Search tips
Search criteria

Results 1-25 (410991)

Clipboard (0)

Related Articles

1.  Involvement of the cynABDS Operon and the CO2-Concentrating Mechanism in the Light-Dependent Transport and Metabolism of Cyanate by Cyanobacteria▿  
Journal of Bacteriology  2006;189(3):1013-1024.
The cyanobacteria Synechococcus elongatus strain PCC7942 and Synechococcus sp. strain UTEX625 decomposed exogenously supplied cyanate (NCO−) to CO2 and NH3 through the action of a cytosolic cyanase which required HCO3− as a second substrate. The ability to metabolize NCO− relied on three essential elements: proteins encoded by the cynABDS operon, the biophysical activity of the CO2-concentrating mechanism (CCM), and light. Inactivation of cynS, encoding cyanase, and cynA yielded mutants unable to decompose cyanate. Furthermore, loss of CynA, the periplasmic binding protein of a multicomponent ABC-type transporter, resulted in loss of active cyanate transport. Competition experiments revealed that native transport systems for CO2, HCO3−, NO3−, NO2−, Cl−, PO42−, and SO42− did not contribute to the cellular flux of NCO− and that CynABD did not contribute to the flux of these nutrients, implicating CynABD as a novel primary active NCO− transporter. In the S. elongatus strain PCC7942 ΔchpX ΔchpY mutant that is defective in the full expression of the CCM, mass spectrometry revealed that the cellular rate of cyanate decomposition depended upon the size of the internal inorganic carbon (Ci) (HCO3− + CO2) pool. Unlike wild-type cells, the rate of NCO− decomposition by the ΔchpX ΔchpY mutant was severely depressed at low external Ci concentrations, indicating that the CCM was essential in providing HCO3− for cyanase under typical growth conditions. Light was required to activate and/or energize the active transport of both NCO− and Ci. Putative cynABDS operons were identified in the genomes of diverse Proteobacteria, suggesting that CynABDS-mediated cyanate metabolism is not restricted to cyanobacteria.
PMCID: PMC1797288  PMID: 17122352
2.  Biochemical and Structural Properties of Cyanases from Arabidopsis thaliana and Oryza sativa 
PLoS ONE  2011;6(3):e18300.
Cyanate is toxic to all organisms. Cyanase converts cyanate to CO2 and NH3 in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN). Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.
PMCID: PMC3070753  PMID: 21494323
3.  Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. 
Journal of Bacteriology  1997;179(18):5744-5750.
An open reading frame (slr0899) on the genome of Synechocystis sp. strain PCC 6803 encodes a polypeptide of 149 amino acid residues, the sequence of which is 40% identical to that of cyanase from Escherichia coli. Introduction into a cyanase-deficient E. coli strain of a plasmid-borne slr0899 resulted in expression of low but significant activity of cyanase. Targeted interruption of a homolog of slr0899 from Synechococcus sp. strain PCC 7942, encoding a protein 77% identical to that encoded by slr0899, resulted in loss of cellular cyanase activity. These results indicated that slr0899 and its homolog in the strain PCC 7942 represent the cyanobacterial cyanase gene (designated cynS). While cynS of strain PCC 6803 is tightly clustered with the four putative molybdenum cofactor biosynthesis genes located downstream, cynS of strain PCC 7942 was found to be tightly clustered with the two genes located upstream, which encode proteins similar to the subunits of the cyanobacterial nitrate-nitrite transporter. In both strains, cynS was transcribed as a part of a large transcription unit and the transcription was negatively regulated by ammonium. Cyanase activity was low in ammonium-grown cells and was induced 7- to 13-fold by inhibition of ammonium fixation or by transfer of the cells to ammonium-free media. These findings indicated that cyanase is an ammonium-repressible enzyme in cyanobacteria, the expression of which is regulated at the level of transcription. Similar to other ammonium-repressible genes in cyanobacteria, expression of cynS required NtcA, a global nitrogen regulator of cyanobacteria.
PMCID: PMC179462  PMID: 9294430
4.  Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase. 
Journal of Bacteriology  1994;176(18):5711-5717.
Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.
PMCID: PMC196775  PMID: 8083164
5.  Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate. 
Journal of Bacteriology  1995;177(11):3213-3219.
Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give two CO2 molecules. The gene for cyanase is part of the cyn operon, which includes cynT and cynS, encoding carbonic anhydrase and cyanase, respectively. Carbonic anhydrase functions to prevent depletion of cellular bicarbonate during cyanate decomposition (the product CO2 can diffuse out of the cell faster than noncatalyzed hydration back to bicarbonate). Addition of cyanate to the culture medium of a delta cynT mutant strain of E. coli (having a nonfunctional carbonic anhydrase) results in depletion of cellular bicarbonate, which leads to inhibition of growth and an inability to catalyze cyanate degradation. These effects can be overcome by aeration with a higher partial CO2 pressure (M. B. Guilloton, A. F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P. M. Anderson, and J. A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). The question considered here is why depletion of bicarbonate/CO2 due to the action of cyanase on cyanate in a delta cynT strain has such an inhibitory effect. Growth of wild-type E. coli in minimal medium under conditions of limited CO2 was severely inhibited, and this inhibition could be overcome by adding certain Krebs cycle intermediates, indicating that one consequence of limiting CO2 is inhibition of carboxylation reactions. However, supplementation of the growth medium with metabolites whose syntheses are known to depend on a carboxylation reaction was not effective in overcoming inhibition related to the bicarbonate deficiency induced in the delta cynT strain by addition of cyanate. Similar results were obtained with a deltacyn strain (since cyanase is absent, this strain does not develop a bicarbonate deficiency when cyanate is added); however, as with the deltacynT strain, a higher partial CO(2) pressure in the aerating gas or expression of carbonic anhydrase activity (which contributes to a higher intercellular concentration of bicarbonate/CO(2)) significantly reduced inhibition of growth. There appears to be competition between cyanate and bicarbonate/CO(2) at some unknown but very important site such that cyanate binding inhibits growth. These results suggest that bicarbonate/CO(2) plays a significant role in the growth of E. coli other than simply as a substrate for carboxylation reactions and that strains with mutations in the cyn operon provide a unique model system for studying aspects of the metabolism of bicarbonate/CO(2) and its regulation in bacteria.
PMCID: PMC177013  PMID: 7768821
6.  The Escherichia coli K-12 cyn operon is positively regulated by a member of the lysR family. 
Journal of Bacteriology  1992;174(11):3645-3650.
A regulatory gene, cynR, was found to be located next to the cyn operon but transcribed in the opposite direction. cynR encodes a positive regulatory protein that controls the cyn operon as well as its own synthesis. Positive regulation of the cyn operon requires cyanate and the cynR protein, but the negative autoregulation of the cynR gene appears to be independent of cyanate. The predicted amino acid sequence of the cynR protein derived from the DNA sequence was found to have significant homology to the predicted amino acid sequence of the lysR family of regulatory proteins.
PMCID: PMC206053  PMID: 1592818
7.  A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli. 
Journal of Bacteriology  1993;175(5):1443-1451.
Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, J. Biol. Chem. 267:3731-3734, 1992). The function of the product of the third gene of this operon, cynX, is unknown. In the study reported here, the physiological roles of cynT and cynX were investigated by construction of chromosomal mutants in which each of the three genes was rendered inactive. The delta cynT chromosomal mutant expressed an active cyanase but no active carbonic anhydrase. In contrast to the wild-type strain, the growth of the delta cynT strain was inhibited by cyanate, and the mutant strain was unable to degrade cyanate and therefore could not use cyanate as the sole nitrogen source when grown at a partial CO2 pressures (pCO2) of 0.03% (air). At a high pCO2 (3%), however, the delta cynT strain behaved like the wild-type strain; it was significantly less sensitive to the toxic effects of cyanate and could degrade cyanate and use cyanate as the sole nitrogen source for growth. These results are consistent with the proposed function for carbonic anhydrase. The chromosomal mutant carrying cynS::kan expressed induced carbonic anhydrase activity but no active cyanase. The cynS::kan mutant was found to be much less sensitive to cyanate than the delta cynT mutant at a low pCO2, indicating that bicarbonate depletion due to the reaction of bicarbonate with cyanate catalyzed by cyanase is more deleterious to growth than direct inhibition by cyanate. Mutants carrying a nonfunctional cynX gene (cynX::kan and delta cynT cynX::kan) did not differ from the parental strains with respect to cyanate sensitivity, presence of carbonic anhydrase and cyanase, or degradation of cyanate by whole cells; the physiological role of the cynX product remains unknown.
PMCID: PMC193231  PMID: 8444806
8.  Functional analysis of the Escherichia coli K-12 cyn operon transcriptional regulation. 
Journal of Bacteriology  1994;176(21):6613-6622.
The cynTSX operon enables Escherichia coli K-12 to degrade and use cyanate as a sole nitrogen source. The promoter of this operon is positively regulated by cyanate and the CynR protein. CynR, a member of the LysR family of regulatory proteins, binds specifically to a 136-bp DNA fragment containing both the cynR and the cynTSX promoters. In this study, we report the results of DNase I digestion studies showing that CynR protects a 60-bp region on the cynR coding strand and a 56-bp sequence on the cynTSX coding strand. CynR binding was not affected by cyanate or its structural homolog azide, a gratuitous inducer of the operon. However, CynR-induced bending of two different DNA fragments was detected. The amount of bending was decreased by cyanate.
PMCID: PMC197017  PMID: 7961413
9.  Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an Enzyme That Is Not Essential for Cyanide Assimilation▿  
Applied and Environmental Microbiology  2008;74(20):6280-6288.
Cyanase catalyzes the decomposition of cyanate into CO2 and ammonium, with carbamate as an unstable intermediate. The cyanase of Pseudomonas pseudoalcaligenes CECT5344 was negatively regulated by ammonium and positively regulated by cyanate, cyanide, and some cyanometallic complexes. Cyanase activity was not detected in cell extracts from cells grown with ammonium, even in the presence of cyanate. Nevertheless, a low level of cyanase activity was detected in nitrogen-starved cells. The cyn gene cluster of P. pseudoalcaligenes CECT5344 was cloned and analyzed. The cynA, cynB, and cynD genes encode an ABC-type transporter, the cynS gene codes for the cyanase, and the cynF gene encodes a novel σ54-dependent transcriptional regulator which is not present in other bacterial cyn gene clusters. The CynS protein was expressed in Escherichia coli and purified by following a simple and rapid protocol. The P. pseudoalcaligenes cyanase showed an optimal pH of 8.5°C and a temperature of 65°C. An insertion mutation was generated in the cynS gene. The resulting mutant was unable to use cyanate as the sole nitrogen source but showed the same resistance to cyanate as the wild-type strain. These results, in conjunction with the induction pattern of the enzymatic activity, suggest that the enzyme has an assimilatory function. Although the induction of cyanase activity in cyanide-degrading cells suggests that some cyanate may be generated from cyanide, the cynS mutant was not affected in its ability to degrade cyanide, which unambiguously indicates that cyanate is not a central metabolite in cyanide assimilation.
PMCID: PMC2570302  PMID: 18708510
10.  Identification and characterization of a cyanate permease in Escherichia coli K-12. 
Journal of Bacteriology  1989;171(9):4674-4678.
Escherichia coli contains an inducible enzyme, cyanase, that catalyzes the decomposition of cyanate into ammonia and bicarbonate. The gene encoding cyanase, cynS, was cloned and found to be on a DNA fragment that contained the lac operon. Characterization of a plasmid encoding cyanase indicated that a 26-kilodalton (kDa) protein of unknown function was also induced by cyanate (Y-C. Sung, D. Parsell, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 169:2639-2642, 1987). The gene encoding the 26-kDa protein was located between cynS and its promoter, indicating the existence of a cyn operon. The 26-kDa protein was identified as a cyanate permease that transports exogenous cyanate by active transport. E. coli was shown to contain a cyanate transport system that is energy dependent and saturable by cyanate.
PMCID: PMC210266  PMID: 2670891
11.  Ecological Genomics of Marine Picocyanobacteria†  
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
PMCID: PMC2698417  PMID: 19487728
12.  Characterization of high-level expression and sequencing of the Escherichia coli K-12 cynS gene encoding cyanase. 
Journal of Bacteriology  1987;169(11):5224-5230.
Restriction fragments containing the gene encoding cyanase, cynS, without its transcriptional regulatory sequences were placed downstream of lac and tac promoters in various pUC derivatives to maximize production of cyanase. Plasmid pSJ105, which contains the cynS gene and an upstream open reading frame, gave the highest expression of cyanase. Approximately 50% of the total soluble protein in stationary-phase cultures of a lac-deleted strain containing plasmid pSJ105 was cyanase. The inserted DNA fragment of pSJ105 was transferred into pUC18 derivatives that contain a hybrid tac promoter, instead of the lac promoter, and a strong terminator to generate pSJ124. Stationary-phase cultures of JM101 containing plasmid pSJ124 overexpressed a similar level of cyanase. In JM101(pSJ124), maximum production of cyanase could be obtained either by induction with isopropyl-beta-D-thiogalactopyranoside (IPTG) for 3 h or by growth without IPTG into late stationary phase. The latter conditions resulted in a 10- to 20-fold increase in plasmid content and presumably titration of the lac repressor. The nucleotide sequence of the cloned cynS gene from Escherichia coli K-12 was determined. The predicted amino acid sequence differed from the known amino acid sequence of cyanase isolated from a B strain by four residues. However, overexpressed cyanase was purified to homogeneity, and a comparison of the enzymes from the two sources indicated that they did not differ with respect to physical and kinetic properties. The cynS gene was located next to the lac operon, and the direction of cynS transcription was opposite that of lac.
PMCID: PMC213930  PMID: 2822670
13.  Identification, mapping, and cloning of the gene encoding cyanase in Escherichia coli K-12. 
Journal of Bacteriology  1987;169(6):2639-2642.
The gene in Escherichia coli for cyanase, designated cynS, was localized to a BglII restriction site approximately 1.7 kilobases from the lacA end of the lac operon. The gene was cloned into the pUC13 vector. Maxicell analysis of plasmid-encoded proteins confirmed that the BglII site is in the region encoding the structural gene for cyanase. Cyanase-deficient strains had increased sensitivity to cyanate and were not able to use cyanate as a nitrogen source.
PMCID: PMC212143  PMID: 3034861
14.  Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site 
Structure(London, England:1993)  2000;8(5):505-514.
Cyanase is an enzyme found in bacteria and plants that catalyzes the reaction of cyanate with bicarbonate to produce ammonia and carbon dioxide. In Escherichia coli, cyanase is induced from the cyn operon in response to extracellular cyanate. The enzyme is functionally active as a homodecamer of 17 kDa subunits, and displays half-site binding of substrates or substrate analogs. The enzyme shows no significant amino acid sequence homology with other proteins.
We have determined the crystal structure of cyanase at 1.65 Å resolution using the multiwavelength anomalous diffraction (MAD) method. Cyanase crystals are triclinic and contain one homodecamer in the asymmetric unit. Selenomethionine-labeled protein offers 40 selenium atoms for use in phasing. Structures of cyanase with bound chloride or oxalate anions, inhibitors of the enzyme, allowed identification of the active site.
The cyanase monomer is composed of two domains. The N-terminal domain shows structural similarity to the DNA-binding α-helix bundle motif. The C-terminal domain has an ‘open fold’ with no structural homology to other proteins. The subunits of cyanase are arranged in a novel manner both at the dimer and decamer level. The dimer structure reveals the C-terminal domains to be intertwined, and the decamer is formed by a pentamer of these dimers. The active site of the enzyme is located between dimers and is comprised of residues from four adjacent subunits of the homodecamer. The structural data allow a conceivable reaction mechanism to be proposed.
PMCID: PMC3366510  PMID: 10801492
active site; cyanase; decamer structure; MAD phasing; monoanion and dianion inhibitors; synchrotron radiation
15.  Nitrite Transport Activity of the ABC-Type Cyanate Transporter of the Cyanobacterium Synechococcus elongatus▿  
Journal of Bacteriology  2009;191(10):3265-3272.
In addition to the ATP-binding cassette (ABC)-type nitrate/nitrite-bispecific transporter, which has a high affinity for both substrates (Km, ∼1 μM), Synechococcus elongatus has an active nitrite transport system with an apparent Km (NO2−) value of 20 μM. We found that this activity depends on the cynABD genes, which encode a putative cyanate (NCO−) ABC-type transporter. Accordingly, nitrite transport by CynABD was competitively inhibited by NCO− with a Ki value of 0.025 μM. The transporter was induced under conditions of nitrogen deficiency, and the induced cells showed a Vmax value of 11 to 13 μmol/mg of chlorophyll per h for cyanate or nitrite, which could supply ∼30% of the amount of nitrogen required for optimum growth. Its relative specificity for the substrates and regulation at transcriptional and posttranslational levels suggested that the physiological role of the bispecific cyanate/nitrite transporter in S. elongatus is to allow nitrogen-deficient cells to assimilate low concentrations of cyanate in the medium. Its contribution to nitrite assimilation was significant in a mutant lacking the ABC-type nitrate/nitrite transporter, suggesting a possible role for CynABD in nitrite assimilation by cyanobacterial species that lack another high-affinity mechanism(s) for nitrite transport.
PMCID: PMC2687164  PMID: 19286804
16.  Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes 
The cyanobacterial cytotoxin cylindrospermopsin (CYN) has become increasingly common in fresh waters worldwide. It was originally isolated from Cylindrospermopsis raciborskii in Australia; however, in European waters, its occurrence is associated with other cyanobacterial species belonging to the genera Aphanizomenon and Anabaena. Moreover, cylindrospermopsin-producing strains of widely distributed C. raciborskii have not yet been observed in European waters. The aims of this work were to assess the occurrence of CYN in lakes of western Poland and to identify the CYN producers. The ELISA tests, high-performance liquid chromatography (HPLC)-DAD, and HPLC-mass spectrometry (MS)/MS were conducted to assess the occurrence of CYN in 36 lakes. The cyrJ, cyrA, and pks genes were amplified to identify toxigenic genotypes of cyanobacteria that are capable of producing CYN. The toxicity and toxigenicity of the C. raciborskii and Aphanizomenon gracile strains isolated from the studied lakes were examined. Overall, CYN was detected in 13 lakes using HPLC-MS/MS, and its concentrations varied from trace levels to 3.0 μg L−1. CYN was widely observed in lakes of western Poland during the whole summer under different environmental conditions. Mineral forms of nutrients and temperature were related to CYN production. The molecular studies confirmed the presence of toxigenic cyanobacterial populations in all of the samples where CYN was detected. The toxicity and toxigenicity analyses of isolated cyanobacteria strains revealed that A. gracile was the major producer of CYN.
PMCID: PMC3713259  PMID: 23378259
Aphanizomenon gracile; Cylindrospermopsis raciborskii; Cyanotoxins; Cylindrospermopsin; cyrA; cyrJ; pks; Toxicity; Lakes
17.  Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S-23S Ribosomal DNA Internal Transcribed Spacer Sequences 
Cultured isolates of the marine cyanobacteria Prochlorococcus and Synechococcus vary widely in their pigment compositions and growth responses to light and nutrients, yet show greater than 96% identity in their 16S ribosomal DNA (rDNA) sequences. In order to better define the genetic variation that accompanies their physiological diversity, sequences for the 16S-23S rDNA internal transcribed spacer (ITS) region were determined in 32 Prochlorococcus isolates and 25 Synechococcus isolates from around the globe. Each strain examined yielded one ITS sequence that contained two tRNA genes. Dramatic variations in the length and G+C content of the spacer were observed among the strains, particularly among Prochlorococcus strains. Secondary-structure models of the ITS were predicted in order to facilitate alignment of the sequences for phylogenetic analyses. The previously observed division of Prochlorococcus into two ecotypes (called high and low-B/A after their differences in chlorophyll content) were supported, as was the subdivision of the high-B/A ecotype into four genetically distinct clades. ITS-based phylogenies partitioned marine cluster A Synechococcus into six clades, three of which can be associated with a particular phenotype (motility, chromatic adaptation, and lack of phycourobilin). The pattern of sequence divergence within and between clades is suggestive of a mode of evolution driven by adaptive sweeps and implies that each clade represents an ecologically distinct population. Furthermore, many of the clades consist of strains isolated from disparate regions of the world's oceans, implying that they are geographically widely distributed. These results provide further evidence that natural populations of Prochlorococcus and Synechococcus consist of multiple coexisting ecotypes, genetically closely related but physiologically distinct, which may vary in relative abundance with changing environmental conditions.
PMCID: PMC123739  PMID: 11872466
18.  Two Strains of Crocosphaera watsonii with Highly Conserved Genomes are Distinguished by Strain-Specific Features 
Unicellular nitrogen-fixing cyanobacteria are important components of marine phytoplankton. Although non-nitrogen-fixing marine phytoplankton generally exhibit high gene sequence and genomic diversity, gene sequences of natural populations and isolated strains of Crocosphaera watsonii, one of the two most abundant open ocean unicellular cyanobacteria groups, have been shown to be 98–100% identical. The low sequence diversity in Crocosphaera is a dramatic contrast to sympatric species of Prochlorococcus and Synechococcus, and raises the question of how genome differences can explain observed phenotypic diversity among Crocosphaera strains. Here we show, through whole genome comparisons of two phenotypically different strains, that there are strain-specific sequences in each genome, and numerous genome rearrangements, despite exceptionally low sequence diversity in shared genomic regions. Some of the strain-specific sequences encode functions that explain observed phenotypic differences, such as exopolysaccharide biosynthesis. The pattern of strain-specific sequences distributed throughout the genomes, along with rearrangements in shared sequences is evidence of significant genetic mobility that may be attributed to the hundreds of transposase genes found in both strains. Furthermore, such genetic mobility appears to be the main mechanism of strain divergence in Crocosphaera which do not accumulate DNA microheterogeneity over the vast majority of their genomes. The strain-specific sequences found in this study provide tools for future physiological studies, as well as genetic markers to help determine the relative abundance of phenotypes in natural populations.
PMCID: PMC3247675  PMID: 22232617
comparative genomics; Crocosphaera; exopolysaccharide biosynthesis; genome conservation; mobile genetic elements; nitrogen fixation
19.  Expression and purification of the cynR regulatory gene product: CynR is a DNA-binding protein. 
Journal of Bacteriology  1993;175(24):7990-7999.
The CynR protein, a member of the LysR family, positively regulates the Escherichia coli cyn operon and negatively autoregulates its own transcription. By S1 mapping analysis, the in vivo cynR transcription start site was located 63 bp upstream of the cynTSX operon transcription start site. Topologically, the cynR and cynTSX promoters overlap and direct transcription in opposite directions. The CynR translation initiation codon was identified by oligonucleotide-directed mutagenesis, and the CynR coding sequence was cloned under the control of a T7 phage promoter. The CynR protein was stably expressed at a high level with a T7 RNA polymerase-T7 phage promoter system. Purification by ion-exchange chromatography, affinity chromatography, and ammonium sulfate fractionation yielded pure CynR protein. Gel shift assays confirmed that CynR is a DNA-binding protein like the other members of the LysR family. The CynR regulatory protein binds specifically to a 136-bp DNA fragment encompassing both the cynR and the cynTSX promoters.
PMCID: PMC206979  PMID: 8253686
20.  Phylogenetic Diversity of Sequences of Cyanophage Photosynthetic Gene psbA in Marine and Freshwaters▿ †  
Applied and Environmental Microbiology  2008;74(17):5317-5324.
Many cyanophage isolates which infect the marine cyanobacteria Synechococcus spp. and Prochlorococcus spp. contain a gene homologous to psbA, which codes for the D1 protein involved in photosynthesis. In the present study, cyanophage psbA gene fragments were readily amplified from freshwater and marine samples, confirming their widespread occurrence in aquatic communities. Phylogenetic analyses demonstrated that sequences from freshwaters have an evolutionary history that is distinct from that of their marine counterparts. Similarly, sequences from cyanophages infecting Prochlorococcus and Synechococcus spp. were readily discriminated, as were sequences from podoviruses and myoviruses. Viral psbA sequences from the same geographic origins clustered within different clades. For example, cyanophage psbA sequences from the Arctic Ocean fell within the Synechococcus as well as Prochlorococcus phage groups. Moreover, as psbA sequences are not confined to a single family of phages, they provide an additional genetic marker that can be used to explore the diversity and evolutionary history of cyanophages in aquatic environments.
PMCID: PMC2546643  PMID: 18586962
21.  T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology 
Virology Journal  2010;7:291.
From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.
PMCID: PMC2984593  PMID: 21029435
22.  Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts 
The ISME Journal  2011;6(3):619-628.
Marine cyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic prokaryotes in oceanic environments, and are key contributors to global CO2 fixation, chlorophyll biomass and primary production. Cyanophages, viruses infecting cyanobacteria, are a major force in the ecology of their hosts. These phages contribute greatly to cyanobacterial mortality, therefore acting as a powerful selective force upon their hosts. Phage reproduction is based on utilization of the host transcription and translation mechanisms; therefore, differences in the G+C genomic content between cyanophages and their hosts could be a limiting factor for the translation of cyanophage genes. On the basis of comprehensive genomic analyses conducted in this study, we suggest that cyanophages of the Myoviridae family, which can infect both Prochlorococcus and Synechococcus, overcome this limitation by carrying additional sets of tRNAs in their genomes accommodating AT-rich codons. Whereas the tRNA genes are less needed when infecting their Prochlorococcus hosts, which possess a similar G+C content to the cyanophage, the additional tRNAs may increase the overall translational efficiency of their genes when infecting a Synechococcus host (with high G+C content), therefore potentially enabling the infection of multiple hosts.
PMCID: PMC3280135  PMID: 22011720
codon usage; cross-infectivity; marine cyanophages; Prochlorococcus; Synechococcus; tRNA
23.  Novel lineages of Prochlorococcus and Synechococcus in the global oceans 
The ISME Journal  2011;6(2):285-297.
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.
PMCID: PMC3260499  PMID: 21955990
cyanobacteria; Prochlorococcus; Synechococcus; diversity; global ocean; 16S-23S rRNA ITS
24.  Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria 
Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution.
Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA.
The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms.
PMCID: PMC3514251  PMID: 23157370
Peroxiredoxin; Structure; Phylogeny and evolution; Comparative genomics; Cyanobacteria
25.  Comparative Analysis of Fatty Acid Desaturases in Cyanobacterial Genomes 
Fatty acid desaturases are enzymes that introduce double bonds into the hydrocarbon chains of fatty acids. The fatty acid desaturases from 37 cyanobacterial genomes were identified and classified based upon their conserved histidine-rich motifs and phylogenetic analysis, which help to determine the amounts and distributions of desaturases in cyanobacterial species. The filamentous or N2-fixing cyanobacteria usually possess more types of fatty acid desaturases than that of unicellular species. The pathway of acyl-lipid desaturation for unicellular marine cyanobacteria Synechococcus and Prochlorococcus differs from that of other cyanobacteria, indicating different phylogenetic histories of the two genera from other cyanobacteria isolated from freshwater, soil, or symbiont. Strain Gloeobacter violaceus PCC 7421 was isolated from calcareous rock and lacks thylakoid membranes. The types and amounts of desaturases of this strain are distinct to those of other cyanobacteria, reflecting the earliest divergence of it from the cyanobacterial line. Three thermophilic unicellular strains, Thermosynechococcus elongatus BP-1 and two Synechococcus Yellowstone species, lack highly unsaturated fatty acids in lipids and contain only one Δ9 desaturase in contrast with mesophilic strains, which is probably due to their thermic habitats. Thus, the amounts and types of fatty acid desaturases are various among different cyanobacterial species, which may result from the adaption to environments in evolution.
PMCID: PMC2593844  PMID: 19096516

Results 1-25 (410991)