Search tips
Search criteria

Results 1-25 (1327219)

Clipboard (0)

Related Articles

1.  Co-culture of Retinal and Endothelial Cells Results in the Modulation of Genes Critical to Retinal Neovascularization 
Vascular Cell  2011;3:27.
Neovascularization (angiogenesis) is a multistep process, controlled by opposing regulatory factors, which plays a crucial role in several ocular diseases. It often results in vitreous hemorrhage, retinal detachment, neovascularization glaucoma and subsequent vision loss. Hypoxia is considered to be one of the key factors to trigger angiogenesis by inducing angiogenic factors (like VEGF) and their receptors mediated by hypoxia inducible factor-1 (HIF-1α) a critical transcriptional factor. Another factor, nuclear factor kappa B (NFκB) also regulates many of the genes required for neovascularization, and can also be activated by hypoxia. The aim of this study was to elucidate the mechanism of interaction between HRPC and HUVEC that modulates a neovascularization response.
Human retinal progenitor cells (HRPC) and human umbilical vein endothelial cells (HUVEC) were cultured/co-cultured under normoxia (control) (20% O2) or hypoxia (1% O2) condition for 24 hr. Controls were monolayer cultures of each cell type maintained alone. We examined the secretion of VEGF by ELISA and influence of conditioned media on blood vessel growth (capillary-like structures) via an angiogenesis assay. Total RNA and protein were extracted from the HRPC and HUVEC (cultured and co-cultured) and analyzed for the expression of VEGF, VEGFR-2, NFκB and HIF-1α by RT-PCR and Western blotting. The cellular localization of NFκB and HIF-1α were studied by immunofluorescence and Western blotting.
We found that hypoxia increased exogenous VEGF expression 4-fold in HRPC with a further 2-fold increase when cultured with HUVEC. Additionally, we found that hypoxia induced the expression of the VEGF receptor (VEGFR-2) for HRPC co-cultured with HUVEC. Hypoxia treatment significantly enhanced (8- to 10-fold higher than normoxia controls) VEGF secretion into media whether cells were cultured alone or in a co-culture. Also, hypoxia was found to result in a 3- and 2-fold increase in NFκB and HIF-1α mRNA expression by HRPC and a 4- and 6-fold increase in NFκB and HIF-1α protein by co-cultures, whether non-contacting or contacting.
Treatment of HRPC cells with hypoxic HUVEC-CM activated and promoted the translocation of NFκB and HIF-1α to the nuclear compartment. This finding was subsequently confirmed by finding that hypoxic HUVEC-CM resulted in higher expression of NFκB and HIF-1α in the nuclear fraction of HRPC and corresponding decrease in cytoplasmic NFκB and HIF-1α. Lastly, hypoxic conditioned media induced a greater formation of capillary-like structures (angiogenic response) compared to control conditioned media. This effect was attenuated by exogenous anti-human VEGF antibody, suggesting that VEGF was the primary factor in the hypoxic conditioned media responsible for the angiogenic response.
These findings suggest that intercellular communications between HRPC and HUVEC lead to the modulation of expression of transcription factors associated with the production of pro-angiogenic factors under hypoxic conditions, which are necessary for an enhanced neovascular response. Our data suggest that the hypoxia treatment results in the up-regulation of both mRNA and protein expression for VEGF and VEGFR-2 through the translocation of NFκB and HIF-1α into the nucleus, and results in enhanced HRPC-induced neovascularization. Hence, a better understanding of the underlying mechanism for these interactions might open perspectives for future retinal neovascularization therapy.
PMCID: PMC3253041  PMID: 22112782
Neovascularization; Human retinal progenitor cells (HRPC); Human umbilical vein endothelial cells (HUVEC); Hypoxia, Vascular endothelial growth factor; Conditioned medium; Co-culture
2.  Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells 
British Journal of Cancer  2013;109(1):83-91.
Hepatocellular carcinoma (HCC) growth relies on angiogenesis via vascular endothelial growth factor (VEGF) release. Hypoxia within tumour environment leads to intracellular stabilisation of hypoxia inducible factor 1 alpha (Hif1α) and signal transducer and activator of transcription (STAT3). Melatonin induces apoptosis in HCC, and shows anti-angiogenic features in several tumours. In this study, we used human HepG2 liver cancer cells as an in vitro model to investigate the anti-angiogenic effects of melatonin.
HepG2 cells were treated with melatonin under normoxic or CoCl2-induced hypoxia. Gene expression was analysed by RT–qPCR and western blot. Melatonin-induced anti-angiogenic activity was confirmed by in vivo human umbilical vein endothelial cells (HUVECs) tube formation assay. Secreted VEGF was measured by ELISA. Immunofluorescence was performed to analyse Hif1α cellular localisation. Physical interaction between Hif1α and its co-activators was analysed by immunoprecipitation and chromatin immunoprecipitation (ChIP).
Melatonin at a pharmacological concentration (1 mℳ) decreases cellular and secreted VEGF levels, and prevents HUVECs tube formation under hypoxia, associated with a reduction in Hif1α protein expression, nuclear localisation, and transcriptional activity. While hypoxia increases phospho-STAT3, Hif1α, and CBP/p300 recruitment as a transcriptional complex within the VEGF promoter, melatonin 1 mℳ decreases their physical interaction. Melatonin and the selective STAT3 inhibitor Stattic show a synergic effect on Hif1α, STAT3, and VEGF expression.
Melatonin exerts an anti-angiogenic activity in HepG2 cells by interfering with the transcriptional activation of VEGF, via Hif1α and STAT3. Our results provide evidence to consider this indole as a powerful anti-angiogenic agent for HCC treatment.
PMCID: PMC3708553  PMID: 23756865
hepatocellular carcinoma; melatonin; Hif1α; VEGF; STAT3
3.  STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells 
Oncogene  2013;33(13):1670-1679.
Solid tumors often exhibit simultaneously inflammatory and hypoxic microenvironments. The ‘signal transducer and activator of transcription-3’ (STAT3)-mediated inflammatory response and the hypoxia-inducible factor (HIF)-mediated hypoxia response have been independently shown to promote tumorigenesis through the activation of HIF or STAT3 target genes and to be indicative of a poor prognosis in a variety of tumors. We report here for the first time that STAT3 is involved in the HIF1, but not HIF2-mediated hypoxic transcriptional response. We show that inhibiting STAT3 activity in MDA-MB-231 and RCC4 cells by a STAT3 inhibitor or STAT3 small interfering RNA significantly reduces the levels of HIF1, but not HIF2 target genes in spite of normal levels of hypoxia-inducible transcription factor 1α (HIF1α) and HIF2α protein. Mechanistically, STAT3 activates HIF1 target genes by binding to HIF1 target gene promoters, interacting with HIF1α protein and recruiting coactivators CREB binding protein (CBP) and p300, and RNA polymerase II (Pol II) to form enhanceosome complexes that contain HIF1α, STAT3, CBP, p300 and RNA Pol II on HIF1 target gene promoters. Functionally, the effect of STAT3 knockdown on proliferation, motility and clonogenic survival of tumor cells in vitro is phenocopied by HIF1α knockdown in hypoxic cells, whereas STAT3 knockdown in normoxic cells also reduces cell proliferation, motility and clonogenic survival. This indicates that STAT3 works with HIF1 to activate HIF1 target genes and to drive HIF1-depedent tumorigenesis under hypoxic conditions, but also has HIF-independent activity in normoxic and hypoxic cells. Identifying the role of STAT3 in the hypoxia response provides further data supporting the effectiveness of STAT3 inhibitors in solid tumor treatment owing to their usefulness in inhibiting both the STAT3 and HIF1 pro-tumorigenic signaling pathways in some cancer types.
PMCID: PMC3868635  PMID: 23604114
cotranscriptional activation; HIF; hypoxia; STAT3; transcription
4.  Physical and Functional Interactions between Runx2 and HIF-1α Induce Vascular Endothelial Growth Factor Gene Expression 
Journal of cellular biochemistry  2011;112(12):3582-3593.
Angiogenesis and bone formation are intimately related processes. Hypoxia during early bone development stabilizes hypoxia-inducible factor-1α (HIF-1α) and increases angiogenic signals including vascular endothelial growth factor (VEGF). Furthermore, stabilization of HIF-1α by genetic or chemical means stimulates bone formation. On the other hand, deficiency of Runx2, a key osteogenic transcription factor, prevents vascular invasion of bone and VEGF expression. This study explores the possibility that HIF-1α and Runx2 interact to activate angiogenic signals. Runx2 over-expression in mesenchymal cells increased VEGF mRNA and protein under both normoxic and hypoxic conditions. In normoxia, Runx2 also dramatically increased HIF-1α protein. In all cases, the Runx2 response was inhibited by siRNA-mediated suppression of HIF-1α and completely blocked by the HIF-1α inhibitor, echinomycin. Similarly, treatment of preosteoblast cells with Runx2 siRNA reduced VEGF mRNA in normoxia or hypoxia. However, Runx2 is not essential for the HIF-1α response since VEGF is induced by hypoxia even in Runx2-null cells. Endogenous Runx2 and HIF-1α were colocalized to the nuclei of MC3T3-E1 preosteoblast cells. Moreover, HIF-1α and Runx2 physically interact using sites within the Runx2 RUNT domain. Chromatin immunoprecipitation also provided evidence for colocalization of Runx2 and HIF-1α on the VEGF promoter. In addition, Runx2 stimulated HIF-1α-dependent activation of an HRE-luciferase reporter gene without requiring a separate Runx2-binding enhancer. These studies indicate that Runx2 functions together with HIF-1α to stimulate angiogenic gene expression in bone cells and may in part explain the known requirement for Runx2 in bone vascularization.
PMCID: PMC3202060  PMID: 21793044
Osteoblast; vascularization; angiogenesis; transcriptional factors; hypoxia
5.  Upregulation of miRNA3195 and miRNA374b Mediates the Anti-Angiogenic Properties of Melatonin in Hypoxic PC-3 Prostate Cancer Cells 
Journal of Cancer  2015;6(1):19-28.
Recently microRNAs (miRNAs) have been attractive targets with their key roles in biological regulation through post-transcription to control mRNA stability and protein translation. Though melatonin was known as an anti-angiogenic agent, the underlying mechanism of melatonin in PC-3 prostate cancer cells under hypoxia still remains unclear. Thus, in the current study, we elucidated the important roles of miRNAs in melatonin-induced anti-angiogenic activity in hypoxic PC-3 cells. miRNA array revealed that 33 miRNAs (>2 folds) including miRNA3195 and miRNA 374b were significantly upregulated and 16 miRNAs were downregulated in melatonin-treated PC-3 cells under hypoxia compared to untreated control. Melatonin significantly attenuated the expression of hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha and vascular endothelial growth factor (VEGF) at mRNA level in hypoxic PC-3 cells. Consistently, melatonin enhanced the expression of miRNA3195 and miRNA 374b in hypoxic PC-3 cells by qRT-PCR analysis. Of note, overexpression of miRNA3195 and miRNA374b mimics attenuated the mRNA levels of angiogenesis related genes such as HIF-1alpha, HIF-2 alpha and VEGF in PC-3 cells under hypoxia. Furthermore, overexpression of miRNA3195 and miRNA374b suppressed typical angiogenic protein VEGF at the protein level and VEGF production induced by melatonin, while antisense oligonucleotides against miRNA 3195 or miRNA 374b did not affect VEGF production induced by melatonin. Also, overexpression of miR3195 or miR374b reduced HIF-1 alpha immunofluorescent expression in hypoxic PC-3 compared to untreated control. Overall, our findings suggest that upregulation of miRNA3195 and miRNA374b mediates anti-angiogenic property induced by melatonin in hypoxic PC-3 cells.
PMCID: PMC4278911  PMID: 25553085
melatonin; miRNA3195; miRNA374b; VEGF; HIF-1 alpha; PC-3 cells.
6.  The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1 
Antioxidants & Redox Signaling  2014;20(13):1964-1976.
Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976.
PMCID: PMC3993052  PMID: 24386901
7.  HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs) 
Carcinoma-associated fibroblasts (CAFs) play a pivotal role in cancer progression by contributing to invasion, metastasis and angiogenesis. Solid tumors possess a unique microenvironment characterized by local hypoxia, which induces gene expression changes and biological features leading to poor outcomes. Hypoxia Inducible Factor 1 (HIF-1) is the main transcription factor that mediates the cell response to hypoxia through different mechanisms that include the regulation of genes strongly associated with cancer aggressiveness. Among the HIF-1 target genes, the G-protein estrogen receptor (GPER) exerts a stimulatory role in diverse types of cancer cells and in CAFs.
We evaluated the regulation and function of the key angiogenic mediator vascular endothelial growth factor (VEGF) in CAFs exposed to hypoxia. Gene expression studies, Western blotting analysis and immunofluorescence experiments were performed in CAFs and breast cancer cells in the presence of cobalt chloride (CoCl2) or cultured under low oxygen tension (2% O2), in order to analyze the involvement of the HIF-1α/GPER signaling in the biological responses to hypoxia. We also explored the role of the HIF-1α/GPER transduction pathway in functional assays like tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in CAFs.
We first determined that hypoxia induces the expression of HIF-1α and GPER in CAFs, then we ascertained that the HIF-1α/GPER signaling is involved in the regulation of VEGF expression in breast cancer cells and in CAFs exposed to hypoxia. We also assessed by ChIP assay that HIF-1α and GPER are both recruited to the VEGF promoter sequence and required for VEGF promoter stimulation upon hypoxic condition. As a biological counterpart of these findings, conditioned medium from hypoxic CAFs promoted tube formation in HUVECs in a HIF-1α/GPER dependent manner. The functional cooperation between HIF-1α and GPER in CAFs was also evidenced in the hypoxia-induced cell migration, which involved a further target of the HIF-1α/GPER signaling like connective tissue growth factor (CTGF).
The present results provide novel insight into the role elicited by the HIF-1α/GPER transduction pathway in CAFs towards the hypoxia-dependent tumor angiogenesis. Our findings further extend the molecular mechanisms through which the tumor microenvironment may contribute to cancer progression.
PMCID: PMC3978922  PMID: 23947803
8.  Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA 
Arthritis Research & Therapy  2012;14(4):R180.
Hypoxia and T-helper cell 1 (Th1) cytokine-driven inflammation are key features of rheumatoid arthritis (RA) and contribute to disease pathogenesis by promoting angiogenesis. The objective of our study was to characterise the angiogenic gene signature of RA fibroblast-like synoviocytes (FLS) in response to hypoxia, as well as Th1 and T-helper cell 2 (Th2) cytokines, and in particular to dissect out effects of combined hypoxia and cytokines on hypoxia inducible transcription factors (HIFs) and angiogenesis.
Human angiogenesis PCR arrays were used to screen cDNA from RA FLS exposed to hypoxia (1% oxygen) or dimethyloxalylglycine, which stabilises HIFs. The involvement of HIF isoforms in generating the angiogenic signature of RA FLS stimulated with hypoxia and/or cytokines was investigated using a DNA-binding assay and RNA interference. The angiogenic potential of conditioned media from hypoxia-treated and/or cytokine-treated RA FLS was measured using an in vitro endothelial-based assay.
Expression of 12 angiogenic genes was significantly altered in RA FLS exposed to hypoxia, and seven of these were changed by dimethyloxalylglycine, including ephrin A3 (EFNA3), vascular endothelial growth factor (VEGF), adipokines angiopoietin-like (ANGPTL)-4 and leptin. These four proangiogenic genes were dependent on HIF-1 in hypoxia to various degrees: EFNA3 >ANGPTL-4 >VEGF >leptin. The Th1 cytokines TNFα and IL-1β induced HIF-1 but not HIF-2 transcription as well as activity, and this effect was additive with hypoxia. In contrast, Th2 cytokines had no effect on HIFs. IL-1β synergised with hypoxia to upregulate EFNA3 and VEGF in a HIF-1-dependent fashion but, despite strongly inducing HIF-1, TNFα suppressed adipokine expression and had minimal effect on EFNA3. Supernatants from RA FLS subjected to hypoxia and TNFα induced fewer endothelial tubules than those from FLS subjected to TNFα or hypoxia alone, despite high VEGF protein levels. The Th2 cytokine IL-4 strongly induced ANGPTL-4 and angiogenesis by normoxic FLS and synergised with hypoxia to induce further proangiogenic activity.
The present work demonstrates that Th1 cytokines in combination with hypoxia are not sufficient to induce angiogenic activity by RA FLS despite HIF-1 activation and VEGF production. In contrast, Th2 cytokines induce angiogenic activity in normoxia and hypoxia, despite their inability to activate HIFs, highlighting the complex relationships between hypoxia, angiogenesis and inflammation in RA.
PMCID: PMC3580575  PMID: 22866899
9.  Eupatilin Inhibits Gastric Cancer Cell Growth by Blocking STAT3-Mediated VEGF Expression 
Journal of Gastric Cancer  2011;11(1):16-22.
Eupatilin is an antioxidative flavone and a phytopharmaceutical derived from Artemisia asiatica. It has been reported to possess anti-tumor activity in some types of cancer including gastric cancer. Eupatilin may modulate the angiogenesis pathway which is part of anti-inflammatory effect demonstrated in gastric mucosal injury models. Here we investigated the anti-tumor effects of eupatilin on gastric cancer cells and elucidated the potential underlying mechanism whereby eupatilin suppresses angiogenesis and tumor growth.
Materials and Methods
The impact of eupatilin on the expression of angiogenesis pathway proteins was assessed using western blots in MKN45 cells. Using a chromatin immunoprecipitation assay, we tested whether eupatilin affects the recruitment of signal transducer and activator of transcription 3 (STAT3), aryl hydrocarbon receptor nuclear translocator (ARNT) and hypoxia-inducible factor-1α (HIF-1α) to the human VEGF promoter. To investigate the effect of eupatilin on vasculogenesis, tube formation assays were conducted using human umbilical vein endothelial cells (HUVECs). The effect of eupatilin on tumor suppression in mouse xenografts was assessed.
Eupatilin significantly reduced VEGF, ARNT and STAT3 expression prominently under hypoxic conditions. The recruitment of STAT3, ARNT and HIF-1α to the VEGF promoter was inhibited by eupatilin treatment. HUVECs produced much foreshortened and severely broken tubes with eupatilin treatment. In addition, eupatilin effectively reduced tumor growth in a mouse xenograft model.
Our results indicate that eupatilin inhibits angiogenesis in gastric cancer cells by blocking STAT3 and VEGF expression, suggesting its therapeutic potential in the treatment of gastric cancer.
PMCID: PMC3204482  PMID: 22076197
Eupatilin; Stomach neoplasms; Angiogenesis; STAT3; Vascular endothelial growth factor A
10.  Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿  
Molecular and Cellular Biology  2007;28(2):772-783.
Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo.
PMCID: PMC2223436  PMID: 18039850
11.  Disulfiram deregulates HIF-α subunits and blunts tumor adaptation to hypoxia in hepatoma cells 
Acta Pharmacologica Sinica  2013;34(9):1208-1216.
Disulfiram is an aldehyde dehydrogenase inhibitor that was used to treat alcoholism and showed anticancer activity, but its anticancer mechanism remains unclear. The aim of this study was to investigate the effects of disulfiram on the hypoxia-inducible factor (HIF)-driven tumor adaptation to hypoxia in vitro.
Hep3B, Huh7 and HepG2 hepatoma cells were incubated under normoxic (20% O2) or hypoxic (1% O2) conditions for 16 h. The expression and activity of HIF-1α and HIF-2α proteins were evaluated using immunoblotting and luciferase reporter assay, respectively. Semi-quantitative RT-PCR was used to analyze HIF-mediated gene expression. Endothelial tubule formation assay was used to evaluate the anti-angiogenic effect.
Hypoxia caused marked expression of HIF-1α and HIF-1α in the 3 hepatoma cell lines, dramatically increased HIF activity and induced the expression of HIF downstream genes (EPO, CA9, VEGF-A and PDK1) in Hep3B cells. HIF-2α expression was positively correlated with the induction of hypoxic genes (CA9, VEGF-A and PDK1). Moreover, hypoxia markedly increased VEGF production and angiogenic potential of Hep3B cells. Disulfiram (0.3 to 2 μmol/L) inhibited hypoxia-induced gene expression and HIF activity in a dose-dependent manner. Disulfiram more effectively suppressed the viability of Hep3B cells under hypoxia, but it did not affect the cell cycle. Overexpression of HIF-2α in Hep3B cells reversed the inhibitory effects of disulfiram on hypoxia-induced gene expression and cell survival under hypoxia.
Disulfiram deregulates the HIF-mediated hypoxic signaling pathway in hepatoma cells, which may contribute to its anticancer effect. Thus, disulfiram could be used to treat solid tumors that grow in a HIF-dependent manner.
PMCID: PMC4003155  PMID: 23852087
disulfiram; hepatoma; hypoxia; HIF-2; VEGF; angiogenesis
12.  A novel regulation of VEGF expression by HIF-1α and STAT3 in HDM2 transfected prostate cancer cells 
On the basis of increasing roles for HDM2 oncoprotein in cancer growth and progression, we speculated that HDM2 might play a major role in hypoxia-induced metastatic process. For verification of this hypothesis, wild-type LNCaP prostate cancer cells and HDM2 transfected LNCaP-MST (HDM2 stably transfected) cells were studied. The data obtained from our experiments revealed that the HDM2 transfected LNCaP-MST cells possessed an ability to multiply rapidly and show distinct morphological features compared to non-transfected LNCaP cells. During exposures to hypoxia HDM2 expression in the LNCaP and LNCaP-MST cells was significantly higher compared to the normoxic levels. The LNCaP-MST cells also expressed higher levels of HIF-1α (hypoxia-inducible factor-1α) and p-STAT3 even under the normoxic conditions compared to the non-transfected cells. The HIF-1α and p-STAT3 expressions were increased several fold when the cells were subjected to hypoxic conditions. The HIF-1α and p-STAT3 protein expressions observed in HDM2 transfected LNCaP-MST cells were 20 and 15 folds higher, respectively, compared to the non-transfected wild-type LNCaP cells. These results demonstrate that HDM2 may have an important regulatory role in mediating the HIF-1α and p-STAT3 protein expression during both normoxic and hypoxic conditions. Furthermore, the vascular endothelial growth factor (VEGF) expression that is typically regulated by HIF-1α and p-STAT3 was also increased significantly by 136% (P < 0.01) after HDM2 transfection. The overall results point towards a novel ability of HDM2 in regulating HIF-1α and p-STAT3 levels even in normoxic conditions that eventually lead to an up-regulation of VEGF expression.
PMCID: PMC3822688  PMID: 22004076
HDM2; VEGF; HIF-1α; STAT3; angiogenesis; hypoxia
13.  The Caulerpa Pigment Caulerpin Inhibits HIF-1 Activation and Mitochondrial Respiration 
Journal of natural products  2009;72(12):2104-2109.
The transcription factor hypoxia-inducible factor-1 (HIF-1) represents an important molecular target for anticancer drug discovery. In a T47D cell-based reporter assay, the Caulerpa spp. algal pigment caulerpin (1) inhibited hypoxia-induced as well as 1,10-phenanthroline-induced HIF-1 activation. The angiogenic factor vascular endothelial growth factor (VEGF) is regulated by HIF-1. Caulerpin (10 μM) suppressed hypoxic induction of secreted VEGF protein and the ability of hypoxic T47D cell-conditioned media to promote tumor angiogenesis in vitro. Under hypoxic conditions, 1 (10 μM) blocked the induction of HIF-1α protein, the oxygen-regulated subunit that controls HIF-1 activity. Reactive oxygen species produced by mitochondrial complex III are believed to act as a signal of cellular hypoxia that leads to HIF-1α protein induction and activation. Further mechanistic studies revealed that 1 inhibits mitochondrial respiration at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Under hypoxic conditions, it is proposed that 1 may disrupt mitochondrial ROS-regulated HIF-1 activation and HIF-1 downstream target gene expression by inhibiting the transport or delivery of electrons to complex III.
PMCID: PMC2798910  PMID: 19921787
14.  Hypoxia‐inducible factor expression in human RPE cells 
The British Journal of Ophthalmology  2007;91(10):1406-1410.
Hypoxia‐inducible factor (HIF) is a common transcription factor for many angiogenic proteins. Retinal pigment epithelial (RPE) cells are an important source of angiogenic factors in the retina. The expression of HIF, its regulation by proline hydroxylase (PHD) enzymes, and its downstream regulation of angiogenic factors like vascular endothelial growth factor (VEGF) and erythropoietin (EPO) was studied in RPE cells in order to determine some of the molecular mechanisms underlying ischaemic retinal disease.
ARPE‐19 cells were cultured for various times under hypoxic conditions. Cellular HIF and PHD isoforms were analysed and quantified using western blot and densitometry. VEGF and EPO secreted into the media were assayed using enzyme‐linked immunosorbent assay (ELISA). Messenger RNA (mRNA) was quantified using real‐time quantitative reverse transcriptase polymerase chain reaction (qPCR). RNA interference was achieved using siRNA techniques.
HIF‐1α was readily produced by ARPE‐19 cells under hypoxia, but HIF‐2α and HIF‐3α could not be detected even after HIF‐1α silencing. HIF‐1α protein levels showed an increasing trend for the first 24 h while HIF‐1α mRNA levels fluctuated during this time. After 36 h HIF‐1α protein levels declined to baseline levels, a change that was coincident with a rise in both PHD2 and PHD3. Silencing HIF‐1α significantly decreased VEGF secretion. Significant production of EPO could not be detected at the protein or mRNA level.
HIF‐1α appears to be the main isoform of HIF functioning in ARPE‐19 cells. Under hypoxia, HIF‐1α levels are likely self‐regulated by a feedback loop that involves both transcriptional and post‐translational mechanisms. VEGF production by human RPE cells is regulated by HIF‐1α. EPO was not produced in significant amounts by RPE cells under hypoxic conditions, suggesting that other cells and/or transcription factors in the retina are responsible for its production.
PMCID: PMC2001032  PMID: 17567660
diabetic retinopathy; VEGF; erythropoietin; hypoxia‐inducible factor; proline hydroxylase
15.  Signal Transducer and Activator of Transcription 3 is required for hypoxia-inducible factor-1α RNA expression in both tumor cells and tumor-associated myeloid cells 
Molecular cancer research : MCR  2008;6(7):1099-1105.
Hypoxia-inducible factor 1 (HIF-1) is a potent tumorigenic factor. Its alpha subunit (HIF-1α), which is tightly regulated in normal tissues, is elevated in tumors due to hypoxia and overactive growth signaling pathways. Although much is known about HIF-1α regulation in cancer cells, crucial molecular targets that affect HIF-1α levels modulated by both hypoxia and oncogenic signaling pathways remain to be identified. Additionally, whether and how the tumor microenvironment contributes to HIF-1α accumulation is unclear. This study demonstrates a novel mechanism by which HIF-1α availability is regulated in both cancer cells and in myeloid cells in the tumor microenvironment. We show a requirement of Stat3 for HIF-1α RNA expression under both hypoxia and growth signaling conditions. Furthermore, tumor-derived myeloid cells express elevated levels of HIF-1α mRNA relative to their counterparts from normal tissues in a Stat3-dependent manner. Additionally, Stat3 activity in the non-transformed cells in the tumor milieu impacts HIF-1α RNA expression of the entire growing tumor. Consistent with a role of Stat3 in regulating HIF-1α RNA transcription, elevated Stat3 activity increases HIF-1α promoter activity, and Stat3 protein binds to the HIF-1α promoter in both transformed cells and in growing tumors. Taken together, these findings demonstrate a novel mode by which HIF-1α is regulated not only in cancer cells but also in the tumor associated inflammatory cells, suggesting Stat3 as an important molecular target for inhibiting the oncogenic potential of HIF-1 induced by both hypoxia and overactive growth signaling pathways prevalent in cancer.
PMCID: PMC2775817  PMID: 18644974
16.  Use of Culture Geometry to Control Hypoxia-Induced Vascular Endothelial Growth Factor Secretion from Adipose-Derived Stem Cells: Optimizing a Cell-Based Approach to Drive Vascular Growth 
Tissue Engineering. Part A  2013;19(21-22):2330-2338.
Adipose-derived stem cells (ADSCs) possess potent angiogenic properties and represent a source for cell-based approaches to delivery of bioactive factors to drive vascularization of tissues. Hypoxic signaling appears to be largely responsible for triggering release of these angiogenic cytokines, including vascular endothelial growth factor (VEGF). Three-dimensional (3D) culture may promote activation of hypoxia-induced pathways, and has furthermore been shown to enhance cell survival by promoting cell–cell interactions while increasing angiogenic potential. However, the development of hypoxia within ADSC spheroids is difficult to characterize. In the present study, we investigated the impact of spheroid size on hypoxia-inducible transcription factor (HIF)-1 activity in spheroid cultures under atmospheric and physiological oxygen conditions using a fluorescent marker. Hypoxia could be induced and modulated by controlling the size of the spheroid; HIF-1 activity increased with spheroid size and with decreasing external oxygen concentration. Furthermore, VEGF secretion was impacted by the hypoxic status of the culture, increasing with elevated HIF-1 activity, up to the point at which viability was compromised. Together, these results suggest the ability to use 3D culture geometry as a means to control output of angiogenic factors from ADSCs, and imply that at a particular environmental oxygen concentration an optimal culture size for cytokine production exists. Consideration of culture geometry and microenvironmental conditions at the implantation site will be important for successful realization of ADSCs as a pro-angiogenic therapy.
PMCID: PMC3807712  PMID: 23668629
17.  Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing 
BMC Genomics  2014;15(1):686.
Hypoxia is a critical aspect of the glioma microenvironment and has been associated with poor prognosis and resistance to various therapies. However, the mechanisms responsible for hypoxic survival of glioma cells remain unclear. Recent studies strongly suggest that microRNAs act as critical mediators of the hypoxic response. We thus hypothesized their prominent role in hypoxia resistance in glioblastoma (GBM) and aimed to identify those.
With this study, we present the first detailed analysis of small RNA transcriptome of cell line U87MG, a grade IV glioma cell line, and its alteration under hypoxic condition. Based on deep sequencing and microarray data, we identify a set of hypoxia regulated microRNAs, with the miR-210-3p and its isomiRs showing highest induction in GBM cell lines U87MG and U251MG. We show miR-210-3p, miR-1275, miR-376c-3p, miR-23b-3p, miR-193a-3p and miR-145-5p to be up-regulated, while miR-92b-3p, miR-20a-5p, miR-10b-5p, miR-181a-2-3p and miR-185-5p are down-regulated by hypoxia. Interestingly, certain hypoxia-induced miRNAs are also known to be over-expressed in GBM tumors, suggesting that hypoxia may be one of the factors involved in establishing the miRNA signature of GBM. Transcription factor binding sites for Hypoxia inducible factor 1 A (HIF1A) were identified in the promoter region (5 kb upstream) of 30 hypoxia-induced miRNAs. HIF-1A over-expression and silencing studies show regulation of specific miRNAs, including miR-210-3p, to be HIF1A dependent. On the other hand, miR-210-3p leads to an increase in transcriptional activity of HIF and its target genes vascular endothelial growth factor (VEGF) and carbonic anhydrase 9 (CA9). MiR-210-3p levels were found to be high in GBM patient samples and showed good correlation with the known hypoxia markers CA9 and VEGF. We show that miR-210-3p promotes hypoxic survival and chemoresistance in GBM cells and targets a negative regulator of hypoxic response, HIF3A. Additionally, a total of 139 novel miRNAs were discovered by the analysis of deep sequencing data and three of these were found to be differentially expressed under hypoxia.
Overall, our study reveals a novel miRNA signature of hypoxia in GBM and suggests miR-210-3p to be an oncogenic player and a novel potential intrinsic marker of hypoxia in glioblastoma.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-686) contains supplementary material, which is available to authorized users.
PMCID: PMC4148931  PMID: 25129238
Glioblastoma; MicroRNA; Deep sequencing; U87MG; U251MG; A172; miR-210
18.  The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor 
Carcinogenesis  2014;35(4):840-848.
This study reveals that the autocrine/paracrine ET signaling regulates the interplay between melanoma and ECs in hypoxic microenvironment through hypoxia-inducible factor-1α transcriptional programs. ET-B receptor may represent a therapeutic target in improving melanoma treatment by impairing the reciprocal regulation between stroma and tumor cells.
Reciprocal growth factor exchanges between endothelial and malignant cells within the hypoxic microenvironment determine tumor progression. However, the nature of these exchanges has not yet been fully explored. We studied the mutual regulation between endothelial cells (EC), melanoma cells and hypoxia that dictate tumor aggressiveness and angiogenic activity. Here, we investigated the presence of bidirectional autocrine/paracrine endothelin (ET)-1/ET receptor (ETBR) signaling in melanoma cells, blood and lymphatic EC. In all these cells, hypoxia enhanced ET-1 expression, which in turn induced vascular endothelial growth factor (VEGF)-A and VEGF-C secretion, through the hypoxia-inducible growth factor (HIF)-1α and HIF-2α. Autocrine/paracrine exchanges of ET-1, VEGF-A and VEGF-C promoted tumor aggressiveness and morphological changes in blood and lymphatic EC. Furthermore, conditioned media from EC enhanced melanoma cell migration and vessel-like channel formation. This regulation was inhibited by ETBR blockade, by using the selective ETBR antagonist, or ETBR small interfering RNA (siRNA), and by VEGFR-2/-3 antibodies, indicating that ET-1, VEGF-A/VEGF-C, produced by melanoma cells or EC mediated inter-regulation between these cells. Interestingly, HIF-1α/HIF-2α siRNA, impaired this reciprocal regulation, demonstrating the key role of these transcriptional factors in signaling exchanges. In melanoma xenografts, the ETBR antagonist reduced tumor growth and the number of blood and lymphatic vessels. These results reveal an interplay between melanoma cells and EC mediated by ET-1 and VEGF-A/-C and coordinated by the hypoxic microenvironment through HIF-1α/2α transcriptional programs. Thus, targeting ETBR may improve melanoma treatment for tumor and EC, by inhibiting autocrine/paracrine signaling that sustains melanoma progression.
PMCID: PMC3988429  PMID: 24473118
19.  Defect of Adaptation to Hypoxia in Patients With COPD Due to Reduction of Histone Deacetylase 7 
Chest  2011;141(5):1233-1242.
Hypoxia inducible factor (HIF)-1 plays an important role in cellular adaptation to hypoxia by activating oxygen-regulated genes such as vascular endothelial growth factor (VEGF) and erythropoietin. Sputum VEGF levels are reported to be decreased in COPD, despite hypoxia. Here we show that patients with COPD fail to induce HIF-1α and VEGF under hypoxic condition because of a reduction in histone deacetylase (HDAC) 7.
Peripheral blood mononuclear cells (PBMCs) were obtained from patients with moderate to severe COPD (n = 21), smokers without COPD (n = 12), and nonsmokers (n = 15). PBMCs were exposed to hypoxia (1% oxygen, 5% CO2, and 94% N2) for 24 h, and HIF-1α and HDAC7 protein expression in nuclear extracts were determined by sodium dodecyl sulfate poly acrylamide gel electrophoresis (SDS-PAGE)/Western blotting.
HIF-1α was significantly induced by hypoxia in each group when compared with the normoxic condition (12-fold induction in nonsmokers, 24-fold induction in smokers without COPD, fourfold induction in COPD), but induction of HIF-1α under hypoxia was significantly lower in patients with COPD than in nonsmokers and smokers without COPD (P < .05 and P < .01, respectively). VEGF messenger RNA detected by quantitative real-time polymerase chain reaction was correlated with HIF-1α protein in nuclei (r = 0.79, P < .05), and HDAC7 protein expression was correlated with HIF-1α protein in nuclei (r = 0.46, P < .05). HDAC7 knockdown inhibited hypoxia-induced HIF-1α activity in U937 cells, and HIF-1α nuclear translocation and HIF-1α binding to the VEGF promoter in A549 cells.
HDAC7 reduction in COPD causes a defect of HIF-1α induction response to hypoxia with impaired VEGF gene expression. This poor cellular adaptation might play a role in the pathogenesis of COPD.
PMCID: PMC3342783  PMID: 22172637
20.  Epstein-Barr Virus Latent Membrane Protein 1 Induces Synthesis of Hypoxia-Inducible Factor 1α 
Molecular and Cellular Biology  2004;24(12):5223-5234.
Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1α and HIF-1β that is the central regulator of responses to hypoxia. The specific binding of HIF-1 to the hypoxia-responsive element (HRE) induces the transcription of genes that respond to hypoxic conditions, including vascular endothelial growth factor (VEGF). Here we report that expression of HIF-1α is increased in diverse Epstein-Barr virus (EBV)-infected type II and III cell lines, which express EBV latent membrane protein 1 (LMP1), the principal EBV oncoprotein, as well as other latency proteins, but not in the parental EBV-negative cell lines. We show first that transfection of an LMP1 expression plasmid into Ad-AH cells, an EBV-negative nasopharyngeal epithelial cell line, induces synthesis of HIF-1α protein without increasing its stability or mRNA level. The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 markedly reduces induction of HIF-1α by LMP1. Catalase, an H2O2 scavenger, strongly suppresses LMP1-induced production of H2O2, which results in a decrease in the expression of HIF-1α induced by LMP1. Inhibition of the NF-κB, c-jun N-terminal kinase, p38 MAPK, and phosphatidylinositol 3-kinase pathways did not affect HIF-1α expression. Moreover, LMP1 induces HIF-1 DNA binding activity and upregulates HRE and VEGF promoter transcriptional activity. Finally, LMP1 increases the appearance of VEGF protein in extracellular fluids; induction of VEGF is suppressed by PD98059 or catalase. These results suggest that LMP1 increases HIF-1 activity through induction of HIF-1α protein expression, which is controlled by p42/p44 MAPK activity and H2O2. The ability of EBV, and specifically its major oncoprotein, LMP1, to induce HIF-1α along with other invasiveness and angiogenic factors reported previously discloses additional oncogenic properties of this tumor virus.
PMCID: PMC419879  PMID: 15169887
21.  Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. 
Molecular and Cellular Biology  1996;16(9):4604-4613.
Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells.
PMCID: PMC231459  PMID: 8756616
22.  Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90 
PLoS ONE  2010;5(7):e11772.
Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1α, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis.
Methodology/Principal Findings
By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1α protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1α protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1α protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1α stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1α degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1α protein. We also showed that bcl-2, HIF-1α and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1α protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1α protein during hypoxia, and in particular the isoform HSP90β is the main player in this phenomenon.
We identified the stabilization of HIF-1α protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the β isoform of molecular chaperone HSP90.
PMCID: PMC2910721  PMID: 20668552
23.  A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA 
PLoS Medicine  2008;5(5):e94.
Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells.
Methods and Findings
Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the tumors did not respond to interferon (IFN)α therapy at all. We showed that stable silencing of endogenous vegf mRNA in HCT116 cells enhanced both STAT1 expression and IFNα responses.
These findings suggest that cancer cells have a survival system that is regulated by vegf mRNA and imply that both vegf mRNA and its protein may synergistically promote the malignancy of tumor cells. Therefore, combination of anti-vegf transcript strategies, such as siRNA-based gene silencing, with anti-VEGF antibody treatment may improve anti-cancer therapies that target VEGF.
Shigetada Teshima-Kondo and colleagues find that cancer cells have a survival system that is regulated by vegf mRNA and that vegf mRNA and its protein may synergistically promote the malignancy of tumor cells.
Editors' Summary
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. When a cancer is small, it uses the body's existing blood supply to get the oxygen and nutrients it needs for its growth and survival. But, when it gets bigger, it has to develop its own blood supply. This process is called angiogenesis. It involves the release by the cancer cells of proteins called growth factors that bind to other proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels). The receptors then send signals into the endothelial cells that tell them to make new blood vessels. One important angiogenic growth factor is “vascular endothelial growth factor” (VEGF). Tumors that make large amounts of VEGF tend to be more abnormal and more aggressive than those that make less VEGF. In addition, high levels of VEGF in the blood are often associated with poor responses to chemotherapy, drug regimens designed to kill cancer cells.
Why Was This Study Done?
Because VEGF is a key regulator of tumor development, several anti-VEGF therapies—drugs that target VEGF and its receptors—have been developed. These therapies strongly suppress the growth of tumor cells in the laboratory and in animals but, when used alone, are no better at increasing the survival times of patients with cancer than standard chemotherapy. Scientists are now looking for an explanation for this disappointing result. Like all proteins, cells make VEGF by “transcribing” its DNA blueprint into an mRNA copy (vegf mRNA), the coding region of which is “translated” into the VEGF protein. Other, “noncoding” regions of vegf mRNA control when and where VEGF is made. Scientists have recently discovered that the noncoding regions of some mRNAs suppress tumor development. In this study, therefore, the researchers investigate whether vegf mRNA has an unrecognized function in tumor cells that could explain the disappointing clinical results of anti-VEGF therapeutics.
What Did the Researchers Do and Find?
The researchers first used a technique called small interfering (si) RNA knockdown to stop VEGF expression in human colon cancer cells growing in dishes. siRNAs are short RNAs that bind to and destroy specific mRNAs in cells, thereby preventing the translation of those mRNAs into proteins. The treatment of human colon cancer cells with vegf-targeting siRNAs made the cells more sensitive to chemotherapy-induced apoptosis (a type of cell death). This sensitivity was only partly reversed by adding VEGF to the cells. By contrast, cancer cells engineered to make more vegf mRNA had increased resistance to chemotherapy-induced apoptosis. Treatment of these cells with an antibody that inhibited VEGF function did not completely block this resistance. Together, these results suggest that both vegf mRNA and VEGF protein have anti-apoptotic effects. The researchers show that the anti-apoptotic activity of vegf mRNA requires a noncoding part of the mRNA called the 5′ UTR, and that whereas human colon cancer cells expressing this 5′ UTR form tumors in mice, cells expressing a mutated 5′ UTR do not. Finally, they report that the expression of several pro-apoptotic genes and of an anti-tumor pathway known as the interferon/STAT1 tumor suppression pathway is down-regulated in tumors that express the vegf 5′ UTR.
What Do These Findings Mean?
These findings suggest that some cancer cells have a survival system that is regulated by vegf mRNA and are the first to show that a 5′UTR of mRNA can promote tumor growth. They indicate that VEGF and its mRNA work together to promote their development and to increase their resistance to chemotherapy drugs. They suggest that combining therapies that prevent the production of vegf mRNA (for example, siRNA-based gene silencing) with therapies that block the function of VEGF might improve survival times for patients whose tumors overexpress VEGF.
Additional Information.
Please access these Web sites via the online version of this summary at
This study is discussed further in a PLoS Medicine Perspective by Hughes and Jones
The US National Cancer Institute provides information about all aspects of cancer, including information on angiogenesis, and on bevacizumab, an anti-VEGF therapeutic (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer, including angiogenesis (in several languages)
Cancer Research UK also provides basic information about what causes cancers and how they develop, grow, and spread, including information about angiogenesis
Wikipedia has pages on VEGF and on siRNA (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2386836  PMID: 18494554
Experimental cell research  2010;316(10):1706-1715.
12-lipoxygenase, an arachidonic acid metabolizing enzyme of the lipoxygenase pathway, has been implicated as a major factor in promoting prostate cancer progression and metastasis. The ability of 12-LOX to aggravate the disease was linked to its proangiogenic role. Recent studies clearly demonstrated that 12-LOX enhances the expression and secretion of the angiogenic factor, vascular endothelial growth factor (VEGF) thus providing a direct link between this enzyme and its angiogenic properties. In the present study we have investigated the relationship between 12-LOX and hypoxia inducible factor-1α (HIF-1α), a transcription factor involved in the regulation of VEGF expression under hypoxic conditions in solid tumors. Our findings have revealed that HIF-1 is one of the target transcription factors regulated by 12-LOX and 12(S)-HETE, in hypoxic tumor cells of the prostate. Regulation of HIF-1α by 12-LOX adds to the complexity of pathways mediated by this enzyme in promoting prostate cancer angiogenesis and metastasis. We have evidence that 12-LOX increases the protein level, mRNA, and functional activity of HIF-1α under hypoxic conditions, one of the mechanisms by which it upregulates VEGF secretion and activity.
PMCID: PMC3420817  PMID: 20303950
12-Lipoxygenase; Hypoxia Inducible Factor-1α (HIF-1α); angiogenesis; prostate cancer; hypoxia
25.  Emerging evidence of the physiological role of hypoxia in mammary development and lactation 
Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting of α and β subunits. HIF-1β is constantly expressed, whereas HIF-1α is degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1α and the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCl in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence: i) Mice with an HIF-1α deletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions; ii) We recently observed that hypoxia significantly induces HIF-1α-dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation; and iii) Hypoxia and HIF-1α increase the phosphorylation of signal transducers and activators of transcription 5a (STAT5a) in mammary epithelial cells, whereas STAT5 phosphorylation plays important roles in the regulation of milk protein gene expression and mammary development. Based on these observations, hypoxia effects emerge as a new frontier for studying the regulation of mammary development and lactation.
PMCID: PMC3929241  PMID: 24444333
Glucose transporter; Hypoxia; Hypoxia inducible factor; Lactation; Mammary development; Metabolism

Results 1-25 (1327219)