  PMID: 21593504
2.  Folate and vitamin B-12 biomarkers in NHANES: history of their measurement and use12345 
NHANES measured folate and vitamin B-12 status biomarkers, starting with serum folate from NHANES I (1974–1975) through 2010. Subsequent NHANES measured additional biomarkers [eg, red blood cell folate, serum vitamin B-12, total homocysteine (tHcy), methylmalonic acid, serum folic acid, and 5-methyltetrahydrofolic acid]. Examples of the uses of these data are wide ranging and include public policy applications, the derivation of reference intervals, and research. Periodically, the National Center for Health Statistics and its federal partners convene expert panels to review the use of the folate- and vitamin B-12–related biomarkers in NHANES. These panels have evaluated the need for results to be comparable across time and with published data and the use of crossover studies and adjustment equations to ensure comparability. With the recent availability of reference methods and materials for serum folate and tHcy, NHANES has started to use traceability approaches to enhance the accuracy and comparability of its results. A major user concern over the years has been the use of cutoffs to estimate the prevalence of inadequate folate and vitamin B-12 status. Because these cutoffs depend on the measurement procedure, several expert panels suggested approaches for dealing with cutoff challenges. This review summarizes the history and use of folate- and vitamin B-12–related biomarkers beginning with NHANES I (1974–1975) through 2010.
doi:10.3945/ajcn.111.013300
PMCID: PMC3127520  PMID: 21593508
3.  Holotranscobalamin, a marker of vitamin B-12 status: analytical aspects and clinical utility12345 
Approximately one-quarter of circulating cobalamin (vitamin B-12) binds to transcobalamin (holoTC) and is thereby available for the cells of the body. For this reason, holoTC is also referred to as active vitamin B-12. HoloTC was suggested as an optimal marker of early vitamin B-12 deficiency >20 y ago. This suggestion led to the development of suitable assays for measurement of the compound and clinical studies that aimed to show the benefit of measurement of holoTC rather than of vitamin B-12. Today holoTC can be analyzed by 3 methods: direct measurement of the complex between transcobalamin and vitamin B-12, measurement of vitamin B-12 attached to transcobalamin, or measurement of the amount of transcobalamin saturated with vitamin B-12. These 3 methods give similar results, but direct measurement of holoTC complex is preferable in the clinical setting from a practical point of view. HoloTC measurement has proven useful for the identification of the few patients who suffer from transcobalamin deficiency. In addition, holoTC is part of the CobaSorb test and therefore useful for assessment of vitamin B-12 absorption. Clinical studies that compare the ability of holoTC and vitamin B-12 to identify individuals with vitamin B-12 deficiency (elevated concentration of methylmalonic acid) suggest that holoTC performs better than total vitamin B-12. To date, holoTC has not been used for population-based assessments of vitamin B-12 status, but we suggest that holoTC is a better marker than total vitamin B-12 for such studies.
doi:10.3945/ajcn.111.013458
PMCID: PMC3127504  PMID: 21593496
4.  Biomarkers of folate status in NHANES: a roundtable summary123456 
A roundtable to discuss the measurement of folate status biomarkers in NHANES took place in July 2010. NHANES has measured serum folate since 1974 and red blood cell (RBC) folate since 1978 with the use of several different measurement procedures. Data on serum 5-methyltetrahydrofolate (5MTHF) and folic acid (FA) concentrations in persons aged ≥60 y are available in NHANES 1999–2002. The roundtable reviewed data that showed that folate concentrations from the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA; used in NHANES 1991–1994 and NHANES 1999–2006) were, on average, 29% lower for serum and 45% lower for RBC than were those from the microbiological assay (MA), which was used in NHANES 2007–2010. Roundtable experts agreed that these differences required a data adjustment for time-trend analyses. The roundtable reviewed the possible use of an isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) measurement procedure for future NHANES and agreed that the close agreement between the MA and LC-MS/MS results for serum folate supported conversion to the LC-MS/MS procedure. However, for RBC folate, the MA gave 25% higher concentrations than did the LC-MS/MS procedure. The roundtable agreed that the use of the LC-MS/MS procedure to measure RBC folate is premature at this time. The roundtable reviewed the reference materials available or under development at the National Institute of Standards and Technology and recognized the challenges related to, and the scientific need for, these materials. They noted the need for a commutability study for the available reference materials for serum 5MTHF and FA.
doi:10.3945/ajcn.111.013011
PMCID: PMC3127517  PMID: 21593502
5.  Comparison between Serum Holotranscobalamin and Total Vitamin B12 as Indicators of Vitamin B12 Status 
Oman Medical Journal  2010;25(1):9-12.
Objectives
This study aims to assess the usefulness of serum holotranscobalamin (holoTC), the fraction of vitamin B12 that is available for tissue uptake, compared with total vitamin B12 in patients investigated for vitamin B12 disorders.
Methods
Serum samples were randomly selected from 76 patients (48 females, 28 males; age range 12-69 years) referred to the Clinical Biochemistry Laboratory, Royal Hospital for the assessment of vitamin B12 status. For each patient, serum total vitamin B12 level was determined by chemiluminescent microparticle immunoassay on Architect 2000 analyzer and holoTC (active vitamin B12) level was determined by microparticle enzyme immunoassay on Axsym analyzer (both from Abbott, USA).
Results
Comparison of the data was conducted to reflect the mean, standard deviation (SD) and correlation coefficient between the two groups. The mean (SD) for serum holoTC and total vitamin B12 were 46.5(32.2) pmol/L and 316.3(165.6) pmol/L respectively. There was a significant correlation between holoTC and total vitamin B12 (r= 0.765, P< 0.001) and the regression equation was expressed as; y = a + bx (i.e: holoTC = 1.5 + 0.14 total vitamin B12). Also, the results were assessed for any misclassification when comparing holoTC and the total vitamin B12 in terms of whether each or both values agree or disagree for classifying the patients as having normal or abnormal (low or high) results, based on the cut-off thresholds of the kit’s quoted reference range for holo TC of 9 - 123 pmol/L and for total vitamin B12 of 140-600 pmol/L. Accordingly, in 69 (90.8%) samples, there was a parallel agreement/ classification of results, both being normal or abnormal. In 61 (80.4%) patients, both results were normal, whereas in 4 (5.2%) patients, both results were high, and in 4 (5.2%) patients both results were low. However, in 7 (9.8%) cases, there was disagreement/ misclassification of results; 6 (7.8%) patients, holoTC was normal while total vitamin B12 was low, and in 1 (1.4%) patient, holoTC was normal while total vitamin B12 was high.
Conclusion
It can be recommended that holoTC and total vitamin B12, alone and in combination, have almost equal diagnostic efficiency in screening/diagnosing vitamin B12 deficiency for the majority of patients. In very few patients, holoTC appeared to be a better reflector of vitamin B12 status. Further comparison studies based on a gold standard method for classifying vitamin B12 status are worth considering.
doi:10.5001/omj.2010.3
PMCID: PMC3215392  PMID: 22125690
6.  Clinical Utility of Vitamin D Testing 
Executive Summary
This report from the Medical Advisory Secretariat (MAS) was intended to evaluate the clinical utility of vitamin D testing in average risk Canadians and in those with kidney disease. As a separate analysis, this report also includes a systematic literature review of the prevalence of vitamin D deficiency in these two subgroups.
This evaluation did not set out to determine the serum vitamin D thresholds that might apply to non-bone health outcomes. For bone health outcomes, no high or moderate quality evidence could be found to support a target serum level above 50 nmol/L. Similarly, no high or moderate quality evidence could be found to support vitamin D’s effects in non-bone health outcomes, other than falls.
Vitamin D
Vitamin D is a lipid soluble vitamin that acts as a hormone. It stimulates intestinal calcium absorption and is important in maintaining adequate phosphate levels for bone mineralization, bone growth, and remodelling. It’s also believed to be involved in the regulation of cell growth proliferation and apoptosis (programmed cell death), as well as modulation of the immune system and other functions. Alone or in combination with calcium, Vitamin D has also been shown to reduce the risk of fractures in elderly men (≥ 65 years), postmenopausal women, and the risk of falls in community-dwelling seniors. However, in a comprehensive systematic review, inconsistent results were found concerning the effects of vitamin D in conditions such as cancer, all-cause mortality, and cardiovascular disease. In fact, no high or moderate quality evidence could be found concerning the effects of vitamin D in such non-bone health outcomes. Given the uncertainties surrounding the effects of vitamin D in non-bone health related outcomes, it was decided that this evaluation should focus on falls and the effects of vitamin D in bone health and exclusively within average-risk individuals and patients with kidney disease.
Synthesis of vitamin D occurs naturally in the skin through exposure to ultraviolet B (UVB) radiation from sunlight, but it can also be obtained from dietary sources including fortified foods, and supplements. Foods rich in vitamin D include fatty fish, egg yolks, fish liver oil, and some types of mushrooms. Since it is usually difficult to obtain sufficient vitamin D from non-fortified foods, either due to low content or infrequent use, most vitamin D is obtained from fortified foods, exposure to sunlight, and supplements.
Clinical Need: Condition and Target Population
Vitamin D deficiency may lead to rickets in infants and osteomalacia in adults. Factors believed to be associated with vitamin D deficiency include:
darker skin pigmentation,
winter season,
living at higher latitudes,
skin coverage,
kidney disease,
malabsorption syndromes such as Crohn’s disease, cystic fibrosis, and
genetic factors.
Patients with chronic kidney disease (CKD) are at a higher risk of vitamin D deficiency due to either renal losses or decreased synthesis of 1,25-dihydroxyvitamin D.
Health Canada currently recommends that, until the daily recommended intakes (DRI) for vitamin D are updated, Canada’s Food Guide (Eating Well with Canada’s Food Guide) should be followed with respect to vitamin D intake. Issued in 2007, the Guide recommends that Canadians consume two cups (500 ml) of fortified milk or fortified soy beverages daily in order to obtain a daily intake of 200 IU. In addition, men and women over the age of 50 should take 400 IU of vitamin D supplements daily. Additional recommendations were made for breastfed infants.
A Canadian survey evaluated the median vitamin D intake derived from diet alone (excluding supplements) among 35,000 Canadians, 10,900 of which were from Ontario. Among Ontarian males ages 9 and up, the median daily dietary vitamin D intake ranged between 196 IU and 272 IU per day. Among females, it varied from 152 IU to 196 IU per day. In boys and girls ages 1 to 3, the median daily dietary vitamin D intake was 248 IU, while among those 4 to 8 years it was 224 IU.
Vitamin D Testing
Two laboratory tests for vitamin D are available, 25-hydroxy vitamin D, referred to as 25(OH)D, and 1,25-dihydroxyvitamin D. Vitamin D status is assessed by measuring the serum 25(OH)D levels, which can be assayed using radioimmunoassays, competitive protein-binding assays (CPBA), high pressure liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). These may yield different results with inter-assay variation reaching up to 25% (at lower serum levels) and intra-assay variation reaching 10%.
The optimal serum concentration of vitamin D has not been established and it may change across different stages of life. Similarly, there is currently no consensus on target serum vitamin D levels. There does, however, appear to be a consensus on the definition of vitamin D deficiency at 25(OH)D < 25 nmol/l, which is based on the risk of diseases such as rickets and osteomalacia. Higher target serum levels have also been proposed based on subclinical endpoints such as parathyroid hormone (PTH). Therefore, in this report, two conservative target serum levels have been adopted, 25 nmol/L (based on the risk of rickets and osteomalacia), and 40 to 50 nmol/L (based on vitamin D’s interaction with PTH).
Ontario Context
Volume & Cost
The volume of vitamin D tests done in Ontario has been increasing over the past 5 years with a steep increase of 169,000 tests in 2007 to more than 393,400 tests in 2008. The number of tests continues to rise with the projected number of tests for 2009 exceeding 731,000. According to the Ontario Schedule of Benefits, the billing cost of each test is $51.7 for 25(OH)D (L606, 100 LMS units, $0.517/unit) and $77.6 for 1,25-dihydroxyvitamin D (L605, 150 LMS units, $0.517/unit). Province wide, the total annual cost of vitamin D testing has increased from approximately $1.7M in 2004 to over $21.0M in 2008. The projected annual cost for 2009 is approximately $38.8M.
Evidence-Based Analysis
The objective of this report is to evaluate the clinical utility of vitamin D testing in the average risk population and in those with kidney disease. As a separate analysis, the report also sought to evaluate the prevalence of vitamin D deficiency in Canada. The specific research questions addressed were thus:
What is the clinical utility of vitamin D testing in the average risk population and in subjects with kidney disease?
What is the prevalence of vitamin D deficiency in the average risk population in Canada?
What is the prevalence of vitamin D deficiency in patients with kidney disease in Canada?
Clinical utility was defined as the ability to improve bone health outcomes with the focus on the average risk population (excluding those with osteoporosis) and patients with kidney disease.
Literature Search
A literature search was performed on July 17th, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 1998 until July 17th, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Observational studies that evaluated the prevalence of vitamin D deficiency in Canada in the population of interest were included based on the inclusion and exclusion criteria listed below. The baseline values were used in this report in the case of interventional studies that evaluated the effect of vitamin D intake on serum levels. Studies published in grey literature were included if no studies published in the peer-reviewed literature were identified for specific outcomes or subgroups.
Considering that vitamin D status may be affected by factors such as latitude, sun exposure, food fortification, among others, the search focused on prevalence studies published in Canada. In cases where no Canadian prevalence studies were identified, the decision was made to include studies from the United States, given the similar policies in vitamin D food fortification and recommended daily intake.
Inclusion Criteria
Studies published in English
Publications that reported the prevalence of vitamin D deficiency in Canada
Studies that included subjects from the general population or with kidney disease
Studies in children or adults
Studies published between January 1998 and July 17th 2009
Exclusion Criteria
Studies that included subjects defined according to a specific disease other than kidney disease
Letters, comments, and editorials
Studies that measured the serum vitamin D levels but did not report the percentage of subjects with serum levels below a given threshold
Outcomes of Interest
Prevalence of serum vitamin D less than 25 nmol/L
Prevalence of serum vitamin D less than 40 to 50 nmol/L
Serum 25-hydroxyvitamin D was the metabolite used to assess vitamin D status. Results from adult and children studies were reported separately. Subgroup analyses according to factors that affect serum vitamin D levels (e.g., seasonal effects, skin pigmentation, and vitamin D intake) were reported if enough information was provided in the studies
Quality of Evidence
The quality of the prevalence studies was based on the method of subject recruitment and sampling, possibility of selection bias, and generalizability to the source population. The overall quality of the trials was examined according to the GRADE Working Group criteria.
Summary of Findings
Fourteen prevalence studies examining Canadian adults and children met the eligibility criteria. With the exception of one longitudinal study, the studies had a cross-sectional design. Two studies were conducted among Canadian adults with renal disease but none studied Canadian children with renal disease (though three such US studies were included). No systematic reviews or health technology assessments that evaluated the prevalence of vitamin D deficiency in Canada were identified. Two studies were published in grey literature, consisting of a Canadian survey designed to measure serum vitamin D levels and a study in infants presented as an abstract at a conference. Also included were the results of vitamin D tests performed in community laboratories in Ontario between October 2008 and September 2009 (provided by the Ontario Association of Medical Laboratories).
Different threshold levels were used in the studies, thus we reported the percentage of subjects with serum levels of between 25 and 30 nmol/L and between 37.5 and 50 nmol/L. Some studies stratified the results according to factors affecting vitamin D status and two used multivariate models to investigate the effects of these characteristics (including age, season, BMI, vitamin D intake, skin pigmentation, and season) on serum 25(OH)D levels. It’s unclear, however, if these studies were adequately powered for these subgroup analyses.
Study participants generally consisted of healthy, community-dwelling subjects and most excluded individuals with conditions or medications that alter vitamin D or bone metabolism, such as kidney or liver disease. Although the studies were conducted in different parts of Canada, fewer were performed in Northern latitudes, i.e. above 53°N, which is equivalent to the city of Edmonton.
Adults
Serum vitamin D levels of < 25 to 30 nmol/L were observed in 0% to 25.5% of the subjects included in five studies; the weighted average was 3.8% (95% CI: 3.0, 4.6). The preliminary results of the Canadian survey showed that approximately 5% of the subjects had serum levels below 29.5 nmol/L. The results of over 600,000 vitamin D tests performed in Ontarian community laboratories between October 2008 and September 2009 showed that 2.6% of adults (> 18 years) had serum levels < 25 nmol/L.
The prevalence of serum vitamin D levels below 37.5-50 nmol/L reported among studies varied widely, ranging from 8% to 73.6% with a weighted average of 22.5%. The preliminary results of the CHMS survey showed that between 10% and 25% of subjects had serum levels below 37 to 48 nmol/L. The results of the vitamin D tests performed in community laboratories showed that 10% to 25% of the individuals had serum levels between 39 and 50 nmol/L.
In an attempt to explain this inter-study variation, the study results were stratified according to factors affecting serum vitamin D levels, as summarized below. These results should be interpreted with caution as none were adjusted for other potential confounders. Adequately powered multivariate analyses would be necessary to determine the contribution of risk factors to lower serum 25(OH)D levels.
Seasonal variation
Three adult studies evaluating serum vitamin D levels in different seasons observed a trend towards a higher prevalence of serum levels < 37.5 to 50 nmol/L during the winter and spring months, specifically 21% to 39%, compared to 8% to 14% in the summer. The weighted average was 23.6% over the winter/spring months and 9.6% over summer. The difference between the seasons was not statistically significant in one study and not reported in the other two studies.
Skin Pigmentation
Four studies observed a trend toward a higher prevalence of serum vitamin D levels < 37.5 to 50 nmol/L in subjects with darker skin pigmentation compared to those with lighter skin pigmentation, with weighted averages of 46.8% among adults with darker skin colour and 15.9% among those with fairer skin.
Vitamin D intake and serum levels
Four adult studies evaluated serum vitamin D levels according to vitamin D intake and showed an overall trend toward a lower prevalence of serum levels < 37.5 to 50 nmol/L with higher levels of vitamin D intake. One study observed a dose-response relationship between higher vitamin D intake from supplements, diet (milk), and sun exposure (results not adjusted for other variables). It was observed that subjects taking 50 to 400 IU or > 400 IU of vitamin D per day had a 6% and 3% prevalence of serum vitamin D level < 40 nmol/L, respectively, versus 29% in subjects not on vitamin D supplementation. Similarly, among subjects drinking one or two glasses of milk per day, the prevalence of serum vitamin D levels < 40 nmol/L was found to be 15%, versus 6% in those who drink more than two glasses of milk per day and 21% among those who do not drink milk. On the other hand, one study observed little variation in serum vitamin D levels during winter according to milk intake, with the proportion of subjects exhibiting vitamin D levels of < 40 nmol/L being 21% among those drinking 0-2 glasses per day, 26% among those drinking > 2 glasses, and 20% among non-milk drinkers.
The overall quality of evidence for the studies conducted among adults was deemed to be low, although it was considered moderate for the subgroups of skin pigmentation and seasonal variation.
Newborn, Children and Adolescents
Five Canadian studies evaluated serum vitamin D levels in newborns, children, and adolescents. In four of these, it was found that between 0 and 36% of children exhibited deficiency across age groups with a weighted average of 6.4%. The results of over 28,000 vitamin D tests performed in children 0 to 18 years old in Ontario laboratories (Oct. 2008 to Sept. 2009) showed that 4.4% had serum levels of < 25 nmol/L.
According to two studies, 32% of infants 24 to 30 months old and 35.3% of newborns had serum vitamin D levels of < 50 nmol/L. Two studies of children 2 to 16 years old reported that 24.5% and 34% had serum vitamin D levels below 37.5 to 40 nmol/L. In both studies, older children exhibited a higher prevalence than younger children, with weighted averages 34.4% and 10.3%, respectively. The overall weighted average of the prevalence of serum vitamin D levels < 37.5 to 50 nmol/L among pediatric studies was 25.8%. The preliminary results of the Canadian survey showed that between 10% and 25% of subjects between 6 and 11 years (N= 435) had serum levels below 50 nmol/L, while for those 12 to 19 years, 25% to 50% exhibited serum vitamin D levels below 50 nmol/L.
The effects of season, skin pigmentation, and vitamin D intake were not explored in Canadian pediatric studies. A Canadian surveillance study did, however, report 104 confirmed cases1 (2.9 cases per 100,000 children) of vitamin D-deficient rickets among Canadian children age 1 to 18 between 2002 and 2004, 57 (55%) of which from Ontario. The highest incidence occurred among children living in the North, i.e., the Yukon, Northwest Territories, and Nunavut. In 92 (89%) cases, skin pigmentation was categorized as intermediate to dark, 98 (94%) had been breastfed, and 25 (24%) were offspring of immigrants to Canada. There were no cases of rickets in children receiving ≥ 400 IU VD supplementation/day.
Overall, the quality of evidence of the studies of children was considered very low.
Kidney Disease
Adults
Two studies evaluated serum vitamin D levels in Canadian adults with kidney disease. The first included 128 patients with chronic kidney disease stages 3 to 5, 38% of which had serum vitamin D levels of < 37.5 nmol/L (measured between April and July). This is higher than what was reported in Canadian studies of the general population during the summer months (i.e. between 8% and 14%). In the second, which examined 419 subjects who had received a renal transplantation (mean time since transplantation: 7.2 ± 6.4 years), the prevalence of serum vitamin D levels < 40 nmol/L was 27.3%. The authors concluded that the prevalence observed in the study population was similar to what is expected in the general population.
Children
No studies evaluating serum vitamin D levels in Canadian pediatric patients with kidney disease could be identified, although three such US studies among children with chronic kidney disease stages 1 to 5 were. The mean age varied between 10.7 and 12.5 years in two studies but was not reported in the third. Across all three studies, the prevalence of serum vitamin D levels below the range of 37.5 to 50 nmol/L varied between 21% and 39%, which is not considerably different from what was observed in studies of healthy Canadian children (24% to 35%).
Overall, the quality of evidence in adults and children with kidney disease was considered very low.
Clinical Utility of Vitamin D Testing
A high quality comprehensive systematic review published in August 2007 evaluated the association between serum vitamin D levels and different bone health outcomes in different age groups. A total of 72 studies were included. The authors observed that there was a trend towards improvement in some bone health outcomes with higher serum vitamin D levels. Nevertheless, precise thresholds for improved bone health outcomes could not be defined across age groups. Further, no new studies on the association were identified during an updated systematic review on vitamin D published in July 2009.
With regards to non-bone health outcomes, there is no high or even moderate quality evidence that supports the effectiveness of vitamin D in outcomes such as cancer, cardiovascular outcomes, and all-cause mortality. Even if there is any residual uncertainty, there is no evidence that testing vitamin D levels encourages adherence to Health Canada’s guidelines for vitamin D intake. A normal serum vitamin D threshold required to prevent non-bone health related conditions cannot be resolved until a causal effect or correlation has been demonstrated between vitamin D levels and these conditions. This is as an ongoing research issue around which there is currently too much uncertainty to base any conclusions that would support routine vitamin D testing.
For patients with chronic kidney disease (CKD), there is again no high or moderate quality evidence supporting improved outcomes through the use of calcitriol or vitamin D analogs. In the absence of such data, the authors of the guidelines for CKD patients consider it best practice to maintain serum calcium and phosphate at normal levels, while supplementation with active vitamin D should be considered if serum PTH levels are elevated. As previously stated, the authors of guidelines for CKD patients believe that there is not enough evidence to support routine vitamin D [25(OH)D] testing. According to what is stated in the guidelines, decisions regarding the commencement or discontinuation of treatment with calcitriol or vitamin D analogs should be based on serum PTH, calcium, and phosphate levels.
Limitations associated with the evidence of vitamin D testing include ambiguities in the definition of an ‘adequate threshold level’ and both inter- and intra- assay variability. The MAS considers both the lack of a consensus on the target serum vitamin D levels and assay limitations directly affect and undermine the clinical utility of testing. The evidence supporting the clinical utility of vitamin D testing is thus considered to be of very low quality.
Daily vitamin D intake, either through diet or supplementation, should follow Health Canada’s recommendations for healthy individuals of different age groups. For those with medical conditions such as renal disease, liver disease, and malabsorption syndromes, and for those taking medications that may affect vitamin D absorption/metabolism, physician guidance should be followed with respect to both vitamin D testing and supplementation.
Conclusions
Studies indicate that vitamin D, alone or in combination with calcium, may decrease the risk of fractures and falls among older adults.
There is no high or moderate quality evidence to support the effectiveness of vitamin D in other outcomes such as cancer, cardiovascular outcomes, and all-cause mortality.
Studies suggest that the prevalence of vitamin D deficiency in Canadian adults and children is relatively low (approximately 5%), and between 10% and 25% have serum levels below 40 to 50 nmol/L (based on very low to low grade evidence).
Given the limitations associated with serum vitamin D measurement, ambiguities in the definition of a ‘target serum level’, and the availability of clear guidelines on vitamin D supplementation from Health Canada, vitamin D testing is not warranted for the average risk population.
Health Canada has issued recommendations regarding the adequate daily intake of vitamin D, but current studies suggest that the mean dietary intake is below these recommendations. Accordingly, Health Canada’s guidelines and recommendations should be promoted.
Based on a moderate level of evidence, individuals with darker skin pigmentation appear to have a higher risk of low serum vitamin D levels than those with lighter skin pigmentation and therefore may need to be specially targeted with respect to optimum vitamin D intake. The cause-effect of this association is currently unclear.
Individuals with medical conditions such as renal and liver disease, osteoporosis, and malabsorption syndromes, as well as those taking medications that may affect vitamin D absorption/metabolism, should follow their physician’s guidance concerning both vitamin D testing and supplementation.
PMCID: PMC3377517  PMID: 23074397
7.  Holotranscobalamin Is a Useful Marker of Vitamin B12 Deficiency in Alcoholics 
The Scientific World Journal  2012;2012:128182.
Background. Measurement of serum cobalamin (Cbl) levels is the standard investigation for assessing vitamin B12 deficiency. Falsely increased values of Cbl can be caused by alcoholic liver disease. Measurement of total vitamin B12 serum levels might be misleading in alcoholics, because a tissue metabolic deficiency is possible even with normal serum Cbl levels. Holotranscobalamin (HoloTC), the Cbl metabolically active fraction, is considered as a better index of vitamin B12 deficiency. Methods. For assessing vitamin B12 status, we evaluated 22 adult alcoholic male patients by measuring in parallel serum Cbl, serum folate and red blood cell folate levels, HoloTC levels by the AxSYM assay. Results. HoloTC values were reduced in 3 alcoholics with borderline-low Cbl values. Significant positive correlations were found between serum Cbl and HoloTC levels, serum Cbl and gamma-glutamyl transpeptidase (GGT). Conclusion. HoloTC measurement is a useful option for assessing vitamin B12 status in alcoholics, particularly in the subjects with borderline Cbl values and may be considered an early marker of vitamin B12 deficiency.
doi:10.1100/2012/128182
PMCID: PMC3317628  PMID: 22481895
8.  Vitamin B12 deficiency & levels of metabolites in an apparently normal urban south Indian elderly population 
Background & objectives:
There is no published literature on the extent of vitamin B12 deficiency in elderly Indians as determined by plasma vitamin B12 levels and methylmalonic acid (MMA) levels. Vitamin B12 deficiency is expected to be higher in elderly Indians due to vegetarianism, varied socio-economic strata and high prevalence of Helicobacter pylori infection. We therefore, studied the dietary habits of south Indian urban elderly population and measured vitamin B12, MMA red cell folate and homocysteine (Hcy) levels.
Methods:
Healthy elderly urban subjects (175, >60 yr) were recruited. Detailed history, physical examination and neurological assessment were carried out. Food Frequency Questionnaire (FFQ) for dietary analysis for daily intake of calories, vitamin B12, folate and detailed psychological assessment for cognitive functions was carried out. Blood samples were analyzed for routine haematology and biochemistry, vitamin B12, red cell folate, MMA and Hcy.
Results:
The mean age of the study population was 66.3 yr. Median values for daily dietary intake of vitamin B12 and folate were 2.4 and 349.2 μg/day respectively. Sixty two (35%) participants consumed multivitamin supplements. Plasma vitamin B12 level and the dietary intake of vitamin B12 was significantly correlated (P=0.157). Plasma vitamin B12 and Hcy were inversely correlated (P= -0.509). Red cell folate was inversely correlated with Hcy (P= -0.550). Significant negative correlation was observed between plasma vitamin B12 and MMA in the entire study population (P= -0.220). Subjects consuming vitamin supplements (n=62) had significantly higher plasma vitamin B12 levels, lower MMA levels and lower Hcy levels. There was no significant correlation between plasma vitamin B12, MMA, Hcy and red cell folate and any of the 10 cognitive tests including Hindi Mental Status Examination (HMSE).
Interpretation & conclusions:
Our study is indicative of higher vitamin B12 (2.4 μg/day) intakes in urban south Indian population. Thirty five per cent of the study population consumed multivitamin supplements and therefore, low plasma vitamin B12 levels were seen only in 16 per cent of the study subjects. However, MMA was elevated in 55 per cent and Hcy in 13 per cent of the subjects.
PMCID: PMC3237239  PMID: 22089603
Cognitive assessment; geriatric; methylmalonic acid; nutrition; vitamin B12 deficiency
9.  Vitamin B12 Deficiency in Relation to Functional Disabilities 
Nutrients  2013;5(11):4462-4475.
This study was designed to assess whether symptoms, functional measures, and reported disabilities were associated with vitamin B12 (B12) deficiency when defined in three ways. Participants, aged 60 or more years of age, in 1999–2002 National Health and Nutrition Examination Surveys (NHANES) were categorized in relation to three previously used definitions of B12 deficiency: (1) serum B12 < 148 pmol/L; (2) serum B12 < 200 pmol/L and serum homocysteine > 20 μmol/L; and (3) serum B12 < 258 pmol/L or serum methylmalonic acid > 0.21 μmol/L. Functional measures of peripheral neuropathy, balance, cognitive function, gait speed, along with self-reported disability (including activities of daily living) were examined with standardized instruments by trained NHANES interviewers and technicians. Individuals identified as B12 deficient by definition 2 were more likely to manifest peripheral neuropathy OR (odds) (95% confidence intervals), p value: 9.70 (2.24, 42.07), 0.004 and report greater total disability, 19.61 (6.22, 61.86) 0.0001 after adjustments for age, sex, race, serum creatinine, and ferritin concentrations, smoking, diabetes, and peripheral artery disease. Smaller, but significantly increased, odds of peripheral neuropathy and total disability were also observed when definition 3 was applied. Functional measures and reported disabilities were associated with B12 deficiency definitions that include B12 biomarkers (homocysteine or methylmalonic acid). Further study of these definitions is needed to alert clinicians of possible subclinical B12 deficiency because functional decline amongst older adults may be correctable if the individual is B12 replete.
doi:10.3390/nu5114462
PMCID: PMC3847742  PMID: 24225845
vitamin B12 deficiency; methylmalonic acid; homocysteine; peripheral neuropathy; functional impairment
10.  Nutritional Biomarkers in Children and Adolescents with Beta-Thalassemia-Major: An Egyptian Center Experience 
BioMed Research International  2014;2014:261761.
Background and Aim. Trace elements and vitamins play a vital role in human body to perform its function properly. Thalassemic patients are at risk of micronutrient deficiency. This study estimated levels of vitamins A, C, E, B12, folic acid, total homocysteine (tHcy), and methylmalonic acid (MMA) along with trace elements, zinc, copper, and selenium in Beta-thalassemia-major patients. Methods. This study included 108 patients with Beta-thalassemia-major and 60 age and sex matched healthy children. Serum levels of vitamin A, E, C, tHcy, and MMA were estimated by high pressure liquid chromatography while serum levels of folic acid and B12 were estimated by thin layer chromatography. Serum zinc, copper, and selenium were determined by atomic absorption spectrometry. Results. There was a significant decrease of vitamins A, C, E, and B12 and trace elements zinc, copper, and selenium in thalassemic patients as compared to controls. tHcy and MMA were significantly elevated in patients. No significant correlations were found between the serum levels of the studied vitamins and trace elements as regards age, frequency of transfusion, duration of transfusion, and serum ferritin. Conclusion. The level of various nutritional biomarkers (vitamins A, C, E, and B12 and trace elements zinc, copper, selenium) was reduced in chronically transfused Egyptian thalassemic patient. These patients should have periodic nutritional evaluation and supplementation. Multicenter studies are highly recommended.
doi:10.1155/2014/261761
PMCID: PMC4000941  PMID: 24812610
11.  Serum 25-hydroxyvitamin D status of the US population: 1988–1994 versus 2000–20041 
Background
Changes in serum 25-hydroxyvitamin D (25OHD) concentrations in the US population have not been described.
Objective
Use data from the National Health and Nutrition Examination Surveys (NHANES) to compare serum 25OHD concentrations in the US population in 2000–2004 versus 1988–1994, and to identify contributing factors.
Design
Serum 25OHD was measured with a radioimmunoassay kit in 20,289 participants in NHANES 2000–2004 and 18,158 participants in NHANES III (1988–1994). Body mass index (BMI) was calculated from measured height and weight. Milk intake and sun protection were assessed by questionnaire. Assay differences were assessed by re-analyzing 150 stored sera specimens from NHANES III with the current assay.
Results
Age-adjusted mean serum 25OHD concentrations were significantly lower by 5–20 nmol/L in NHANES 2000–2004 than in NHANES III. After accounting for assay shifts, age-adjusted means in NHANES 2000–2004 remained significantly lower (by 5–9 nmol/L) in most males, but not in most females. In a study subsample, accounting for the confounding effects of assay differences changed mean serum 25OHD by ~10 nmol/L, while accounting for changes in the factors likely related to real changes in vitamin D status (BMI, milk intake, and sun protection) changed means by 1–1.6 nmol/L.
Conclusions
Overall, mean serum 25OHD was lower in 2000–2004 than 1988–1994. Assay changes unrelated to changes in vitamin D status accounted for much of the difference in most population groups. In an adult subgroup, combined changes in BMI, milk intake and sun protection appeared to contribute to a real decline in vitamin D status.
doi:10.3945/ajcn.2008.26182
PMCID: PMC2745830  PMID: 19064511
Serum 25-hydroxyvitamin D; Vitamin D status; NHANES
12.  Serum Nutritional Biomarkers and Their Associations with Sleep among US Adults in Recent National Surveys 
PLoS ONE  2014;9(8):e103490.
Background
The associations between nutritional biomarkers and measures of sleep quantity and quality remain unclear.
Methods
Cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES) 2005–2006 were used. We selected 2,459 adults aged 20–85, with complete data on key variables. Five sleep measures were constructed as primary outcomes: (A) Sleep duration; (B) Sleep disorder; (C) Three factors obtained from factor analysis of 15 items and labeled as “Poor sleep-related daytime dysfunction” (Factor 1), “Sleepiness” (Factor 2) and “Sleep disturbance” (Factor 3). Main exposures were serum concentrations of key nutrients, namely retinol, retinyl esters, carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein+zeaxanthin, lycopene), folate, vitamin B-12, total homocysteine (tHcy), vitamin C, 25-hydroxyvitamin D (25(OH)D) and vitamin E. Main analyses consisted of multiple linear, logistic and multinomial logit models.
Results
Among key findings, independent inverse associations were found between serum vitamin B-12 and sleep duration, 25(OH)D and sleepiness (as well as insomnia), and between folate and sleep disturbance. Serum total carotenoids concentration was linked to higher odds of short sleep duration (i.e. 5–6 h per night) compared to normal sleep duration (7–8 h per night).
Conclusions
A few of the selected serum nutritional biomarkers were associated with sleep quantity and quality. Longitudinal studies are needed to ascertain temporality and assess putative causal relationships.
doi:10.1371/journal.pone.0103490
PMCID: PMC4138077  PMID: 25137304
13.  Simple, Fast, and Simultaneous Detection of Plasma Total Homocysteine, Methylmalonic Acid, Methionine, and 2-Methylcitric Acid Using Liquid Chromatography and Mass Spectrometry (LC/MS/MS) 
JIMD Reports  2013;10:69-78.
Cobalamin (Vitamin B12) plays an essential role both in the conversion of methylmalonyl-CoA to succinyl-CoA and in the synthesis of methionine (Met) from homocysteine (Hcy). Elevations of total homocysteine (tHcy), Met, methylmalonic acid (MMA), and 2-methylcitric acid (2MCA) are indicative of disorders in these related pathways, and can clinically present as methylmalonic acidemia, cobalamin defects or deficiency, propionic acidemia, homocystinuria, and hypermethioninemia. We have developed a fast, sensitive, and simple method for the simultaneous detection of plasma tHcy, MMA, Met, and 2MCA using liquid chromatography mass spectrometry (LC/MS/MS). All analytes were directly determined without the need of derivatization. Both positive and negative modes were used to achieve the best sensitivity and specificity. The two stereo isomers of 2MCA (2S, 3S) and (2R, 3S) were successfully separated and were designated as 2MCA1 and 2MCA2. The assays were linear up to a concentration of 800 μMol/l for tHcy, 2,000 μMol/l for Met, 80 μMol/l for MMA, 40 μMol/l for 2MCA1, and 40 μMol/l for 2MCA2 (80 μMol/l for total 2MCA), respectively. The recovery was between 84.42 % and 120.05 %. The intra-assay coefficient of variations (CVs) ranged from 2.1 % to 6.9 % (n = 20), and the inter-assay CVs ranged from 2.7 % to 11.6 % (n = 20). Reference intervals were established and verified (n = 125). A total of 15 patients with variable disorders in related pathway were successfully confirmed. The assay can be performed either in diagnostic laboratories or as second-tier, follow-up test in newborn screening laboratories.
A fast, sensitive, and simple LC/MS/MS method was developed successfully for the simultaneous detection of plasma total homocysteine, methylmalonic acid, methionine, and 2-methylcitric acid for diagnosis of disorders in related pathways.
doi:10.1007/8904_2012_205
PMCID: PMC3755585  PMID: 23430805
14.  Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study 
Diabetologia  2007;51(1):29-38.
Aims/hypothesis
Raised maternal plasma total homocysteine (tHcy) concentrations predict small size at birth, which is a risk factor for type 2 diabetes mellitus. We studied the association between maternal vitamin B12, folate and tHcy status during pregnancy, and offspring adiposity and insulin resistance at 6 years.
Methods
In the Pune Maternal Nutrition Study we studied 700 consecutive eligible pregnant women in six villages. We measured maternal nutritional intake and circulating concentrations of folate, vitamin B12, tHcy and methylmalonic acid (MMA) at 18 and 28 weeks of gestation. These were correlated with offspring anthropometry, body composition (dual-energy X-ray absorptiometry scan) and insulin resistance (homeostatic model assessment of insulin resistance [HOMA-R]) at 6 years.
Results
Two-thirds of mothers had low vitamin B12 (<150 pmol/l), 90% had high MMA (>0.26 μmol/l) and 30% had raised tHcy concentrations (>10 μmol/l); only one had a low erythrocyte folate concentration. Although short and thin (BMI), the 6-year-old children were relatively adipose compared with the UK standards (skinfold thicknesses). Higher maternal erythrocyte folate concentrations at 28 weeks predicted higher offspring adiposity and higher HOMA-R (both p < 0.01). Low maternal vitamin B12 (18 weeks; p = 0.03) predicted higher HOMA-R in the children. The offspring of mothers with a combination of high folate and low vitamin B12 concentrations were the most insulin resistant.
Conclusions/interpretation
Low maternal vitamin B12 and high folate status may contribute to the epidemic of adiposity and type 2 diabetes in India.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-007-0793-y) contains supplementary material, which is available to authorised users.
doi:10.1007/s00125-007-0793-y
PMCID: PMC2100429  PMID: 17851649
Adiposity; Folate; Insulin resistance; Maternal nutrition; Offspring; Pregnancy; Vitamin B12
15.  Transcobalamin C776G Genotype Modifies the Association between Vitamin B12 and Homocysteine in Older Hispanics 
Background
A common polymorphism, C776G, in the plasma B12 transport protein transcobalamin (TC), encodes for either proline or arginine at codon 259. This polymorphism may affect the affinity of TC for B12 and subsequent delivery of B12 to tissues.
Methods
TC genotype and its associations with indicators of B12 status, including total B12, holotranscobalamin (holoTC), methylmalonic acid, and homocysteine, were evaluated in a cohort of elderly Latinos (N=554, age 60–93y) from the Sacramento Area Latino Study on Aging (SALSA).
Results
The distribution of TC genotypes was 41.3% homozygous reference (776CC) and 11.6% homozygous variant (776GG). No differences between the homozygous genotypes were observed in total B12, holoTC, methylmalonic acid, or homocysteine. The holoTC/total B12 ratio was lower in the 776GG group compared with the 776CC group (p=0.04). Significant interactions of TC genotype with total B12 (p=0.04) and with holoTC (p≤0.03) were observed such that mean homocysteine concentrations and the odds ratios for hyperhomocysteinemia (>13 µmol/L) were higher in the 776CC subjects compared with all carriers of the G allele (776CG and 776GG combined) when total B12 (<156 pmol/L) or holoTC (<35 pmol/L) were low.
Conclusions
This population of older Latinos has a lower prevalence of the TC 776GG variant than reported for Caucasian populations. The association between vitamin B12 and homocysteine concentrations is modified by TC 776 genotype. It remains to be determined if the TC C776G polymorphism has a significant effect on the hematological and neurological manifestations of B12 deficiency or on vascular and other morbidities associated with hyperhomocysteinemia.
doi:10.1038/ejcn.2010.20
PMCID: PMC2864787  PMID: 20216556
Transcobalamin; polymorphism; homocysteine; vitamin B12; Hispanic elderly
16.  Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts 
PLoS Medicine  2013;10(2):e1001383.
A mendelian randomization study based on data from multiple cohorts conducted by Karani Santhanakrishnan Vimaleswaran and colleagues re-examines the causal nature of the relationship between vitamin D levels and obesity.
Background
Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis.
Methods and Findings
We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects.
Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m2 higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10−27). The BMI allele score was associated both with BMI (p = 6.30×10−62) and 25(OH)D (−0.06% [95% CI −0.10 to −0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10−57 for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: −4.2 [95% CI −7.1 to −1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores).
Conclusions
On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Obesity—having an unhealthy amount of body fat—is increasing worldwide. In the US, for example, a third of the adult population is now obese. Obesity is defined as having a body mass index (BMI, an indicator of body fat calculated by dividing a person's weight in kilograms by their height in meters squared) of more than 30.0 kg/m2. Although there is a genetic contribution to obesity, people generally become obese by consuming food and drink that contains more energy than they need for their daily activities. Thus, obesity can be prevented by having a healthy diet and exercising regularly. Compared to people with a healthy weight, obese individuals have an increased risk of developing diabetes, heart disease and stroke, and tend to die younger. They also have a higher risk of vitamin D deficiency, another increasingly common public health concern. Vitamin D, which is essential for healthy bones as well as other functions, is made in the skin after exposure to sunlight but can also be obtained through the diet and through supplements.
Why Was This Study Done?
Observational studies cannot prove that obesity causes vitamin D deficiency because obese individuals may share other characteristics that reduce their circulating 25-hydroxy vitamin D [25(OH)D] levels (referred to as confounding). Moreover, observational studies cannot indicate whether the larger vitamin D storage capacity of obese individuals (vitamin D is stored in fatty tissues) lowers their 25(OH)D levels or whether 25(OH)D levels influence fat accumulation (reverse causation). If obesity causes vitamin D deficiency, monitoring and treating vitamin D deficiency might alleviate some of the adverse health effects of obesity. Conversely, if low vitamin D levels cause obesity, encouraging people to take vitamin D supplements might help to control the obesity epidemic. Here, the researchers use bi-directional “Mendelian randomization” to examine the direction and causality of the relationship between BMI and 25(OH)D. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the influence of a modifiable environmental exposure and the outcome of interest. Because gene variants do not change over time and are inherited randomly, they are not prone to confounding and are free from reverse causation. Thus, if a lower vitamin D status leads to obesity, genetic variants associated with lower 25(OH)D concentrations should be associated with higher BMI, and if obesity leads to a lower vitamin D status, then genetic variants associated with higher BMI should be associated with lower 25(OH)D concentrations.
What Did the Researchers Do and Find?
The researchers created a “BMI allele score” based on 12 BMI-related gene variants and two “25(OH)D allele scores,” which are based on gene variants that affect either 25(OH)D synthesis or breakdown. Using information on up to 42,024 participants from 21 studies, the researchers showed that the BMI allele score was associated with both BMI and with 25(OH)D levels among the study participants. Based on this information, they calculated that each 10% increase in BMI will lead to a 4.2% decrease in 25(OH)D concentrations. By contrast, although both 25(OH)D allele scores were strongly associated with 25(OH)D levels, neither score was associated with BMI. This lack of an association between 25(OH)D allele scores and obesity was confirmed using data from more than 100,000 individuals involved in 46 studies that has been collected by the GIANT (Genetic Investigation of Anthropometric Traits) consortium.
What Do These Findings Mean?
These findings suggest that a higher BMI leads to a lower vitamin D status whereas any effects of low vitamin D status on BMI are likely to be small. That is, these findings provide evidence for obesity as a causal factor in the development of vitamin D deficiency but not for vitamin D deficiency as a causal factor in the development of obesity. These findings suggest that population-level interventions to reduce obesity should lead to a reduction in the prevalence of vitamin D deficiency and highlight the importance of monitoring and treating vitamin D deficiency as a means of alleviating the adverse influences of obesity on health.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001383.
The US Centers for Disease Control and Prevention provides information on all aspects of overweight and obesity (in English and Spanish); a data brief provides information about the vitamin D status of the US population
The World Health Organization provides information on obesity (in several languages)
The UK National Health Service Choices website provides detailed information about obesity and a link to a personal story about losing weight; it also provides information about vitamin D
The International Obesity Taskforce provides information about the global obesity epidemic
The US Department of Agriculture's ChooseMyPlate.gov website provides a personal healthy eating plan; the Weight-control Information Network is an information service provided for the general public and health professionals by the US National Institute of Diabetes and Digestive and Kidney Diseases (in English and Spanish)
The US Office of Dietary Supplements provides information about vitamin D (in English and Spanish)
MedlinePlus has links to further information about obesity and about vitamin D (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Overview and details of the collaborative large-scale genetic association study (D-CarDia) provide information about vitamin D and the risk of cardiovascular disease, diabetes and related traits
doi:10.1371/journal.pmed.1001383
PMCID: PMC3564800  PMID: 23393431
17.  Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III 
BMC Medicine  2013;11:187.
Background
Magnesium plays an essential role in the synthesis and metabolism of vitamin D and magnesium supplementation substantially reversed the resistance to vitamin D treatment in patients with magnesium-dependent vitamin-D-resistant rickets. We hypothesized that dietary magnesium alone, particularly its interaction with vitamin D intake, contributes to serum 25-hydroxyvitamin D (25(OH)D) levels, and the associations between serum 25(OH)D and risk of mortality may be modified by magnesium intake level.
Methods
We tested these novel hypotheses utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2001 to 2006, a population-based cross-sectional study, and the NHANES III cohort, a population-based cohort study. Serum 25(OH)D was used to define vitamin D status. Mortality outcomes in the NHANES III cohort were determined by using probabilistic linkage with the National Death Index (NDI).
Results
High intake of total, dietary or supplemental magnesium was independently associated with significantly reduced risks of vitamin D deficiency and insufficiency respectively. Intake of magnesium significantly interacted with intake of vitamin D in relation to risk of both vitamin D deficiency and insufficiency. Additionally, the inverse association between total magnesium intake and vitamin D insufficiency primarily appeared among populations at high risk of vitamin D insufficiency. Furthermore, the associations of serum 25(OH)D with mortality, particularly due to cardiovascular disease (CVD) and colorectal cancer, were modified by magnesium intake, and the inverse associations were primarily present among those with magnesium intake above the median.
Conclusions
Our preliminary findings indicate it is possible that magnesium intake alone or its interaction with vitamin D intake may contribute to vitamin D status. The associations between serum 25(OH)D and risk of mortality may be modified by the intake level of magnesium. Future studies, including cohort studies and clinical trials, are necessary to confirm the findings.
doi:10.1186/1741-7015-11-187
PMCID: PMC3765911  PMID: 23981518
Magnesium intake; Serum 25-hydroxyvitamin D levels; Vitamin D insufficiency; Vitamin D deficiency; Parathyroid hormone; Mortality; Colorectal cancer; Cardiovascular diseases
18.  Daily milk intake improves vitamin B-12 status in young vegetarian Indians: an intervention trial 
Nutrition Journal  2013;12:136.
Background
Asymptomatic Indian lacto vegetarians, who make up more than half of the Indian population in different geographic regions, have distinctly low vitamin B-12 concentrations than non- vegetarians. Vegetarians consume milk but it seems that the amount is not enough to improve vitamin B-12 status or vitamin B-12 concentration in milk itself may be low. The aim of this study was to determine if daily milk consumption can improve vitamin B-12 status.
Methods
Fifteen male and 36 female, young healthy post-graduate volunteers participated. Blood from ten participants (4 males and 6 females) was collected (day-1). They continued their regular diet for next fourteen days and on day-15, blood of all 51 participants was collected, plasma vitamin B-12 concentration was measured and were divided into two groups; Normal (vitamin B-12 >148 pmol/L, n = 22) and Vitamin B-12 deficient (<148 pmol/L, n = 29), the remaining plasma was stored. All participants consumed 600 ml. of non-enriched buffalo milk (200 × 3) during the day along with their usual diet. Next day blood was collected for plasma holotranscobalamin II measurement. Subjects from deficient group continued to drink 400 ml of milk daily for next 14 days and blood was collected on day-30. Plasma holotranscoabalamin II (day-1, 15, 16, 30), vitamin B-12, folate, total homocysteine, creatinine and hematoloical parameters (day-1, 15, 30), and milk vitamin B-12 concentrations (day-15, 16, 30) were measured.
Results
Fifty seven per cent of the participants were vitamin B-12 deficient and 65% were hyperhomocysteinemic. No significant difference in biomarkers was observed when there was no intervention. Plasma holotranscobalamin II concentration increased from 19.6 to 22.27 pmol/L (p < 0.0001) 24 hrs after milk load in the whole group. Plasma vitamin B-12 increased from 92.5 to 122 pmol/L and tHcy concentrations decreased from 31.9 to 24.9 μ mol/L (p < 0.0001 for both) 14 days after regular milk intake in vitamin B-12 deficient subjects.
Conclusions
Regular intake of milk improved vitamin B-12 status of vitamin B-12 deficient vegetarians indicating a potential dietary strategy to improve the vitamin status.
doi:10.1186/1475-2891-12-136
PMCID: PMC3851996  PMID: 24107225
Milk; Vitamin B-12 status; Holotranscobalamin II; Vitamin B-12; Folate; Total homocysteine; Cobalamin
19.  Demographic Differences and Trends of Vitamin D Insufficiency in the US Population, 1988–2004 
Archives of internal medicine  2009;169(6):626-632.
Background
Vitamin D insufficiency is associated with suboptimal health. The prevalence of vitamin D insufficiency may be rising, but population-based trends are uncertain. We sought to evaluate US population trends in vitamin D insufficiency.
Methods
We compared serum 25-hydroxyvitamin D (25[OH]D) levels from the Third National Health and Nutrition Examination Survey (NHANES III), collected during 1988 through 1994, with NHANES data collected from 2001 through 2004 (NHANES 2001–2004). Complete data were available for 18 883 participants in NHANES III and 13 369 participants in NHANES 2001–2004.
Results
The mean serum 25(OH)D level was 30 (95% confidence interval [CI], 29–30) ng/mL during NHANES III and decreased to 24 (23–25) ng/mL during NHANES 2001–2004. Accordingly, the prevalence of 25(OH)D levels of less than 10 ng/mL increased from 2% (95% CI, 2%–2%) to 6% (5%–8%), and 25(OH)D levels of 30 ng/mL or more decreased from 45% (43%–47%) to 23% (20%–26%). The prevalence of 25(OH)D levels of less than 10 ng/mL in non-Hispanic blacks rose from 9% during NHANES III to 29% during NHANES 2001–2004, with a corresponding decrease in the prevalence of levels of 30 ng/mL or more from 12% to 3%. Differences by age strata (mean serum 25[OH]D levels ranging from 28–32 ng/mL) and sex (28 ng/mL for women and 32 ng/mL for men) during NHANES III equalized during NHANES 2001–2004 (24 vs 24 ng/mL for age and 24 vs 24 ng/mL for sex).
Conclusions
National data demonstrate a marked decrease in serum 25(OH)D levels from the 1988–1994 to the 2001–2004 NHANES data collections. Racial/ethnic differences have persisted and may have important implications for known health disparities. Current recommendations for vitamin D supplementation are inadequate to address the growing epidemic of vitamin D insufficiency.
doi:10.1001/archinternmed.2008.604
PMCID: PMC3447083  PMID: 19307527
20.  Population prevalence, attributable risk, and attributable risk percentage for high methylmalonic acid concentrations in the post-folic acid fortification period in the US 
Background
Serum methylmalonic acid (MMA) is regarded as a sensitive marker of vitamin B-12 status. Elevated circulating MMA is linked to neurological abnormalities. Contribution of age, supplement use, kidney dysfunction, and vitamin B-12 deficiency to high serum MMA in post-folic acid fortification period is unknown.
Methods
We investigated prevalence, population attributable risk (PAR), and PAR% for high MMA concentrations in the US. Data from 3 cross-sectional National Health and Nutrition Examination Surveys conducted in post-folic acid fortification period were used (n = 18569).
Results
Likelihood of having high serum MMA for white relative to black was 2.5 (P < 0.0001), ≥ 60 y old persons relative to < 60 y old persons was 4.0 (P < 0.0001), non-supplement users relative to supplement users was 1.8 (P < 0.0001), persons with serum creatinine ≥ 130 μmol/L relative to those with < 130 μmol/L was 12.6 (P < 0.0001), and persons with serum vitamin B-12 < 148 pmol/L relative to those with ≥ 148 pmol/L was 13.5 (P < 0.0001). PAR% for high MMA for old age, vitamin B-12 deficiency, kidney dysfunction, and non-supplement use were 40.5, 16.2, 13.3, and 11.8, respectively. By improving serum vitamin B-12 (≥ 148 pmol/L), prevalence of high MMA would be reduced by 16-18% regardless of kidney dysfunction.
Conclusions
Old age is the strongest determinant of PAR for high MMA. About 5 cases of high serum MMA/1000 people would be reduced if vitamin B-12 deficiency (< 148 pmol/L) is eliminated. Large portion of high MMA cases are not attributable to serum vitamin B-12. Thus, caution should be used in attributing high serum MMA to vitamin B-12 deficiency.
doi:10.1186/1743-7075-9-2
PMCID: PMC3398338  PMID: 22233538
Age; methylmalonic acid; NHANES; population attributable risk; population attributable risk percentage
21.  Characterization of a monoclonal antibody with specificity for holo-transcobalamin 
Background
Holotranscobalamin, cobalamin-saturated transcobalamin, is the minor fraction of circulating cobalamin (vitamin B12), which is available for cellular uptake and hence is physiologically relevant. Currently, no method allows simple, direct quantification of holotranscobalamin. We now report on the identification and characterization of a monoclonal antibody with a unique specificity for holotranscobalamin.
Methods
The specificity and affinity of the monoclonal antibodies were determined using surface plasmon resonance and recombinant transcobalamin as well as by immobilizing the antibodies on magnetic microspheres and using native transcobalamin in serum. The epitope of the holotranscobalamin specific antibody was identified using phage display and comparison to a de novo generated three-dimensional model of transcobalamin using the program Rosetta. A direct assay for holotrnscobalamin in the ELISA format was developed using the specific antibody and compared to the commercial assay HoloTC RIA.
Results
An antibody exhibiting >100-fold specificity for holotranscobalamin over apotranscobalamin was identified. The affinity but not the specificity varied inversely with ionic strength and pH, indicating importance of electrostatic interactions. The epitope was discontinuous and epitope mapping of the antibody by phage display identified two similar motifs with no direct sequence similarity to transcobalamin. A comparison of the motifs with a de novo generated three-dimensional model of transcobalamin identified two structures in the N-terminal part of transcobalamin that resembled the motif. Using this antibody an ELISA based prototype assay was developed and compared to the only available commercial assay for measuring holotranscobalamin, HoloTC RIA.
Conclusion
The identified antibody possesses a unique specificity for holotranscobalamin and can be used to develop a direct assay for the quantification of holotranscobalamin.
doi:10.1186/1743-7075-3-3
PMCID: PMC1351188  PMID: 16393340
22.  Zinc, Gravida, Infection, and Iron, but Not Vitamin B-12 or Folate Status, Predict Hemoglobin during Pregnancy in Southern Ethiopia1,2 
The Journal of nutrition  2008;138(3):581-586.
The etiology of anemia during pregnancy in rural Southern Ethiopia is uncertain. Intakes of animal-source foods are low and infections and bacterial overgrowth probably coexist. We therefore measured the dietary intakes of a convenience sample of Sidama women in late pregnancy who consumed either maize (n = 68) or fermented enset (Enset ventricosum) (n = 31) as their major energy source. Blood samples were analyzed for a complete blood count, vitamin B-12 and folate status, plasma ferritin, retinol, zinc, albumin, and C-reactive protein (CRP). The role of infection and gravida was also examined. Dietary intakes were calculated from 1-d weighed records. No cellular animal products were consumed. Of the women, 29% had anemia, 13% had iron deficiency anemia, 33% had depleted iron stores, and 74 and 27% had low plasma zinc and retinol, respectively. Only 2% had low plasma folate (<6.8 nmol/L) and 23% had low plasma vitamin B-12 (<150 pmol/L), even though 62% had elevated plasma methylmalonic acid (MMA) (> 271 nmol/L). None had elevated plasma cystathionine or total homocysteine (tHcys). Women with enset-based diets had higher (P = 0.052) plasma vitamin B-12 concentration and lower (P < 0.05) cell volume, plasma cystathionine, and retinol than women consuming maize-based diets, but mean hemoglobin, plasma ferritin, MMA, tHcys, and folate did not differ. Plasma zinc, followed by CRP (≤5 mg/L), gravida (≤4), and plasma ferritin (≥12 μmg/L) status were major positive predictors of hemoglobin. Despite some early functional vitamin B-12 deficiency, there was no macrocytic anemia. Consumption of fermented enset may have increased vitamin B-12 levels in diet and plasma.
PMCID: PMC2440679  PMID: 18287370
23.  Blood Concentrations of Homocysteine and Methylmalonic Acid among Demented and Non-Demented Swedish Elderly with and without Home Care Services and Vitamin B12 Prescriptions 
Background and Aims
Total plasma homocysteine (tHcy) has been suggested as a risk factor of dementia. Our aim was to investigate potential differences in tHcy status in relation to the prescription of vitamin B12 and dementia diagnosis. We examined whether vitamin B12 prescriptions, a family history of dementia, or the need for home care service might be associated with tHcy values.
Methods
A cross-sectional monocenter study comprising 926 consecutive subjects attending our Memory Care Unit was conducted.
Results
Demented subjects being prescribed vitamin B12 had higher serum vitamin B12 (p = 0.025) but also higher tHcy (p < 0.001) and serum methylmalonate (p = 0.032), and lower serum folate (p < 0.001) than those who did not receive vitamin B12 prescriptions. tHcy levels were significantly higher in non-demented subjects receiving home care service (p = 0.007). This group also had lower serum albumin (dementia: p < 0.001; non-dementia: p = 0.004). There was no difference in renal function (estimated glomerular filtration rate) in demented or non-demented subjects with or without vitamin B12 prescriptions (dementia with/without vitamin B12 prescription: p = 0.561; non-dementia with/without vitamin B12 prescription: p = 0.710).
Conclusion
Despite vitamin B12 prescriptions, demented subjects had higher tHcy and methylmalonate values. The elevated metabolite values could not be explained by differences in renal function. Thus, elderly subjects on vitamin B12 prescription appear to have unmet nutritional needs.
doi:10.1159/000339669
PMCID: PMC3522456  PMID: 23277779
Homocysteine; Dementia; Vitamin B12; Folate; Home care service
24.  The Causal Effect of Vitamin D Binding Protein (DBP) Levels on Calcemic and Cardiometabolic Diseases: A Mendelian Randomization Study 
PLoS Medicine  2014;11(10):e1001751.
In this study, Richards and colleagues undertook a Mendelian randomization study to determine whether vitamin D binding protein (DBP) levels have a causal effect on common calcemic and cardiometabolic diseases. They concluded that DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except Vit D levels.
Please see later in the article for the Editors' Summary
Background
Observational studies have shown that vitamin D binding protein (DBP) levels, a key determinant of 25-hydroxy-vitamin D (25OHD) levels, and 25OHD levels themselves both associate with risk of disease. If 25OHD levels have a causal influence on disease, and DBP lies in this causal pathway, then DBP levels should likewise be causally associated with disease. We undertook a Mendelian randomization study to determine whether DBP levels have causal effects on common calcemic and cardiometabolic disease.
Methods and Findings
We measured DBP and 25OHD levels in 2,254 individuals, followed for up to 10 y, in the Canadian Multicentre Osteoporosis Study (CaMos). Using the single nucleotide polymorphism rs2282679 as an instrumental variable, we applied Mendelian randomization methods to determine the causal effect of DBP on calcemic (osteoporosis and hyperparathyroidism) and cardiometabolic diseases (hypertension, type 2 diabetes, coronary artery disease, and stroke) and related traits, first in CaMos and then in large-scale genome-wide association study consortia. The effect allele was associated with an age- and sex-adjusted decrease in DBP level of 27.4 mg/l (95% CI 24.7, 30.0; n = 2,254). DBP had a strong observational and causal association with 25OHD levels (p = 3.2×10−19). While DBP levels were observationally associated with calcium and body mass index (BMI), these associations were not supported by causal analyses. Despite well-powered sample sizes from consortia, there were no associations of rs2282679 with any other traits and diseases: fasting glucose (0.00 mmol/l [95% CI −0.01, 0.01]; p = 1.00; n = 46,186); fasting insulin (0.01 pmol/l [95% CI −0.00, 0.01,]; p = 0.22; n = 46,186); BMI (0.00 kg/m2 [95% CI −0.01, 0.01]; p = 0.80; n = 127,587); bone mineral density (0.01 g/cm2 [95% CI −0.01, 0.03]; p = 0.36; n = 32,961); mean arterial pressure (−0.06 mm Hg [95% CI −0.19, 0.07]); p = 0.36; n = 28,775); ischemic stroke (odds ratio [OR] = 1.00 [95% CI 0.97, 1.04]; p = 0.92; n = 12,389/62,004 cases/controls); coronary artery disease (OR = 1.02 [95% CI 0.99, 1.05]; p = 0.31; n = 22,233/64,762); or type 2 diabetes (OR = 1.01 [95% CI 0.97, 1.05]; p = 0.76; n = 9,580/53,810).
Conclusions
DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except 25OHD levels. It remains to be determined whether 25OHD has a causal effect on these outcomes independent of DBP.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Vitamin D deficiency is an increasingly common public health concern. According to some estimates, more than a billion people worldwide may be vitamin D deficient. Indeed, many people living in the US and Europe (in particular, elderly people, breastfed infants, people with dark skin, and obese individuals) have serum (circulating) 25-hydroxy-vitamin D (25OHD) levels below 50 nmol/l, the threshold for vitamin D deficiency. Vitamin D helps the body absorb calcium, a mineral that is essential for healthy bones. Consequently, vitamin D deficiency can lead to calcemic diseases such as rickets (a condition that affects bone development in children), osteomalacia (soft bones in adults), and osteoporosis (a condition in which the bones weaken and become susceptible to fracture). We get most of our vitamin D needs from our skin, which makes vitamin D after exposure to sunlight. Vitamin D is also found naturally in oily fish and eggs, and is added to some other foods, including cereals and milk, but some people need to take vitamin D supplements to avoid vitamin D deficiency.
Why Was This Study Done?
Observational studies have reported that the low levels of serum 25OHD and serum vitamin D binding protein (DBP, a key determinant of serum 25OHD level) are both associated with the risk of several common diseases and traits. Such studies have implicated vitamin D deficiency in cardiometabolic disease (cardiovascular diseases that affect the heart and/or blood vessels and metabolic diseases that affect the cellular chemical reactions needed to sustain life), in some cancers, and in Alzheimer disease. But observational studies cannot prove that vitamin D deficiency or DBP levels actually cause any of these diseases. So, for example, an observational study might report an association between vitamin D deficiency and type 2 diabetes (a metabolic disease), but the individuals who develop type 2 diabetes might share another unknown characteristic that is actually responsible for disease development (a confounding factor). Alternatively, type 2 diabetes might reduce circulating vitamin D levels (reverse causation). Here, the researchers undertake a Mendelian randomization study to determine whether circulating DBP levels have causal effects on calcemic and cardiometabolic diseases. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the influence of a modifiable environmental exposure and the outcome of interest. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if low DBP levels lead to low serum 25OHD levels, and vitamin D levels have a causal effect on common diseases, genetic variants associated with low DBP levels should be associated with the development of common diseases.
What Did the Researchers Do and Find?
The researchers analyzed the association between a genetic variant called single nucleotide polymorphism (SNP) rs2282679, which is known to alter DBP levels, and calcemic and cardiometabolic diseases and related traits in 2,254 participants in the Canadian Multicentre Osteoporosis Study (CaMos). The researchers report that there was a strong association between SNP rs2282679 and both serum DBP and 25OHD levels among the CaMos participants. However, there were no significant associations (associations unlikely to have occurred by chance) between SNP rs2282679 and calcium level, osteoporosis, or several cardiometabolic diseases, including heart attacks and diabetes. Moreover, when the researchers examined publically available genome-wide association study data collected by several international consortia investigating genetic influences on disease, they found no significant associations between rs2282679 and a wide range of calcemic and cardiometabolic diseases.
What Do These Findings Mean?
In this Mendelian randomization study, DBP level had no demonstrable causal effect on any of the calcemic or cardiometabolic diseases or traits investigated, except 25OHD level. Because most of the participants in CaMos and the international consortia were of European descent, these findings are applicable only to people of European ancestry. Moreover, like all Mendelian randomization studies, the reliability of these findings depends on several assumptions made by the researchers. Notably, although this study strongly suggests that DBP level does not have a causal influence on several common diseases, it remains to be determined whether 25OHD has a causal effect on any calcemic or cardiometabolic outcomes independent of DBP level.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001751.
The UK National Health Service Choices website provides information about vitamin D and about how to get vitamin D from sunshine; “Behind the Headlines” articles describe a recent observational study that reported an association between vitamin D deficiency and Alzheimer disease and the media coverage of this study, other health claims made for vitamin D, and a randomized control trial that questioned the role of vitamin D in disease
The US National Institutes of Health Office of Dietary Supplements provides information about vitamin D (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about the vitamin D status of the US population
MedlinePlus has links to further information about vitamin D (in English and Spanish)
Information about the Canadian Multicentre Osteoporosis Study is available
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001751
PMCID: PMC4211663  PMID: 25350643
25.  Assessing vitamin status in large population surveys by measuring biomarkers and dietary intake – two case studies: folate and vitamin D 
Food & Nutrition Research  2012;56:10.3402/fnr.v56i0.5944.
The National Health and Nutrition Examination Survey (NHANES) provides the most comprehensive assessment of the health and nutrition status of the US population. Up-to-date reference intervals on biomarkers and dietary intake inform the scientific and public health policy communities on current status and trends over time.
The main purpose of dietary assessment methods such as the food-frequency questionnaire, food record (or diary), and 24-hr dietary recall is to estimate intake of nutrients and, together with supplement usage information, describe total intake of various foods or nutrients. As with all self-reporting methods, these tools are challenging to use and interpret. Yet, they are needed to establish dietary reference intake recommendations and to evaluate what proportion of the population meets these recommendations. While biomarkers are generally expensive and, to some degree, invasive, there is no question as to their ability to assess nutrition status. In some cases biomarkers can also be used to assess intake or function, although rarely can one biomarker fulfill all these purposes. For example, serum folate is a good indicator of folate intake, red blood cell (RBC) folate is a good status indicator, and plasma total homocysteine is a good functional indicator of one-carbon metabolism.
Using folate and vitamin D – two vitamins that are currently hotly debated in the public health arena – as two case studies, we discuss the complexities of using biomarkers and total intake information to assess nutrition status. These two examples also show how biomarkers and intake provide different information and how both are needed to evaluate and set public health policy. We also provide guidance on general requirements for using nutrition biomarkers and food and supplement intake information in longitudinal, population-based surveys.
doi:10.3402/fnr.v56i0.5944
PMCID: PMC3321254  PMID: 22489219
nutrition survey; NHANES; monitoring; trend; biochemical indicator; nutrition status; food intake; dietary questionnaire; folate; vitamin D

Results 1-25 (858308)