PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (996483)

Clipboard (0)
None

Related Articles

1.  Resolving crossings in the corticospinal tract by two-tensor streamline tractography 
NeuroImage  2008;47(Suppl 2):T98-106.
An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. This may lead to the inability to visualize clinically important tracts such as the lateral projections of the corticospinal tract. In this report, we present a deterministic two-tensor eXtended Streamline Tractography (XST) technique, which successfully traces through regions of crossing fibers. We evaluated the method on simulated and in vivo human brain data, comparing the results with the traditional single-tensor and with a probabilistic tractography technique. By tracing the corticospinal tract and correlating with fMRI-determined motor cortex in both healthy subjects and patients with brain tumors, we demonstrate that two-tensor deterministic streamline tractography can accurately identify fiber bundles consistent with anatomy and previously not detected by conventional single tensor tractography. When compared to the dense connectivity maps generated by probabilistic tractography, the method is computationally efficient and generates discrete geometric pathways that are simple to visualize and clinically useful. Detection of crossing white matter pathways can improve neurosurgical visualization of functionally relevant white matter areas.
doi:10.1016/j.neuroimage.2008.06.034
PMCID: PMC2746909  PMID: 18657622
two-tensor tractography; diffusion tensor imaging; crossing fibers; corticospinal tract
2.  Development of Cerebral Fiber Pathways in Cats revealed by Diffusion Spectrum Imaging 
NeuroImage  2009;49(2):1231-1240.
Examination of the three-dimensional axonal pathways in the developing brain is key to understanding the formation of cerebral connectivity. By tracing fiber pathways throughout the entire brain, diffusion tractography provides information that cannot be achieved by conventional anatomical MR imaging or histology. However, standard diffusion tractography (based on diffusion tensor imaging, or DTI) tends to terminate in brain areas with low water diffusivity, indexed by low diffusion fractional anisotropy (FA), which can be caused by crossing fibers as well as fibers with less myelin. For this reason, DTI tractography is not effective for delineating the structural changes that occur in the developing brain, where the process of myelination is incomplete, and where crossing fibers exist in greater numbers than in the adult brain. Unlike DTI, diffusion spectrum imaging (DSI) can define multiple directions of water diffusivity; as such, diffusion tractography based on DSI provides marked flexibility for delineation of fiber tracts in areas where the fiber architecture is complex and multidirectional, even in areas of low FA. In this study, we showed that FA values were lower in the white matter of newborn (postnatal day 0; P0) cat brains than in the white matter of infant (P35) and juvenile (P100) cat brains. These results correlated well with histological myelin stains of the white matter: the newborn kitten brain has much less myelin than that found in cat brains at later stages of development. Using DSI tractography, we successfully identified structural changes in thalamo-cortical and cortico-cortical association tracts in cat brains from one stage of development to another. In newborns, the main body of the thalamo-cortical tract was smooth, and fibers branching from it were almost straight, while the main body became more complex and branching fibers became curved reflecting gyrification in the older cats. Cortico-cortical tracts in the temporal lobe were smooth in newborns, and they formed a sharper angle in the later stages of development. The cingulum bundle and superior longitudinal fasciculus became more visible with time. Within the first month after birth, structural changes occurred in these tracts that coincided with the formation of the gyri. These results show that DSI tractography has the potential for mapping morphological changes in low FA areas associated with growth and development. The technique may also be applicable to the study of other forms of brain plasticity, including future studies in vivo.
doi:10.1016/j.neuroimage.2009.09.002
PMCID: PMC2789885  PMID: 19747553
Diffusion Spectrum Imaging; Tractography; Development; Thalamo-cortical tracts; Cat
3.  White matter fiber tracking directed by interpolating splines and a methodological framework for evaluation 
Image-based tractography of white matter (WM) fiber bundles in the brain using diffusion weighted MRI (DW-MRI) has become a useful tool in basic and clinical neuroscience. However, proper tracking is challenging due to the anatomical complexity of fiber pathways, the coarse resolution of clinically applicable whole-brain in vivo imaging techniques, and the difficulties associated with verification. In this study we introduce a new tractography algorithm using splines (denoted Spline). Spline reconstructs smooth fiber trajectories iteratively, in contrast to most other tractography algorithms that create piecewise linear fiber tract segments, followed by spline fitting. Using DW-MRI recordings from eight healthy elderly people participating in a longitudinal study of cognitive aging, we compare our Spline algorithm to two state-of-the-art tracking methods from the TrackVis software suite. The comparison is done quantitatively using diffusion metrics (fractional anisotropy, FA), with both (1) tract averaging, (2) longitudinal linear mixed-effects model fitting, and (3) detailed along-tract analysis. Further validation is done on recordings from a diffusion hardware phantom, mimicking a coronal brain slice, with a known ground truth. Results from the longitudinal aging study showed high sensitivity of Spline tracking to individual aging patterns of mean FA when combined with linear mixed-effects modeling, moderately strong differences in the along-tract analysis of specific tracts, whereas the tract-averaged comparison using simple linear OLS regression revealed less differences between Spline and the two other tractography algorithms. In the brain phantom experiments with a ground truth, we demonstrated improved tracking ability of Spline compared to the two reference tractography algorithms being tested.
doi:10.3389/fninf.2013.00013
PMCID: PMC3724124  PMID: 23898264
white matter; tractography; along-tract; orientation distribution function; fractional anisotropy; longitudinal data analysis; spline interpolation; aging neuroscience
4.  A robust method for investigating thalamic white matter tracts after traumatic brain injury 
Neuroimage  2012;63(2):779-788.
Damage to the structural connections of the thalamus is a frequent feature of traumatic brain injury (TBI) and can be a key factor in determining clinical outcome. Until recently it has been difficult to quantify the extent of this damage in vivo. Diffusion tensor imaging (DTI) provides a validated method to investigate traumatic axonal injury, and can be applied to quantify damage to thalamic connections. DTI can also be used to assess white matter tract structure using tractography, and this technique has been used to study thalamo-cortical connections in the healthy brain. However, the presence of white matter injury can cause failure of tractography algorithms. Here, we report a method for investigating thalamo-cortical connectivity that bypasses the need for individual tractography. We first created a template for a number of thalamo-cortical connections using probabilistic tractography performed in ten healthy subjects. This template for investigating white matter structure was validated by comparison with individual tractography in the same group, as well as in an independent control group (N = 11). We also evaluated two methods of masking tract location using the tract skeleton generated by tract based spatial statistics, and a cerebrospinal fluid mask. Voxel-wise estimates of fractional anisotropy derived from the template were more strongly correlated with individual tractography when both types of masking were used. The tract templates were then used to sample DTI measures from a group of TBI patients (N = 22), with direct comparison performed against probabilistic tractography in individual patients. Probabilistic tractography often failed to produce anatomically plausible tracts in TBI patients. Importantly, we show that this problem increases as tracts become more damaged, and leads to underestimation of the amount of traumatic axonal injury. In contrast, the tract template can be used in these cases, allowing a more accurate assessment of white matter damage. In summary, we propose a method suitable for assessing specific thalamo-cortical white matter connections after TBI that is robust to the presence of varying amounts of traumatic axonal injury, as well as highlighting the potential problems of applying tractography algorithms in patient populations.
Highlights
► TBI produces significant damage to thalamo-cortical white matter connections. ► This damage disrupts probabilistic tractography in patients. ► The error associated with patient tractography increases with tract damage. ► A template approach allows more accurate estimation of tract damage after TBI.
doi:10.1016/j.neuroimage.2012.07.016
PMCID: PMC3471070  PMID: 22813952
TH, thalamus; ACCR, right anterior cingulate cortex; ACCL, left anterior cingulate cortex; IFGR, right inferior frontal gyrus; IFGL, left inferior frontal gyrus; SFGR, right superior frontal gyrus; SFGL, left superior frontal gyrus; SPLR, right superior parietal lobe; SPLL, left superior parietal lobe; STGR, right superior temporal gyrus; STGL, left superior temporal lobe; Diffusion tensor imaging; Tractography; Thalamus; Traumatic axonal injury
5.  Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods☆ 
NeuroImage : Clinical  2013;3:361-368.
Introduction
Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways.
Methods
We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm2) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex.
Results
We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best sensitivity (79%) as determined from cortical IES compared to deterministic q-ball (50%), probabilistic DTI (36%), and deterministic DTI (10%). The sensitivity using the q-ball algorithm (65%) was significantly higher than using DTI (23%) (p < 0.001) and the probabilistic algorithms (58%) were more sensitive than deterministic approaches (30%) (p = 0.003). Probabilistic q-ball fiber tracks had the smallest offset to the subcortical stimulation sites. The offsets between diffusion fiber tracks and subcortical IES sites were increased significantly for those cases where the diffusion fiber tracks were visibly thinner than expected. There was perfect concordance between the subcortical IES function (e.g. hand stimulation) and the cortical connection of the nearest diffusion fiber track (e.g. upper extremity cortex).
Discussion
This study highlights the tremendous utility of intraoperative stimulation sites to provide a gold standard from which to evaluate diffusion MRI fiber tracking methods and has provided an object standard for evaluation of different diffusion models and approaches to fiber tracking. The probabilistic q-ball fiber tractography was significantly better than DTI methods in terms of sensitivity and accuracy of the course through the white matter. The commonly used DTI fiber tracking approach was shown to have very poor sensitivity (as low as 10% for deterministic DTI fiber tracking) for delineation of the lateral aspects of the corticospinal tract in our study. Effects of the tumor/edema resulted in significantly larger offsets between the subcortical IES and the preoperative fiber tracks. The provided data show that probabilistic HARDI tractography is the most objective and reproducible analysis but given the small sample and number of stimulation points a generalization about our results should be given with caution. Indeed our results inform the capabilities of preoperative diffusion fiber tracking and indicate that such data should be used carefully when making pre-surgical and intra-operative management decisions.
Highlights
•Diffusion MRI tractography is used for presurgical brain mapping.•We use intraoperative electric stimulation as a gold standard.•We delineate motor tracts with deterministic and probabilistic DTI and q-ball models.•Probabilistic q-ball has the best sensitivity (79%).•Probabilistic q-ball fiber tracks had the smallest offset to the subcortical IES.
doi:10.1016/j.nicl.2013.08.008
PMCID: PMC3815019  PMID: 24273719
Diffusion MRI Tractography; Corticospinal tract; q-Ball; DTI; Brain tumor; Intraoperative electrical stimulation (IES)
6.  Diffusion tractography of post-mortem human brains: Optimization and comparison of spin echo and steady-state free precession techniques 
Neuroimage  2012;59(3-2):2284-2297.
Diffusion imaging of post-mortem brains could provide valuable data for validation of diffusion tractography of white matter pathways. Long scans (e.g., overnight) may also enable high-resolution diffusion images for visualization of fine structures. However, alterations to post-mortem tissue (T2 and diffusion coefficient) present significant challenges to diffusion imaging with conventional diffusion-weighted spin echo (DW-SE) acquisitions, particularly for imaging human brains on clinical scanners. Diffusion-weighted steady-state free precession (DW-SSFP) has been proposed as an alternative acquisition technique to ameliorate this tradeoff in large-bore clinical scanners. In this study, both DWSE and DW-SSFP are optimized for use in fixed white matter on a clinical 3-Tesla scanner. Signal calculations predict superior performance from DW-SSFP across a broad range of protocols and conditions. DW-SE and DW-SSFP data in a whole, post-mortem human brain are compared for 6- and 12-hour scan durations. Tractography is performed in major projection, commissural and association tracts (corticospinal tract, corpus callosum, superior longitudinal fasciculus and cingulum bundle). The results demonstrate superior tract-tracing from DW-SSFP data, with 6-hour DW-SSFP data performing as well as or better than 12-hour DW-SE scans. These results suggest that DW-SSFP may be a preferred method for diffusion imaging of post-mortem human brains. The ability to estimate multiple fibers in imaging voxels is also demonstrated, again with greater success in DW-SSFP data.
Highlights
► Comparison of DW-SE and DW-SSFP for post-mortem imaging on clinical scanners. ► Optimization of protocols predicts 50-130% higher SNR efficiency in DW-SSFP. ► Comparison of tractography 6- and 12-hour DW-SE and DW-SSFP scans. ► Lower uncertainty on fibre direction in DW-SSFP produces superior tractography. ► Crossing fibres can be estimated from 12-hour DW-SSFP data.
doi:10.1016/j.neuroimage.2011.09.054
PMCID: PMC3314951  PMID: 22008372
Diffusion; Tractography; Post mortem; Steady-state free precession; DTI
7.  Reconstruction of White Matter Tracts via Repeated Deterministic Streamline Tracking – Initial Experience 
PLoS ONE  2013;8(5):e63082.
Diffusion Tensor Imaging (DTI) and fiber tractography are established methods to reconstruct major white matter tracts in the human brain in-vivo. Particularly in the context of neurosurgical procedures, reliable information about the course of fiber bundles is important to minimize postoperative deficits while maximizing the tumor resection volume. Since routinely used deterministic streamline tractography approaches often underestimate the spatial extent of white matter tracts, a novel approach to improve fiber segmentation is presented here, considering clinical time constraints. Therefore, fiber tracking visualization is enhanced with statistical information from multiple tracking applications to determine uncertainty in reconstruction based on clinical DTI data. After initial deterministic fiber tracking and centerline calculation, new seed regions are generated along the result’s midline. Tracking is applied to all new seed regions afterwards, varying in number and applied offset. The number of fibers passing each voxel is computed to model different levels of fiber bundle membership. Experimental results using an artificial data set of an anatomical software phantom are presented, using the Dice Similarity Coefficient (DSC) as a measure of segmentation quality. Different parameter combinations were classified to be superior to others providing significantly improved results with DSCs of 81.02%±4.12%, 81.32%±4.22% and 80.99%±3.81% for different levels of added noise in comparison to the deterministic fiber tracking procedure using the two-ROI approach with average DSCs of 65.08%±5.31%, 64.73%±6.02% and 65.91%±6.42%. Whole brain tractography based on the seed volume generated by the calculated seeds delivers average DSCs of 67.12%±0.86%, 75.10%±0.28% and 72.91%±0.15%, original whole brain tractography delivers DSCs of 67.16%, 75.03% and 75.54%, using initial ROIs as combined include regions, which is clearly improved by the repeated fiber tractography method.
doi:10.1371/journal.pone.0063082
PMCID: PMC3646033  PMID: 23671656
8.  Fiber Tractography Based on Diffusion Tensor Imaging Compared With High-Angular-Resolution Diffusion Imaging With Compressed Sensing: Initial Experience 
Neurosurgery  2013;72(0 1):165-175.
Background
The most frequently used method for fiber tractography based on diffusion tensor imaging (DTI) is associated with restrictions in the resolution of crossing or kissing fibers and in the vicinity of tumor or edema. Tractography based on high-angular-resolution diffusion imaging (HARDI) is capable of overcoming this restriction. With compressed sensing (CS) techniques, HARDI acquisitions with a smaller number of directional measurements can be used, thus enabling the use of HARDI-based fiber tractography in clinical practice.
Objective
To investigate whether HARDI+CS-based fiber tractography improves the display of neuroanatomically complex pathways and in areas of disturbed diffusion properties.
Methods
Six patients with gliomas in the vicinity of language-related areas underwent 3-T magnetic resonance imaging including a diffusion-weighted data set with 30 gradient directions. Additionally, functional magnetic resonance imaging for cortical language sites was obtained. Fiber tractography was performed with deterministic streamline algorithms based on DTI using 3 different software platforms. Additionally, tractography based on reconstructed diffusion signals using HARDI+CS was performed.
Results
HARDI+CS-based tractography displayed more compact fiber bundles compared with the DTI-based results in all cases. In 3 cases, neuroanatomically plausible fiber bundles were displayed in the vicinity of tumor and peritumoral edema, which could not be traced on the basis of DTI. The curvature around the sylvian fissure was displayed properly in 6 cases and in only 2 cases with DTI-based tractography.
Conclusion
HARDI+CS seems to be a promising approach for fiber tractography in clinical practice for neuroanatomically complex fiber pathways and in areas of disturbed diffusion, overcoming the problem of long acquisition times.
doi:10.1227/NEU.0b013e318270d9fb
PMCID: PMC3784319  PMID: 23254805
Compressed sensing; Diffusion tensor imaging; Fiber tractography; Glioma; High-angular-resolution diffusion imaging; Multimodality navigation
9.  Effects of DTI spatial normalization on white matter tract reconstructions 
Proceedings of SPIE  2013;8669:10.1117/12.2007130.
Major white matter (WM) pathways in the brain can be reconstructed in vivo using tractography on diffusion tensor imaging (DTI) data. Performing tractography using the native DTI data is often considered to produce more faithful results than performing it using the spatially normalized DTI obtained using highly non-linear transformations. However, tractography in the normalized DTI is playing an increasingly important role in population analyses of the WM. In particular, the emerging tract specific analyses (TSA) can benefit from tractography in the normalized DTI for statistical parametric mapping in specific WM pathways. It is well known that the preservation of tensor orientations at the individual voxel level is enforced in tensor based registrations. However small reorientation errors at individual voxel level can accumulate and could potentially affect the tractography results adversely. To our knowledge, there has been no study investigating the effects of normalization on consistency of tractography that demands non-local preservation of tensor orientations which is not explicitly enforced in typical DTI spatial normalization routines. This study aims to evaluate and compare tract reconstructions obtained using normalized DTI against those obtained using native DTI. Although tractography results have been used to measure and influence the quality of spatial normalization, the presented study addresses a distinct question: whether non-linear spatial normalization preserves even long-range anatomical connections obtained using tractography for accurate reconstructions of pathways. Our results demonstrate that spatial normalization of DTI data does preserve tract reconstructions of major WM pathways and does not alter the variance (individual differences) of their macro and microstructural properties. This suggests one can extract quantitative and shape properties efficiently from the tractography data in the normalized DTI for performing population statistics on major WM pathways.
doi:10.1117/12.2007130
PMCID: PMC3807852  PMID: 24163728
10.  Comparative mouse brain tractography of diffusion magnetic resonance imaging 
NeuroImage  2010;51(3):1027-1036.
Diffusion magnetic resonance imaging (dMRI) tractography can be employed to simultaneously analyse three-dimensional white matter tracts in the brain. Numerous methods have been proposed to model diffusion-weighted magnetic resonance data for tractography, and we have explored the functionality of some of these for studying white and grey matter pathways in ex vivo mouse brain. Using various deterministic and probabilistic algorithms across a range of regions of interest we found that probabilistic tractography provides a more robust means of visualizing both white and grey matter pathways than deterministic tractography. Importantly, we demonstrate the sensitivity of probabilistic tractography profiles to streamline number, step size, curvature, fiber orientation distribution, and whole-brain versus region of interest seeding. Using anatomically well-defined cortico-thalamic pathways, we show how density maps can permit the topographical assessment of probabilistic tractography. Finally, we show how different tractography approaches can impact on dMRI assessment of tract changes in a mouse deficient for the frontal cortex morphogen, fibroblast growth factor 17. In conclusion, probabilistic tractography can elucidate the phenotypes of mice with neurodegenerative or neurodevelopmental disorders in a quantitative manner.
doi:10.1016/j.neuroimage.2010.03.035
PMCID: PMC2882245  PMID: 20303410
mouse brain; diffusion-weighted imaging; tractography; constrained spherical deconvolution; Qball; Fgf17
11.  A Modular Framework for Development and Interlaboratory Sharing and Validation of Diffusion Tensor Tractography Algorithms 
Journal of Digital Imaging  2006;19(2):112-117.
This Technical Note describes a novel modular framework for development and interlaboratory distribution and validation of 3D tractography algorithms based on in vivo diffusion tensor imaging (DTI) measurements. The proposed framework allows individual MRI research centers to benefit from new tractography algorithms developed at other independent centers by “plugging” new tractography modules directly into their own custom DTI software tools, such as existing graphical user interfaces (GUI) for visualizing brain white matter pathways. The proposed framework is based on the Java 3D programming platform, which provides an object-oriented programming (OOP) model and independence of computer hardware configuration and operating system. To demonstrate the utility of the proposed approach, a complete GUI for interactive DTI tractography was developed, along with two separate and interchangeable modules that implement two different tractography algorithms. Although the application discussed here relates to DTI tractography, the programming concepts presented here should be of interest to anyone who wishes to develop platform-independent GUI applications for interactive 3D visualization.
doi:10.1007/s10278-006-9948-5
PMCID: PMC3045185  PMID: 16511673
Diffusion tensor imaging; white matter; tractography
12.  Globally Optimized Fiber Tracking and Hierarchical Clustering – A Unified Framework 
Magnetic Resonance Imaging  2012;30(4):485-495.
Structural connectivity between cortical regions of the human brain can be characterized non-invasively with diffusion tensor imaging (DTI) based fiber tractography. In this paper, a novel fiber tractography technique, globally optimized fiber tracking and hierarchical fiber clustering, is presented. The proposed technique uses k-means clustering in conjunction with modified Hubert statistic to partition fiber pathways, which are evaluated with simultaneous consideration of consistency with underlying DTI data and smoothness of fiber courses in the sense of global optimality, into individual anatomically coherent fiber bundles. In each resulting bundle, fibers are sampled, perturbed and clustered iteratively to approach the optimal solution. The global optimality allows the proposed technique to resist local image artifacts, and to possess inherent capabilities of handling complex fiber structures and tracking fibers between gray matter regions. The embedded hierarchical clustering allows multiple fiber bundles between a pair of seed regions to be naturally reconstructed and partitioned. The integration of globally optimized tracking and hierarchical clustering greatly benefits applications of DTI based fiber tractography to clinical studies, particularly to studies of structure-function relations of the complex neural network of the human. Experiments with synthetic and in vivo human DTI data have demonstrated the effectiveness of the proposed technique in tracking complex fiber structures, thus proving its significant advantages over traditionally used streamline fiber tractography.
doi:10.1016/j.mri.2011.12.017
PMCID: PMC3327795  PMID: 22285879
Diffusion Tensor Imaging; Fiber Tracking; Fiber Clustering; Global Optimization
13.  Tractography - where do we go from here? 
Brain connectivity  2011;1(3):169-183.
Diffusion tractography offers enormous potential for the study of human brain anatomy. However, as a method to study brain connectivity, tractography suffers from limitations, as it is indirect, inaccurate, and difficult to quantify. Despite these limitations, appropriate use of tractography can be a powerful means to address certain questions. In addition, while some of tractography’s limitations are fundamental, others could be alleviated by methodological and technological advances. This article provides an overview of diffusion MR tractography methods with a focus on how future advances might address challenges in measuring brain connectivity. Parts of this review are somewhat provocative, in the hope that they may trigger discussions possibly lacking in a field where the apparent simplicity of the methods (compared to their FMRI counterparts) can hide some fundamental issues that ultimately hinder the interpretation of findings, and cast doubt as to what tractography can really teach us about human brain anatomy.
doi:10.1089/brain.2011.0033
PMCID: PMC3677805  PMID: 22433046
14.  Imaging White Matter in Human Brainstem 
The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.
doi:10.3389/fnhum.2013.00400
PMCID: PMC3721683  PMID: 23898254
diffusion-weighted imaging; tractography; brainstem; white matter; high-resolution MRI
15.  Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy 
PLoS ONE  2013;8(11):e80713.
Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics.
doi:10.1371/journal.pone.0080713
PMCID: PMC3858183  PMID: 24348913
16.  MR Diffusion Histology and Micro-Tractography Reveal Mesoscale Features of the Human Cerebellum 
Cerebellum (London, England)  2013;12(6):923-931.
After 140 years from the discovery of Golgi’s black reaction, the study of connectivity of the cerebellum remains a fascinating yet challenging task. Current histological techniques provide powerful methods for unravelling local axonal architecture, but the relatively low volume of data that can be acquired in a reasonable amount of time limits their application to small samples. State-of-the-art in vivo magnetic resonance imaging (MRI) methods, such as diffusion tractography techniques, can reveal trajectories of the major white matter pathways, but their correspondence with underlying anatomy is yet to be established. Hence, a significant gap exists between these two approaches as neither of them can adequately describe the three-dimensional complexity of fibre architecture at the level of the mesoscale (from a few millimetres to micrometres). In this study, we report the application of MR diffusion histology and micro-tractography methods to reveal the combined cytoarchitectural organisation and connectivity of the human cerebellum at a resolution of 100-μm (2 nl/voxel volume). Results show that the diffusion characteristics for each layer of the cerebellar cortex correctly reflect the known cellular composition and its architectural pattern. Micro-tractography also reveals details of the axonal connectivity of individual cerebellar folia and the intra-cortical organisation of the different cerebellar layers. The direct correspondence between MR diffusion histology and micro-tractography with immunohistochemistry indicates that these approaches have the potential to complement traditional histology techniques by providing a non-destructive, quantitative and three-dimensional description of the microstructural organisation of the healthy and pathological tissue.
doi:10.1007/s12311-013-0503-x
PMCID: PMC3824945  PMID: 23907655
Diffusion tensor imaging; Tractography; Cerebellum; Post-mortem; Human; MR diffusion histology; Connectome; Multi-scale; Micro-tractography
17.  Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography 
The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation of the human cerebral cortex, discussing the strengths and limitations of the current approaches. Cortical parcellation via white matter connectivity is based on the premise that, as connectional anatomy determines functional organization, it should be possible to segregate functionally-distinct cortical regions by identifying similarities and differences in connectivity profiles. Recent studies have provided initial evidence in support of the efficacy of this connectional parcellation methodology. Such investigations have identified distinct cortical subregions which correlate strongly with functional regions identified via fMRI and meta-analyses. Furthermore, a strong parallel between the cortical regions defined via tractographic and more traditional cytoarchitectonic parcellation methods has been observed. However, the degree of correspondence and relative functional importance of cytoarchitectonic- versus connectivity-derived parcellations still remains unclear. Diffusion tractography remains one of the only methods capable of visualizing the structural networks of the brain in vivo. As such, it is of vital importance to continue to improve the accuracy of the methodology and to extend its potential applications in the study of cognition in neurological health and disease.
doi:10.3389/fnana.2012.00034
PMCID: PMC3429885  PMID: 22952459
connectivity; cytoarchitecture; diffusion; functional specialization; tractography
18.  Estimating the Confidence Level of White Matter Connections Obtained with MRI Tractography 
PLoS ONE  2008;3(12):e4006.
Background
Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and algorithmic characteristics.
Methodology/Principal Findings
In this work, we propose a method to estimate the respective contributions of diffusion coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this new information directly in the connectivity matrix.
Conclusions/Significance
Our results demonstrate that whereas we can have a strong confidence in mid- and long-range connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography methodology.
doi:10.1371/journal.pone.0004006
PMCID: PMC2603475  PMID: 19104666
19.  Increased Global and Local Efficiency of Human Brain Anatomical Networks Detected with FLAIR-DTI Compared to Non-FLAIR-DTI 
PLoS ONE  2013;8(8):e71229.
Diffusion-weighted MRI (DW-MRI), the only non-invasive technique for probing human brain white matter structures in vivo, has been widely used in both fundamental studies and clinical applications. Many studies have utilized diffusion tensor imaging (DTI) and tractography approaches to explore the topological properties of human brain anatomical networks by using the single tensor model, the basic model to quantify DTI indices and tractography. However, the conventional DTI technique does not take into account contamination by the cerebrospinal fluid (CSF), which has been known to affect the estimated DTI measures and tractography in the single tensor model. Previous studies have shown that the Fluid-Attenuated Inversion Recovery (FLAIR) technique can suppress the contribution of the CSF to the DW-MRI signal. We acquired DTI datasets from twenty-two subjects using both FLAIR-DTI and conventional DTI (non-FLAIR-DTI) techniques, constructed brain anatomical networks using deterministic tractography, and compared the topological properties of the anatomical networks derived from the two types of DTI techniques. Although the brain anatomical networks derived from both types of DTI datasets showed small-world properties, we found that the brain anatomical networks derived from the FLAIR-DTI showed significantly increased global and local network efficiency compared with those derived from the conventional DTI. The increases in the network regional topological properties derived from the FLAIR-DTI technique were observed in CSF-filled regions, including the postcentral gyrus, periventricular regions, inferior frontal and temporal gyri, and regions in the visual cortex. Because brain anatomical networks derived from conventional DTI datasets with tractography have been widely used in many studies, our findings may have important implications for studying human brain anatomical networks derived from DW-MRI data and tractography.
doi:10.1371/journal.pone.0071229
PMCID: PMC3742791  PMID: 23967170
20.  Quantitative Assessment of a Framework for Creating Anatomical Brain Networks via Global Tractography 
NeuroImage  2012;61(4):1017-1030.
Interregional connections of the brain measured with diffusion tractography can be used to infer valuable information regarding both brain structure and function. However, different tractography algorithms can generate networks that exhibit different characteristics, resulting in poor reproducibility across studies. Therefore, it is important to benchmark different tractography algorithms to quantitatively assess their performance. Here we systematically evaluated a newly introduced tracking algorithm, global tractography, to derive anatomical brain networks in a fiber phantom, 2 post-mortem macaque brains, and 20 living humans, and compared the results with an established local tracking algorithm. Our results demonstrated that global tractography accurately characterized the phantom network in terms of graph-theoretic measures, and significantly outperformed the local tracking approach. Results in brain tissues (post-mortem macaques and in vivo humans), however, showed that although the performance of global tractography demonstrated a trend of improvement, the results were not vastly different than that of local tractography, possibly resulting from the increased fiber complexity of real tissues. When using macaque tracer-derived connections as the ground truth, we found that both global and local algorithms generated non-random patterns of false negative and false positive connections that were probably related to specific fiber systems and largely independent of the tractography algorithm or tissue type (post-mortem vs. in vivo) used in the current study. Moreover, a close examination of the transcallosal motor connections, reconstructed via either global or local tractography, demonstrated that the lateral transcallosal fibers in humans and macaques did not exhibit the denser homotopic connections found in primate tracer studies, indicating the need for more robust brain mapping techniques based on diffusion MRI data.
doi:10.1016/j.neuroimage.2012.03.071
PMCID: PMC3407566  PMID: 22484406
connectivity; diffusion; macaque; phantom; transcallosal motor fibers
21.  Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery 
PLoS ONE  2014;9(7):e101524.
Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.
doi:10.1371/journal.pone.0101524
PMCID: PMC4117467  PMID: 25077946
22.  The Human Connectome Project and Beyond: Initial Applications of 300 mT/m Gradients 
NeuroImage  2013;80:10.1016/j.neuroimage.2013.05.074.
The engineering of a 3T human MRI scanner equipped with 300 mT/m gradients – the strongest gradients ever built for an in vivo human MRI scanner – was a major component of the NIH Blueprint Human Connectome Project (HCP). This effort was motivated by the HCP’s goal of mapping, as completely as possible, the macroscopic structural connections of the in vivo healthy, adult human brain using diffusion tractography. Yet, the 300 mT/m gradient system is well suited to many additional types of diffusion measurements. Here, we present three initial applications of the 300mT/m gradients that fall outside the immediate scope of the HCP. These include: 1) diffusion tractography to study the anatomy of consciousness and the mechanisms of brain recovery following traumatic coma; 2) q-space measurements of axon diameter distributions in the in vivo human brain and 3) postmortem diffusion tractography as an adjunct to standard histopathological analysis. We show that the improved sensitivity and diffusion-resolution provided by the gradients is rapidly enabling human applications of techniques that were previously possible only for in vitro and animal models on small-bore scanners, thereby creating novel opportunities to map the microstructure of the human brain in health and disease.
doi:10.1016/j.neuroimage.2013.05.074
PMCID: PMC3812060  PMID: 23711537
human connectome; diffusion MRI; tractography; traumatic coma; consciousness; axon diameter; corpus callosum; in vivo; postmortem
23.  White matter tracts in first-episode psychosis: A DTI tractography study of the uncinate fasciculus 
Neuroimage  2008;39(3):949-955.
A model of disconnectivity involving abnormalities in the cortex and connecting white matter pathways may explain the symptoms and cognitive abnormalities of schizophrenia. Recently, diffusion imaging tractography has made it possible to study white matter pathways in detail, and we present here a study of patients with first-episode psychosis using this technique. We studied the uncinate fasciculus (UF), the largest white matter tract that connects the frontal and temporal lobes, two brain regions significantly implicated in schizophrenia. Nineteen patients with first-episode schizophrenia and 23 controls were studied using a probabilistic tractography algorithm (PICo). Fractional anisotropy (FA) and probability of connection were obtained for every voxel in the tract, and the group means and distributions of these variables were compared. The spread of the FA distribution in the upper tail, as measured by the squared coefficient of variance (SCV), was reduced in the left UF in the patient group, indicating that the number of voxels with high FA values was reduced in the core of the tract and suggesting the presence of changes in fibre alignment and tract coherence in the patient group. The SCV of FA was lower in females across both groups and there was no correlation between the SCV of FA and clinical ratings.
doi:10.1016/j.neuroimage.2007.09.012
PMCID: PMC2387199  PMID: 17988894
24.  Visual Pathway Study Using in vivo DTI Tractography to Complement Classical Anatomy 
Neurosurgery  2012;70(OPERATIVE):ons145-ons156.
Background
Knowledge of the individual course of the optic radiations (OR) is important to avoid post-operative visual deficits. Cadaveric studies of the visual pathways are limited because it has not been possible to accurately separate the OR from neighboring tracts and results may not apply to individual patients. Diffusion tensor imaging (DTI) studies may be able to demonstrate the relationships between the OR and neighboring fibers in vivo in individual subjects.
Objective
To use DTI tractography to study the OR and Meyer’s loop (ML) anatomy in vivo.
Methods
Ten healthy subjects underwent magnetic resonance imaging with diffusion imaging at 3T. Using a fiducial-based DTI tractography tool (Slicer 3.3), seeds were placed near the lateral geniculate nucleus (LGN) to reconstruct individual visual pathways and neighboring tracts. Projections of the optic radiations onto 3D brain models were shown individually in order to quantify relationships to key landmarks.
Results
Two patterns of visual pathways were found. The OR ran more commonly deep in the whole superior and middle temporal gyri and superior temporal sulcus. The OR was closely surrounded in all cases by an inferior longitudinal fascicle and a parieto/occipito/temporo-pontine fascicle. The mean left and right distances between the tip of the OR and temporal pole were 39.8± 3.8mm and 40.6±5.7 mm, respectively.
Conclusion
DTI tractography provides a practical complementary method to study the OR and ML anatomy in vivo, and with reference to individual 3D brain anatomy.
doi:10.1227/NEU.0b013e31822efcae
PMCID: PMC3236807  PMID: 21808220
anatomy; DTI tractography; visual pathway; optic radiations; Meyer’s loop; white matter
25.  A Tractography Comparison between Turboprop and Spin-Echo Echo-Planar Diffusion Tensor Imaging 
NeuroImage  2008;42(4):1451-1462.
The development of accurate, non-invasive methods for mapping white matter fiber-tracts is of critical importance. However, fiber-tracking is typically performed on diffusion tensor imaging (DTI) data obtained with echo-planar-based imaging techniques (EPI), which suffer from susceptibility-related image artifacts, and image warping due to eddy-currents. Thus, a number of white matter fiber-bundles mapped using EPI-based DTI data are distorted and/or terminated early. This severely limits the clinical potential of fiber-tracking. In contrast, Turboprop-MRI provides images with significantly fewer susceptibility and eddy-current-related artifacts than EPI. The purpose of this work was to compare fiber-tracking results obtained from DTI data acquired with Turboprop-DTI and EPI-based DTI. It was shown that, in brain regions near magnetic field inhomogeneities, white matter fiber-bundles obtained with EPI-based DTI were distorted and/or partially detected, when magnetic susceptibility-induced distortions were not corrected. After correction, residual distortions were still present and several fiber-tracts remained partially detected. In contrast, when using Turboprop-DTI data, all traced fiber-tracts were in agreement with known anatomy. The inter-session reproducibility of tractography results was higher for Turboprop than EPI-based DTI data in regions near field inhomogeneities. Thus, Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers near regions with significant magnetic susceptibility differences, as well as in longitudinal studies of such fibers. However, the intra-session reproducibility of tractography results was higher for EPI-based than Turboprop DTI data. Thus, EPI-based DTI may be more advantageous for tracing fibers minimally affected by field inhomogeneities.
doi:10.1016/j.neuroimage.2008.05.066
PMCID: PMC2610410  PMID: 18621131
Tractography; DTI; PROPELLER; Turboprop; MRI; Susceptibility

Results 1-25 (996483)