Search tips
Search criteria

Results 1-25 (976461)

Clipboard (0)

Related Articles

1.  A Novel Poxvirus-Based Vaccine, MVA-CHIKV, Is Highly Immunogenic and Protects Mice against Chikungunya Infection 
Journal of Virology  2014;88(6):3527-3547.
There is a need to develop a single and highly effective vaccine against the emerging chikungunya virus (CHIKV), which causes a severe disease in humans. Here, we have generated and characterized the immunogenicity profile and the efficacy of a novel CHIKV vaccine candidate based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). MVA-CHIKV was stable in cell culture, expressed the CHIKV structural proteins, and triggered the cytoplasmic accumulation of Golgi apparatus-derived membranes in infected human cells. Furthermore, MVA-CHIKV elicited robust innate immune responses in human macrophages and monocyte-derived dendritic cells, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. After immunization of C57BL/6 mice with a homologous protocol (MVA-CHIKV/MVA-CHIKV), strong, broad, polyfunctional, and durable CHIKV-specific CD8+ T cell responses were elicited. The CHIKV-specific CD8+ T cells were preferentially directed against E1 and E2 proteins and, to a lesser extent, against C protein. CHIKV-specific CD8+ memory T cells of a mainly effector memory phenotype were also induced. The humoral arm of the immune system was significantly induced, as MVA-CHIKV elicited high titers of neutralizing antibodies against CHIKV. Remarkably, a single dose of MVA-CHIKV protected all mice after a high-dose challenge with CHIKV. In summary, MVA-CHIKV is an effective vaccine against chikungunya virus infection that induced strong, broad, highly polyfunctional, and long-lasting CHIKV-specific CD8+ T cell responses, together with neutralizing antibodies against CHIKV. These results support the consideration of MVA-CHIKV as a potential vaccine candidate against CHIKV.
IMPORTANCE We have developed a novel vaccine candidate against chikungunya virus (CHIKV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). Our findings revealed that MVA-CHIKV is a highly effective vaccine against chikungunya virus, with a single dose of the vaccine protecting all mice after a high-dose challenge with CHIKV. Furthermore, MVA-CHIKV is highly immunogenic, inducing strong innate responses: high, broad, polyfunctional, and long-lasting CHIKV-specific CD8+ T cell responses, together with neutralizing antibodies against CHIKV. This work provides a potential vaccine candidate against CHIKV.
PMCID: PMC3957920  PMID: 24403588
2.  Chikungunya Virus Neutralization Antigens and Direct Cell-to-Cell Transmission Are Revealed by Human Antibody-Escape Mutants 
PLoS Pathogens  2011;7(12):e1002390.
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop “groove” as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis.
Author Summary
Chikungunya virus (CHIKV) is transmitted by mosquito bites and causes a febrile disease that is often characterized by persistent joint pain. Until recently, CHIKV outbreaks were limited to tropical areas of Africa and Asia. However, since 2007, following a large CHIKV epidemic in the Indian Ocean and South-East Asia, CHIKV has also been reported in temperate European regions. As mosquito habitats expand, virus dissemination may become more prevalent, but there are currently no vaccines or CHIKV-specific treatments available. We previously described two human antibodies that potently block cellular CHIKV infection. In the current report, we have characterized CHIKV mutants that escape neutralization to identify sub-domains of the virus envelope which are involved in CHIKV interaction with these antibodies, thereby opening the door for the development of CHIKV-specific sub-domain vaccination strategies. For the first time, we have also demonstrated that CHIKV can be directly transmitted between cells, bypassing transport through the extra-cellular space. This mode of dissemination, which is associated with viral resistance to antibody neutralization, may play a critical role in the establishment of persistent CHIKV infection. Together, these findings will aid the design of new strategies to combat CHIKV infection and will inform future studies of CHIKV pathogenesis.
PMCID: PMC3228792  PMID: 22144891
3.  Inhibition of Dengue and Chikungunya Virus Infections by RIG-I-Mediated Type I Interferon-Independent Stimulation of the Innate Antiviral Response 
Journal of Virology  2014;88(8):4180-4194.
RIG-I is a cytosolic sensor critically involved in the activation of the innate immune response to RNA virus infection. In the present study, we evaluated the inhibitory effect of a RIG-I agonist on the replication of two emerging arthropod-borne viral pathogens, dengue virus (DENV) and chikungunya virus (CHIKV), for which no therapeutic options currently exist. We demonstrate that when a low, noncytotoxic dose of an optimized 5′triphosphorylated RNA (5′pppRNA) molecule was administered, RIG-I stimulation generated a robust antiviral response against these two viruses. Strikingly, 5′pppRNA treatment before or after challenge with DENV or CHIKV provided protection against infection. In primary human monocytes and monocyte-derived dendritic cells, the RIG-I agonist blocked both primary infection and antibody-dependent enhancement of DENV infection. The protective response against DENV and CHIKV induced by 5′pppRNA was dependent on an intact RIG-I/MAVS/TBK1/IRF3 axis and was largely independent of the type I IFN response. Altogether, this in vitro analysis of the antiviral efficacy of 5′pppRNA highlights the therapeutic potential of RIG-I agonists against emerging viruses such as DENV and CHIKV.
IMPORTANCE DENV and CHIKV are two reemerging mosquito-borne viruses for which no therapeutic options currently exist. Both viruses overlap geographically in tropical regions of the world, produce similar fever-like symptoms, and are difficult to diagnose. This study investigated the inhibitory effect of a RIG-I agonist on the replication of these two viruses. RIG-I stimulation using 5′pppRNA before or after DENV or CHIKV infection generated a protective antiviral response against both pathogens in immune and nonimmune cells; interestingly, the protective response against the viruses was largely independent of the classical type I interferon response. The antiviral efficacy of 5′pppRNA highlights the therapeutic potential of RIG-I agonists against emerging viruses such as DENV and CHIKV.
PMCID: PMC3993760  PMID: 24478443
4.  Deciphering the differential response of two human fibroblast cell lines following Chikungunya virus infection 
Virology Journal  2012;9:213.
Chikungunya virus (CHIKV) is an arthritogenic member of the Alphavirus genus (family Togaviridae) transmitted by Aedes mosquitoes. CHIKV is now known to target non hematopoietic cells such as epithelial, endothelial cells, fibroblasts and to less extent monocytes/macrophages. The type I interferon (IFN) response is an early innate immune mechanism that protects cells against viral infection. Cells express different pattern recognition receptors (including TLR7 and RIG-I) to sense viruses and to induce production of type I IFNs which in turn will bind to their receptor. This should result in the phosphorylation and translocation of STAT molecules into the nucleus to promote the transcription of IFN-stimulated antiviral genes (ISGs). We herein tested the capacity of CHIKV clinical isolate to infect two different human fibroblast cell lines HS 633T and HT-1080 and we analyzed the resulting type I IFN innate immune response.
Indirect immunofluorescence and quantitative RT-PCR were used to test for the susceptibility of both fibroblast cell lines to CHIKV.
Interestingly, the two fibroblast cell lines HS 633T and HT-1080 were differently susceptible to CHIKV infection and the former producing at least 30-fold higher viral load at 48 h post-infection (PI). We found that the expression of antiviral genes (RIG-I, IFN-β, ISG54 and ISG56) was more robust in the more susceptible cell line HS 633T at 48 h PI. Moreover, CHIKV was shown to similarly interfere with the nuclear translocation of pSTAT1 in both cell lines.
Critically, CHIKV can control the IFN response by preventing the nuclear translocation of pSTAT1 in both fibroblast cell lines. Counter-intuitively, the relative resistance of HT-1080 cells to CHIKV infection could not be attributed to more robust innate IFN- and ISG-dependent antiviral responses. These cell lines may prove to be valuable models to screen for novel mechanisms mobilized differentially by fibroblasts to control CHIKV infection, replication and spreading from cell to cell.
PMCID: PMC3493342  PMID: 22992396
CHIKV; Type I IFN; HS 633T; HT-1080; RIG-I; TLR7; STAT-1
5.  Viperin restricts chikungunya virus replication and pathology 
The Journal of Clinical Investigation  2012;122(12):4447-4460.
Chikungunya virus (CHIKV) is a mosquito-borne arthralgia arbovirus that is reemergent in sub-Saharan Africa and Southeast Asia. CHIKV infection has been shown to be self-limiting, but the molecular mechanisms of the innate immune response that control CHIKV replication remain undefined. Here, longitudinal transcriptional analyses of PBMCs from a cohort of CHIKV-infected patients revealed that type I IFNs controlled CHIKV infection via RSAD2 (which encodes viperin), an enigmatic multifunctional IFN-stimulated gene (ISG). Viperin was highly induced in monocytes, the major target cell of CHIKV in blood. Anti-CHIKV functions of viperin were dependent on its localization in the ER, and the N-terminal amphipathic α-helical domain was crucial for its antiviral activity in controlling CHIKV replication. Furthermore, mice lacking Rsad2 had higher viremia and severe joint inflammation compared with wild-type mice. Our data demonstrate that viperin is a critical antiviral host protein that controls CHIKV infection and provide a preclinical basis for the design of effective control strategies against CHIKV and other reemerging arthrogenic alphaviruses.
PMCID: PMC3533538  PMID: 23160199
6.  ISG15 Is Critical in the Control of Chikungunya Virus Infection Independent of UbE1L Mediated Conjugation 
PLoS Pathogens  2011;7(10):e1002322.
Chikungunya virus (CHIKV) is a re-emerging alphavirus that has caused significant disease in the Indian Ocean region since 2005. During this outbreak, in addition to fever, rash and arthritis, severe cases of CHIKV infection have been observed in infants. Challenging the notion that the innate immune response in infants is immature or defective, we demonstrate that both human infants and neonatal mice generate a robust type I interferon (IFN) response during CHIKV infection that contributes to, but is insufficient for, the complete control of infection. To characterize the mechanism by which type I IFNs control CHIKV infection, we evaluated the role of ISG15 and defined it as a central player in the host response, as neonatal mice lacking ISG15 were profoundly susceptible to CHIKV infection. Surprisingly, UbE1L−/− mice, which lack the ISG15 E1 enzyme and therefore are unable to form ISG15 conjugates, displayed no increase in lethality following CHIKV infection, thus pointing to a non-classical role for ISG15. No differences in viral loads were observed between wild-type (WT) and ISG15−/− mice, however, a dramatic increase in proinflammatory cytokines and chemokines was observed in ISG15−/− mice, suggesting that the innate immune response to CHIKV contributes to their lethality. This study provides new insight into the control of CHIKV infection, and establishes a new model for how ISG15 functions as an immunomodulatory molecule in the blunting of potentially pathologic levels of innate effector molecules during the host response to viral infection.
Author Summary
Type I interferon plays a critical role in the host defense to viral infection. Signaling through the type I IFN receptor allows for the induction of hundreds of interferon stimulated genes (ISGs) that generate an antiviral state within host cells. The ubiquitin-like molecule ISG15 has been shown to play an important role during multiple viral infections, including influenza virus infection. To date, the ability of ISG15 to protect against viral infection has been shown to be dependent on its ability to covalently bind (or conjugate) to target proteins, including the binding of viral proteins. We investigated the importance of the type I interferon response and ISG15 conjugation in a neonatal model of Chikungunya virus infection, a re-emerging human pathogen in the Indian Ocean region. Remarkably, the role of ISG15 during CHIKV infection appears to be conjugation independent, suggesting a non-classical role for ISG15 during viral infection. Our data also suggests that ISG15 plays an immunoregulatory role, as opposed to having direct antiviral function. Our CHIKV model may provide an opportunity to identify a novel mechanism by which ISG15 contributes to the innate immune response to viral infection.
PMCID: PMC3197620  PMID: 22028657
7.  Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus 
Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway.
Author Summary
Deciphering the much neglected aspects of cellular factors in contributing to the infectious entry of CHIKV into mosquito cells may enhance our understanding of the conservation or diversity of these host factors amongst mammalian and arthropod for successful CHIKV replication. The study revealed that the infectious entry of chikungunya virus (CHIKV) into mosquito cells is mediated by the clathrin-dependent endocytic pathway. A customized gene expression microarray known to target the Aedes mosquito genome was used to identify host genes that are differentially regulated upon CHIKV infection. A combination of bio-imaging studies and pharmacological inhibitors confirmed the involvement of clathrin-mediated endocytosis as well as the importance of low endosomal pH during CHIKV infectious entry. Furthermore, the clathrin heavy chain, Eps15, RAB5, RAB7 and vacuolar ATPase B are shown to be essential for the infectious entry process of CHIKV. This study aims to underline the importance of cellular factors, particularly those associated with clathrin-dependent endocytosis, in mediating the infectious entry of CHIKV into mosquito cells.
PMCID: PMC3567007  PMID: 23409203
8.  Chikungunya Virus Nonstructural Protein 2 Inhibits Type I/II Interferon-Stimulated JAK-STAT Signaling ▿ †  
Journal of Virology  2010;84(20):10877-10887.
Chikungunya virus (CHIKV) is an emerging human pathogen transmitted by mosquitoes. Like that of other alphaviruses, CHIKV replication causes general host shutoff, leading to severe cytopathicity in mammalian cells, and inhibits the ability of infected cells to respond to interferon (IFN). Recent research, however, suggests that alphaviruses may have additional mechanisms to circumvent the host's antiviral IFN response. Here we show that CHIKV replication is resistant to inhibition by interferon once RNA replication has been established and that CHIKV actively suppresses the antiviral IFN response by preventing IFN-induced gene expression. Both CHIKV infection and CHIKV replicon RNA replication efficiently blocked STAT1 phosphorylation and/or nuclear translocation in mammalian cells induced by either type I or type II IFN. Expression of individual CHIKV nonstructural proteins (nsPs) showed that nsP2 was a potent inhibitor of IFN-induced JAK-STAT signaling. In addition, mutations in CHIKV-nsP2 (P718S) and Sindbis virus (SINV)-nsP2 (P726S) that render alphavirus replicons noncytopathic significantly reduced JAK-STAT inhibition. This host shutoff-independent inhibition of IFN signaling by CHIKV is likely to have an important role in viral pathogenesis.
PMCID: PMC2950581  PMID: 20686047
9.  Chikungunya triggers an autophagic process which promotes viral replication 
Virology Journal  2011;8:432.
Chikungunya Virus (ChikV) surprised by a massive re-emerging outbreak in Indian Ocean in 2006, reaching Europe in 2007 and exhibited exceptional severe physiopathology in infants and elderly patients. In this context, it is important to analyze the innate immune host responses triggered against ChikV. Autophagy has been shown to be an important component of the innate immune response and is involved in host defense elimination of different pathogens. However, the autophagic process was recently observed to be hijacked by virus for their own replication. Here we provide the first evidence that hallmarks of autophagy are specifically found in HEK.293 infected cells and are involved in ChikV replication.
To test the capacity of ChikV to mobilize the autophagic machinery, we performed fluorescence microscopy experiments on HEK.GFP.LC3 stable cells, and followed the LC3 distribution during the time course of ChikV infection. To confirm this, we performed electron microscopy on HEK.293 infected cells. To test the effect of ChikV-induced-autophagy on viral replication, we blocked the autophagic process, either by pharmacological (3-MA) or genetic inhibition (siRNA against the transcript of Beclin 1, an autophagic protein), and analyzed the percentage of infected cells and the viral RNA load released in the supernatant. Moreover, the effect of induction of autophagy by Rapamycin on viral replication was tested.
The increasing number of GFP-LC3 positive cells with a punctate staining together with the enhanced number of GFP-LC3 dots per cell showed that ChikV triggered an autophagic process in HEK.293 infected cells. Those results were confirmed by electron microscopy analysis since numerous membrane-bound vacuoles characteristic of autophagosomes were observed in infected cells. Moreover, we found that inhibition of autophagy, either by biochemical reagent and RNA interference, dramatically decreases ChikV replication.
Taken together, our results suggest that autophagy may play a promoting role in ChikV replication. Investigating in details the relationship between autophagy and viral replication will greatly improve our knowledge of the pathogenesis of ChikV and provide insight for the design of candidate antiviral therapeutics.
PMCID: PMC3179960  PMID: 21902836
ChikV; alphavirus; autophagy; innate immunity
10.  Inhibition of Chikungunya Virus Replication by Harringtonine, a Novel Antiviral That Suppresses Viral Protein Expression 
Chikungunya virus (CHIKV) is a mosquito-transmitted virus that has reemerged as a significant public health threat in the last decade. Since the 2005-2006 chikungunya fever epidemic in the Indian Ocean island of La Réunion, millions of people in more than 40 countries have been infected. Despite this, there is currently no antiviral treatment for chikungunya infection. In this study, an immunofluorescence-based screening platform was developed to identify potential inhibitors of CHIKV infection. A primary screen was performed using a highly purified natural product compound library, and 44 compounds exhibiting ≥70% inhibition of CHIKV infection were identified as positive hits. Among these, four were selected for dose-dependent inhibition assays to confirm their anti-CHIKV activity. Harringtonine, a cephalotaxine alkaloid, displayed potent inhibition of CHIKV infection (50% effective concentration [EC50] = 0.24 μM) with minimal cytotoxicity and was selected for elucidation of its antiviral mechanism. Time-of-addition studies, cotreatment assays, and direct transfection of viral genomic RNA indicated that harringtonine inhibited an early stage of the CHIKV replication cycle which occurred after viral entry into cells. In addition, quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses indicated that harringtonine affects CHIKV RNA production as well as viral protein expression. Treatment of harringtonine against Sindbis virus, a related alphavirus, suggested that harringtonine could inhibit other alphaviruses. This study suggests for the first time that harringtonine exerts its antiviral effects by inhibiting CHIKV viral protein synthesis.
PMCID: PMC3535938  PMID: 23275491
11.  Expression of Plasmid-Based shRNA against the E1 and nsP1 Genes Effectively Silenced Chikungunya Virus Replication 
PLoS ONE  2012;7(10):e46396.
Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection.
Plasmid-based small hairpin RNA (shRNA) was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection.
Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1.
Taken together, these data suggest the promising efficacy of anti-CHIKV shRNAs, in particular, plasmid-shRNA E1, as a novel antiviral strategy against CHIKV infection.
PMCID: PMC3466284  PMID: 23056297
12.  Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells 
Virology Journal  2012;9:114.
Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-β in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/β production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7–10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance.
The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-β and increased the expression of anti-viral genes, including IFN-α, IFN-β, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells.
CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.
PMCID: PMC3490739  PMID: 22698190
Chikungunya virus; Poly (I:C); BEAS-2B cells; TLR3
13.  Multiple Immune Factors Are Involved in Controlling Acute and Chronic Chikungunya Virus Infection 
The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/β and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA.
Author Summary
The largest epidemic ever recorded for chikungunya virus (CHIKV) started in 2004 in Africa, then spread across Asia and recently caused tens of thousands of cases in Papua New Guinea and the Caribbean. This mosquito-borne alphavirus primarily causes an often debilitating, acute and chronic polyarthritis/polyarthalgia. Despite robust anti-viral immune responses CHIKV is able to persist, with such persistence poorly understood and the likely cause of chronic disease. Herein we highlight the propensity of CHIKV to persist long term, both as a persistent viraemia in different B cell deficient mouse strains, but also as persistent viral RNA in wild-type mice. These studies suggest that, aside from antibodies, other immune factors, such as CD4 T cells and TNF, are active in viraemia control. The work also supports the notion that CHIKV disease, with the exception of encephalitis, is largely an immunopathology. Persistent CHIKV RNA in wild-type mice continues to stimulate type I interferon and T cell responses, with this model of chronic disease recapitulating many of the features seen in chronic CHIKV patients.
PMCID: PMC4256279  PMID: 25474568
14.  Characterization of Reemerging Chikungunya Virus 
PLoS Pathogens  2007;3(6):e89.
An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host.
Author Summary
Chikungunya virus (CHIKV) is a reemerging alphavirus responsible for an unprecedented epidemic in countries of the Indian Ocean region, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The most recent epidemic reemergences were documented in Kinshasa, (50,000 estimated cases in 1999–2000), in Indonesia (2001–2003), the Indian Ocean islands of Mayotte, Mauritius, Réunion, and the Seychelles (270,000 cases in 2005–2006 in La Réunion island), and in India (1.4 to 6.5 million estimated cases in 2006–2007). There is a critical lack of knowledge on the biology of CHIKV. In particular, virtually nothing is known about the interaction of CHIKV (and of most alpahaviruses) with human primary cells. We have studied the replication characteristics and the tropism of clinical CHIKV strains from La Réunion. We designed various assays and reagents to follow viral replication, and we report here that adherent cells (epithelial and endothelial cells, primary fibroblasts), as well as macrophages, are sensitive to infection. In contrast, blood cells did not allow viral replication. We also characterized viral entry pathways and sensitivity to interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host. This paper is the result of a collaborative effort between numerous teams from Institut Pasteur, the Groupe Hospitalier Sud Réunion, and other institutions. Our aim was to establish a task force with multiple and complementary expertise on virology, immunology, and cell biology in order to characterize this enigmatic virus.
PMCID: PMC1904475  PMID: 17604450
15.  A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease 
PLoS Pathogens  2008;4(2):e29.
Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-α/βR+/−) or totally (IFN-α/βR−/−) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.
Author Summary
Chikungunya virus (CHIKV) is transmitted by mosquito bites. CHIKV has recently re-emerged and is responsible for a massive outbreak in the Indian Ocean region and India. It has also reached Italy, indicating that CHIKV has a great potential to spread globally. Infection from CHIKV typically induces a mild disease in humans, characterized by a flu-like syndrome associated with muscle and joint pain and rash. Cases of severe infection involving the central nervous system (CNS) have recently been described, notably in neonates. We have developed the first animal model for CHIKV infection and studied the pathophysiology of the resulting disease. We show here that mouse neonates are susceptible to CHIKV and neonatal disease severity is age-dependent. Adult mice with a partial or complete defect in type-I interferon pathway develop a mild or severe infection, respectively. In mice with a mild infection, CHIKV primarily targets muscle, joint and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to the CNS. Our work indicates that CHIKV-associated symptoms perfectly match viral tissue and cell tropisms, and demonstrate that the fibroblast is a prominent target cell of CHIKV. It also identifies the neonatal phase and inefficient type-I interferon signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.
PMCID: PMC2242832  PMID: 18282093
16.  Administration of E2 and NS1 siRNAs Inhibit Chikungunya Virus Replication In Vitro and Protects Mice Infected with the Virus 
Chikungunya virus (CHIKV) has reemerged as a life threatening pathogen and caused large epidemics in several countries. So far, no licensed vaccine or effective antivirals are available and the treatment remains symptomatic. In this context, development of effective and safe prophylactics and therapeutics assumes priority.
We evaluated the efficacy of the siRNAs against ns1 and E2 genes of CHIKV both in vitro and in vivo. Four siRNAs each, targeting the E2 (Chik-1 to Chik-4) and ns1 (Chik-5 to Chik-8) genes were designed and evaluated for efficiency in inhibiting CHIKV growth in vitro and in vivo. Chik-1 and Chik-5 siRNAs were effective in controlling CHIKV replication in vitro as assessed by real time PCR, IFA and plaque assay.
CHIKV replication was completely inhibited in the virus-infected mice when administered 72 hours post infection. The combination of Chik-1 and Chik-5 siRNAs exhibited additive effect leading to early and complete inhibition of virus replication. These findings suggest that RNAi capable of inhibiting CHIKV growth might constitute a new therapeutic strategy for controlling CHIKV infection and transmission.
Author Summary
Despite having immense medical importance, still vaccine, chemoprophylactic, or effective therapeutic measures are not commercially available for chikungunya. Only strict attention to good infection control practices may prevent CHIKV infection. The pathogenic properties of CHIKV necessitate the development of an efficient antiviral therapies. Four siRNAs each, targeting the E2 and ns1 genes of chikungunya were designed and evaluated for their efficiency in inhibiting CHIKV growth in in vitro and in vivo model systems. Efficiency of these siRNAs in controlling CHIKV replication in vitro and in vivo was assessed by the real time PCR, IFA and plaque assay. Chik-1 and Chik-5 siRNA ids efficiently inhibited CHIKV replication in the virus-infected Vero-E6 cells and mice. CHIKV replication was completely inhibited in the virus-infected mice when administered 72 hours post infection (p.i.). The combination of Chik-1 and Chik-5 siRNAs exhibited additive effect leading to early and potent inhibition of virus replication. Taken together, these findings suggest the promising efficacy of RNAi ids in silencing sequence-specific genes of CHIKV and might constitute a new therapeutic strategy for controlling the CHIKV infection and transmission.
PMCID: PMC3764232  PMID: 24040429
17.  Induction of Cytopathogenicity in Human Glioblastoma Cells by Chikungunya Virus 
PLoS ONE  2013;8(9):e75854.
Chikungunya virus (CHIKV), an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS) infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293) cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.). In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3) protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR) pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches against glioblastoma, a highly aggressive malignancy.
PMCID: PMC3783433  PMID: 24086645
18.  Differential Proteome Analysis of Chikungunya Virus Infection on Host Cells 
PLoS ONE  2013;8(4):e61444.
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach.
Methodology and Principal Findings
The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE). Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP) and cell cycle regulation.
This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1) regulation (in favour of virus survival, replication and transmission). While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.
PMCID: PMC3622599  PMID: 23593481
19.  Recombinant Modified Vaccinia Virus Ankara Expressing Glycoprotein E2 of Chikungunya Virus Protects AG129 Mice against Lethal Challenge 
Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.
Author Summary
The Chikungunya virus (CHIKV) represents a threat to Europe. This is supported by its recent introduction and autochthonous transmission in Italy and France in 2007 and 2010 respectively. CHIKV causes an acute febrile illness and severe joint pains that may last for several months in some patients. In absence of a proven effective treatment, safe and effective vaccines represent the best way to control outbreaks of CHIKV. This study describes the development of a vaccine candidate based on the Modified Vaccinia Ankara virus (MVA). MVA has been used to develop vaccines against several viruses and based on the safety and efficacy records of MVA vaccines, various candidate vaccines are currently in clinical trials. MVA expressing structural proteins of CHIKV were constructed and tested in AG129 mice for immunogenicity and protective ability. All animals that received MVA expressing E2 developed neutralizing antibodies and were protected against lethal challenge. Our study shows that recombinant MVA expressing the E2 protein of CHIKV represents a potential candidate vaccine for prevention of CHIKV infections in travellers or endemic areas.
PMCID: PMC4154657  PMID: 25188230
20.  Deliberate Attenuation of Chikungunya Virus by Adaptation to Heparan Sulfate-Dependent Infectivity: A Model for Rational Arboviral Vaccine Design 
Mosquito-borne chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs) for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS), a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR), does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV.
Author Summary
With the adaptation of chikungunya virus (CHIKV) to transmission by the Aedes albopictus mosquito, a pandemic has occurred resulting in four to six million human infections, and the virus continues to become endemic in new regions, most recently in the Caribbean. CHIKV can cause debilitating polyarthralgia, lasting for weeks to years, and there are currently no licensed vaccines or antiviral therapies available. While an investigational live-attenuated vaccine (LAV) exists, problems with reactogenicity have precluded its licensure. The purpose of the current study was to: i) devise an in vitro passage procedure that reliably generates a panel of CHIKV envelope glycoprotein mutations for screening as vaccine candidates; ii) determine the position of the mutations in the three-dimensional structure of the alphavirus spike complex and their effect on electrostatic potential; iii) determine the attenuation characteristics of each mutation in a murine model of CHIKV musculoskeletal disease; and iv) to identify in vitro assays examining the dependency of infection upon HS that correlate with attenuation and localization in the glycoprotein spike. This approach provides a paradigm for the rational design of future LAVs for CHIKV and other mosquito-borne viruses, by deliberately selecting and combining attenuating processes.
PMCID: PMC3930508  PMID: 24587470
21.  A Single-Amino-Acid Polymorphism in Chikungunya Virus E2 Glycoprotein Influences Glycosaminoglycan Utilization 
Journal of Virology  2014;88(5):2385-2397.
Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly82 results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg82 results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25.
IMPORTANCE Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are utilized by both a vaccine strain and a clinical isolate of CHIKV to mediate virus binding. We also identified an amino acid polymorphism in the viral E2 attachment protein that influences utilization of glycosaminoglycans. These data enhance an understanding of the viral and host determinants of CHIKV cell entry, which may foster development of new antivirals that act by blocking this key step in viral infection.
PMCID: PMC3958064  PMID: 24371059
22.  Heat Shock Protein 90 Positively Regulates Chikungunya Virus Replication by Stabilizing Viral Non-Structural Protein nsP2 during Infection 
PLoS ONE  2014;9(6):e100531.
The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV) emphasize the need to understand the biology of the virus for developing effective antiviral therapies.
Methods and Findings
In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90) mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27) and Indian outbreak strain of 2006 (DRDE-06). Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA) can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production.
Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06, which will be informative for developing effective anti-CHIKV therapies in future.
PMCID: PMC4069056  PMID: 24959709
23.  Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells 
The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV) causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLPs) in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs. Herein we show that a single immunization with 1 µg of non-adjuvanted CHIKV VLPs induced high titer neutralizing antibody responses and provided complete protection against viraemia and joint inflammation upon challenge with the Réunion Island CHIKV strain in an adult wild-type mouse model of CHIKV disease. CHIKV VLPs produced in insect cells using recombinant baculoviruses thus represents as a new, safe, non-replicating and effective vaccine candidate against CHIKV infections.
Author Summary
Viruses that are transmitted by mosquitoes represent major threats for human health all over the world. One of these viruses is the Chikungunya virus (CHIKV). CHIKV is transmitted by the Asian Tiger mosquito, which is making ground to more temperate regions such as Europe, and thereby increasing the risk of CHIKV infections. The virus causes severe fevers and long lasting joint pains. Unfortunately, there is no vaccine to combat CHIKV infections. This study describes the development of a virus-like particle (VLP) vaccine against CHIKV infections, which is produced in insect cells. VLPs are structurally identical to the wild type virus, but these particles cannot replicate due to the absence of the viral genome. The CHIKV VLPs that were produced using the baculovirus-insect cell expression system, were correctly produced and mimic live CHIKV in structural organisation and protein function. Interestingly, a single administration of a low dose (1 µg/mouse) of non-adjuvanted VLPs induced robust neutralizing antibody titers and provided complete protection upon CHIKV challenge against viraemia and disease symptoms. This new effective, safe and scalable vaccine candidate represents a step forward in the prevention of CHIKV infections.
PMCID: PMC3597470  PMID: 23516657
24.  Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate 
Virology  2012;425(2):103-112.
In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthalgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent.
PMCID: PMC3431213  PMID: 22305131
25.  Characterization of Aedes aegypti Innate-Immune Pathways that Limit Chikungunya Virus Replication 
Replication of arboviruses in their arthropod vectors is controlled by innate immune responses. The RNA sequence-specific break down mechanism, RNA interference (RNAi), has been shown to be an important innate antiviral response in mosquitoes. In addition, immune signaling pathways have been reported to mediate arbovirus infections in mosquitoes; namely the JAK/STAT, immune deficiency (IMD) and Toll pathways. Very little is known about these pathways in response to chikungunya virus (CHIKV) infection, a mosquito-borne alphavirus (Togaviridae) transmitted by aedine species to humans resulting in a febrile and arthralgic disease. In this study, the contribution of several innate immune responses to control CHIKV replication was investigated. In vitro experiments identified the RNAi pathway as a key antiviral pathway. CHIKV was shown to repress the activity of the Toll signaling pathway in vitro but neither JAK/STAT, IMD nor Toll pathways were found to mediate antiviral activities. In vivo data further confirmed our in vitro identification of the vital role of RNAi in antiviral defence. Taken together these results indicate a complex interaction between CHIKV replication and mosquito innate immune responses and demonstrate similarities as well as differences in the control of alphaviruses and other arboviruses by mosquito immune pathways.
Author Summary
Chikungunya virus (CHIKV) is a mosquito-borne human-pathogenic arbovirus of the Togaviridae family, genus Alphavirus. Arbovirus replication in vectors, such as mosquitoes, is not passively tolerated but leads to immune responses, that control virus infection. These responses therefore represent interesting targets for novel intervention strategies. Mosquito antiviral immune responses, such as small RNA pathways or immune signaling pathways, are increasingly well studied but it is not known which one mediate antiviral effects against CHIKV in particular. Here we screened four key immune responses in vitro for their antiviral potential against CHIKV and only the exogenous RNA interference was found to mediate antiviral activity. This was confirmed in vivo in Aedes aegypti mosquitoes. Immune signaling pathways were not found to mediate antiviral activity but were inhibited by CHIKV. This shows interesting differences and similarities to other mosquito-borne alphaviruses that increase our understanding of alphavirus-mosquito interactions.
PMCID: PMC4109886  PMID: 25058001

Results 1-25 (976461)