PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (999589)

Clipboard (0)
None

Related Articles

1.  A comprehensive SNP and indel imputability database 
Bioinformatics  2013;29(4):528-531.
Motivation: Genotype imputation has become an indispensible step in genome-wide association studies (GWAS). Imputation accuracy, directly influencing downstream analysis, has shown to be improved using re-sequencing-based reference panels; however, this comes at the cost of high computational burden due to the huge number of potentially imputable markers (tens of millions) discovered through sequencing a large number of individuals. Therefore, there is an increasing need for access to imputation quality information without actually conducting imputation. To facilitate this process, we have established a publicly available SNP and indel imputability database, aiming to provide direct access to imputation accuracy information for markers identified by the 1000 Genomes Project across four major populations and covering multiple GWAS genotyping platforms.
Results: SNP and indel imputability information can be retrieved through a user-friendly interface by providing the ID(s) of the desired variant(s) or by specifying the desired genomic region. The query results can be refined by selecting relevant GWAS genotyping platform(s). This is the first database providing variant imputability information specific to each continental group and to each genotyping platform. In Filipino individuals from the Cebu Longitudinal Health and Nutrition Survey, our database can achieve an area under the receiver-operating characteristic curve of 0.97, 0.91, 0.88 and 0.79 for markers with minor allele frequency >5%, 3–5%, 1–3% and 0.5–1%, respectively. Specifically, by filtering out 48.6% of markers (corresponding to a reduction of up to 48.6% in computational costs for actual imputation) based on the imputability information in our database, we can remove 77%, 58%, 51% and 42% of the poorly imputed markers at the cost of only 0.3%, 0.8%, 1.5% and 4.6% of the well-imputed markers with minor allele frequency >5%, 3–5%, 1–3% and 0.5–1%, respectively.
Availability: http://www.unc.edu/∼yunmli/imputability.html
Supplementary information: Supplementary data are available at Bioinformatics online.
Contact: yunli@med.unc.edu
doi:10.1093/bioinformatics/bts724
PMCID: PMC3570215  PMID: 23292738
2.  Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies 
BMC Genetics  2009;10:27.
Background
Although high-throughput genotyping arrays have made whole-genome association studies (WGAS) feasible, only a small proportion of SNPs in the human genome are actually surveyed in such studies. In addition, various SNP arrays assay different sets of SNPs, which leads to challenges in comparing results and merging data for meta-analyses. Genome-wide imputation of untyped markers allows us to address these issues in a direct fashion.
Methods
384 Caucasian American liver donors were genotyped using Illumina 650Y (Ilmn650Y) arrays, from which we also derived genotypes from the Ilmn317K array. On these data, we compared two imputation methods: MACH and BEAGLE. We imputed 2.5 million HapMap Release22 SNPs, and conducted GWAS on ~40,000 liver mRNA expression traits (eQTL analysis). In addition, 200 Caucasian American and 200 African American subjects were genotyped using the Affymetrix 500 K array plus a custom 164 K fill-in chip. We then imputed the HapMap SNPs and quantified the accuracy by randomly masking observed SNPs.
Results
MACH and BEAGLE perform similarly with respect to imputation accuracy. The Ilmn650Y results in excellent imputation performance, and it outperforms Affx500K or Ilmn317K sets. For Caucasian Americans, 90% of the HapMap SNPs were imputed at 98% accuracy. As expected, imputation of poorly tagged SNPs (untyped SNPs in weak LD with typed markers) was not as successful. It was more challenging to impute genotypes in the African American population, given (1) shorter LD blocks and (2) admixture with Caucasian populations in this population. To address issue (2), we pooled HapMap CEU and YRI data as an imputation reference set, which greatly improved overall performance. The approximate 40,000 phenotypes scored in these populations provide a path to determine empirically how the power to detect associations is affected by the imputation procedures. That is, at a fixed false discovery rate, the number of cis-eQTL discoveries detected by various methods can be interpreted as their relative statistical power in the GWAS. In this study, we find that imputation offer modest additional power (by 4%) on top of either Ilmn317K or Ilmn650Y, much less than the power gain from Ilmn317K to Ilmn650Y (13%).
Conclusion
Current algorithms can accurately impute genotypes for untyped markers, which enables researchers to pool data between studies conducted using different SNP sets. While genotyping itself results in a small error rate (e.g. 0.5%), imputing genotypes is surprisingly accurate. We found that dense marker sets (e.g. Ilmn650Y) outperform sparser ones (e.g. Ilmn317K) in terms of imputation yield and accuracy. We also noticed it was harder to impute genotypes for African American samples, partially due to population admixture, although using a pooled reference boosts performance. Interestingly, GWAS carried out using imputed genotypes only slightly increased power on top of assayed SNPs. The reason is likely due to adding more markers via imputation only results in modest gain in genetic coverage, but worsens the multiple testing penalties. Furthermore, cis-eQTL mapping using dense SNP set derived from imputation achieves great resolution, and locate associate peak closer to causal variants than conventional approach.
doi:10.1186/1471-2156-10-27
PMCID: PMC2709633  PMID: 19531258
3.  A New Statistic to Evaluate Imputation Reliability 
PLoS ONE  2010;5(3):e9697.
Background
As the amount of data from genome wide association studies grows dramatically, many interesting scientific questions require imputation to combine or expand datasets. However, there are two situations for which imputation has been problematic: (1) polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects are genotyped on different platforms. Traditional measures of imputation cannot effectively address these problems.
Methodology/Principal Findings
We introduce a new statistic, the imputation quality score (IQS). In order to differentiate between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS adjusts the concordance between imputed and genotyped SNPs for chance. We first evaluated IQS in relation to minor allele frequency. Using a sample of subjects genotyped on the Illumina 1 M array, we extracted those SNPs that were also on the Illumina 550 K array and imputed them to the full set of the 1 M SNPs. As expected, the average IQS value drops dramatically with a decrease in minor allele frequency, indicating that IQS appropriately adjusts for minor allele frequency. We then evaluated whether IQS can filter poorly-imputed SNPs in situations where cases and controls are genotyped on different platforms. Randomly dividing the data into “cases” and “controls”, we extracted the Illumina 550 K SNPs from the cases and imputed the remaining Illumina 1 M SNPs. The initial Q-Q plot for the test of association between cases and controls was grossly distorted (λ = 1.15) and had 4016 false positives, reflecting imputation error. After filtering out SNPs with IQS<0.9, the Q-Q plot was acceptable and there were no longer false positives. We then evaluated the robustness of IQS computed independently on the two halves of the data. In both European Americans and African Americans the correlation was >0.99 demonstrating that a database of IQS values from common imputations could be used as an effective filter to combine data genotyped on different platforms.
Conclusions/Significance
IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly useful for SNPs with low minor allele frequency and when datasets are genotyped on different platforms.
doi:10.1371/journal.pone.0009697
PMCID: PMC2837741  PMID: 20300623
4.  One Thousand Genomes Imputation in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium Aggressive Prostate Cancer Genome-wide Association Study 
The Prostate  2012;73(7):677-689.
BACKGROUND
Genotype imputation substantially increases available markers for analysis in genome-wide association studies (GWAS) by leveraging linkage disequilibrium from a reference panel. We sought to (i) investigate the performance of imputation from the August 2010 release of the 1000 Genomes Project (1000GP) in an existing GWAS of prostate cancer, (ii) look for novel associations with prostate cancer risk, (iii) fine-map known prostate cancer susceptibility regions using an approximate Bayesian framework and stepwise regression, and (iv) compare power and efficiency of imputation and de novo sequencing.
METHODS
We used 2,782 aggressive prostate cancer cases and 4,458 controls from the NCI Breast and Prostate Cancer Cohort Consortium aggressive prostate cancer GWAS to infer 5.8 million well-imputed autosomal single nucleotide polymorphisms.
RESULTS
Imputation quality, as measured by correlation between imputed and true allele counts, was higher among common variants than rare variants. We found no novel prostate cancer associations among a subset of 1.2 million well-imputed low-frequency variants. At a genome-wide sequencing cost of $2,500, imputation from SNP arrays is a more powerful strategy than sequencing for detecting disease associations of SNPs with minor allele frequencies above 1%.
CONCLUSIONS
1000GP imputation provided dense coverage of previously-identified prostate cancer susceptibility regions, highlighting its potential as an inexpensive first-pass approach to fine-mapping in regions such as 5p15 and 8q24. Our study shows 1000GP imputation can accurately identify low-frequency variants and stresses the importance of large sample size when studying these variants.
doi:10.1002/pros.22608
PMCID: PMC3962143  PMID: 23255287
rare variants; association; fine mapping
5.  Performance of Genotype Imputation for Low Frequency and Rare Variants from the 1000 Genomes 
PLoS ONE  2015;10(1):e0116487.
Genotype imputation is now routinely applied in genome-wide association studies (GWAS) and meta-analyses. However, most of the imputations have been run using HapMap samples as reference, imputation of low frequency and rare variants (minor allele frequency (MAF) < 5%) are not systemically assessed. With the emergence of next-generation sequencing, large reference panels (such as the 1000 Genomes panel) are available to facilitate imputation of these variants. Therefore, in order to estimate the performance of low frequency and rare variants imputation, we imputed 153 individuals, each of whom had 3 different genotype array data including 317k, 610k and 1 million SNPs, to three different reference panels: the 1000 Genomes pilot March 2010 release (1KGpilot), the 1000 Genomes interim August 2010 release (1KGinterim), and the 1000 Genomes phase1 November 2010 and May 2011 release (1KGphase1) by using IMPUTE version 2. The differences between these three releases of the 1000 Genomes data are the sample size, ancestry diversity, number of variants and their frequency spectrum. We found that both reference panel and GWAS chip density affect the imputation of low frequency and rare variants. 1KGphase1 outperformed the other 2 panels, at higher concordance rate, higher proportion of well-imputed variants (info>0.4) and higher mean info score in each MAF bin. Similarly, 1M chip array outperformed 610K and 317K. However for very rare variants (MAF≤0.3%), only 0–1% of the variants were well imputed. We conclude that the imputation of low frequency and rare variants improves with larger reference panels and higher density of genome-wide genotyping arrays. Yet, despite a large reference panel size and dense genotyping density, very rare variants remain difficult to impute.
doi:10.1371/journal.pone.0116487
PMCID: PMC4306552  PMID: 25621886
6.  Comprehensive evaluation of imputation performance in African Americans 
Journal of human genetics  2012;57(7):411-421.
Imputation of genome-wide single-nucleotide polymorphism (SNP) arrays to a larger known reference panel of SNPs has become a standard and an essential part of genome-wide association studies. However, little is known about the behavior of imputation in African Americans with respect to the different imputation algorithms, the reference population(s) and the reference SNP panels used. Genome-wide SNP data (Affymetrix 6.0) from 3207 African American samples in the Atherosclerosis Risk in Communities Study (ARIC) was used to systematically evaluate imputation quality and yield. Imputation was performed with the imputation algorithms MACH, IMPUTE and BEAGLE using several combinations of three reference panels of HapMap III (ASW, YRI and CEU) and 1000 Genomes Project (pilot 1 YRI June 2010 release, EUR and AFR August 2010 and June 2011 releases) panels with SNP data on chromosomes 18, 20 and 22. About 10% of the directly genotyped SNPs from each chromosome were masked, and SNPs common between the reference panels were used for evaluating the imputation quality using two statistical metrics—concordance accuracy and Cohen’s kappa (κ) coefficient. The dependencies of these metrics on the minor allele frequencies (MAF) and specific genotype categories (minor allele homozygotes, heterozygotes and major allele homozygotes) were thoroughly investigated to determine the best panel and method for imputation in African Americans. In addition, the power to detect imputed SNPs associated with simulated phenotypes was studied using the mean genotype of each masked SNP in the imputed data. Our results indicate that the genotype concordances after stratification into each genotype category and Cohen’s κ coefficient are considerably better equipped to differentiate imputation performance compared with the traditionally used total concordance statistic, and both statistics improved with increasing MAF irrespective of the imputation method. We also find that both MACH and IMPUTE performed equally well and consistently better than BEAGLE irrespective of the reference panel used. Of the various combinations of reference panels, for both HapMap III and 1000 Genomes Project reference panels, the multi-ethnic panels had better imputation accuracy than those containing only single ethnic samples. The most recent 1000 Genomes Project release June 2011 had substantially higher number of imputed SNPs than HapMap III and performed as well or better than the best combined HapMap III reference panels and previous releases of the 1000 Genomes Project.
doi:10.1038/jhg.2012.43
PMCID: PMC3477509  PMID: 22648186
concordance; GWAS; Hapmap; imputation; imputation accuracy; kappa; 1000 genomes
7.  Impact of pre-imputation SNP-filtering on genotype imputation results 
BMC Genetics  2014;15:88.
Background
Imputation of partially missing or unobserved genotypes is an indispensable tool for SNP data analyses. However, research and understanding of the impact of initial SNP-data quality control on imputation results is still limited. In this paper, we aim to evaluate the effect of different strategies of pre-imputation quality filtering on the performance of the widely used imputation algorithms MaCH and IMPUTE.
Results
We considered three scenarios: imputation of partially missing genotypes with usage of an external reference panel, without usage of an external reference panel, as well as imputation of completely un-typed SNPs using an external reference panel. We first created various datasets applying different SNP quality filters and masking certain percentages of randomly selected high-quality SNPs. We imputed these SNPs and compared the results between the different filtering scenarios by using established and newly proposed measures of imputation quality. While the established measures assess certainty of imputation results, our newly proposed measures focus on the agreement with true genotypes. These measures showed that pre-imputation SNP-filtering might be detrimental regarding imputation quality. Moreover, the strongest drivers of imputation quality were in general the burden of missingness and the number of SNPs used for imputation. We also found that using a reference panel always improves imputation quality of partially missing genotypes. MaCH performed slightly better than IMPUTE2 in most of our scenarios. Again, these results were more pronounced when using our newly defined measures of imputation quality.
Conclusion
Even a moderate filtering has a detrimental effect on the imputation quality. Therefore little or no SNP filtering prior to imputation appears to be the best strategy for imputing small to moderately sized datasets. Our results also showed that for these datasets, MaCH performs slightly better than IMPUTE2 in most scenarios at the cost of increased computing time.
doi:10.1186/s12863-014-0088-5
PMCID: PMC4236550  PMID: 25112433
Genotype imputation; Pre-imputation filtering; SNP quality control; Genome-wide association analysis; SNP data
8.  Imputation of sequence level genotypes in the Franches-Montagnes horse breed 
Background
A cost-effective strategy to increase the density of available markers within a population is to sequence a small proportion of the population and impute whole-genome sequence data for the remaining population. Increased densities of typed markers are advantageous for genome-wide association studies (GWAS) and genomic predictions.
Methods
We obtained genotypes for 54 602 SNPs (single nucleotide polymorphisms) in 1077 Franches-Montagnes (FM) horses and Illumina paired-end whole-genome sequencing data for 30 FM horses and 14 Warmblood horses. After variant calling, the sequence-derived SNP genotypes (~13 million SNPs) were used for genotype imputation with the software programs Beagle, Impute2 and FImpute.
Results
The mean imputation accuracy of FM horses using Impute2 was 92.0%. Imputation accuracy using Beagle and FImpute was 74.3% and 77.2%, respectively. In addition, for Impute2 we determined the imputation accuracy of all individual horses in the validation population, which ranged from 85.7% to 99.8%. The subsequent inclusion of Warmblood sequence data further increased the correlation between true and imputed genotypes for most horses, especially for horses with a high level of admixture. The final imputation accuracy of the horses ranged from 91.2% to 99.5%.
Conclusions
Using Impute2, the imputation accuracy was higher than 91% for all horses in the validation population, which indicates that direct imputation of 50k SNP-chip data to sequence level genotypes is feasible in the FM population. The individual imputation accuracy depended mainly on the applied software and the level of admixture.
Electronic supplementary material
The online version of this article (doi:10.1186/s12711-014-0063-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s12711-014-0063-7
PMCID: PMC4180851
9.  IMPUTATION-BASED ASSESSMENT OF NEXT GENERATION RARE EXOME VARIANT ARRAYS 
A striking finding from recent large-scale sequencing efforts is that the vast majority of variants in the human genome are rare and found within single populations or lineages. These observations hold important implications for the design of the next round of disease variant discovery efforts—if genetic variants that influence disease risk follow the same trend, then we expect to see population-specific disease associations that require large samples sizes for detection. To address this challenge, and due to the still prohibitive cost of sequencing large cohorts, researchers have developed a new generation of low-cost genotyping arrays that assay rare variation previously identified from large exome sequencing studies. Genotyping approaches rely not only on directly observing variants, but also on phasing and imputation methods that use publicly available reference panels to infer unobserved variants in a study cohort. Rare variant exome arrays are intentionally enriched for variants likely to be disease causing, and here we assay the ability of the first commercially available rare exome variant array (the Illumina Infinium HumanExome BeadChip) to also tag other potentially damaging variants not molecularly assayed. Using full sequence data from chromosome 22 from the phase I 1000 Genomes Project, we evaluate three methods for imputation (BEAGLE, MaCH-Admix, and SHAPEIT2/IMPUTE2) with the rare exome variant array under varied study panel sizes, reference panel sizes, and LD structures via population differences. We find that imputation is more accurate across both the genome and exome for common variant arrays than the next generation array for all allele frequencies, including rare alleles. We also find that imputation is the least accurate in African populations, and accuracy is substantially improved for rare variants when the same population is included in the reference panel. Depending on the goals of GWAS researchers, our results will aid budget decisions by helping determine whether money is best spent sequencing the genomes of smaller sample sizes, genotyping larger sample sizes with rare and/or common variant arrays and imputing SNPs, or some combination of the two.
PMCID: PMC3900244  PMID: 24297551
10.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies 
PLoS Genetics  2009;5(6):e1000529.
Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%–20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions.
Author Summary
Large association studies have proven to be effective tools for identifying parts of the genome that influence disease risk and other heritable traits. So-called “genotype imputation” methods form a cornerstone of modern association studies: by extrapolating genetic correlations from a densely characterized reference panel to a sparsely typed study sample, such methods can estimate unobserved genotypes with high accuracy, thereby increasing the chances of finding true associations. To date, most genome-wide imputation analyses have used reference data from the International HapMap Project. While this strategy has been successful, association studies in the near future will also have access to additional reference information, such as control sets genotyped on multiple SNP chips and dense genome-wide haplotypes from the 1,000 Genomes Project. These new reference panels should improve the quality and scope of imputation, but they also present new methodological challenges. We describe a genotype imputation method, IMPUTE version 2, that is designed to address these challenges in next-generation association studies. We show that our method can use a reference panel containing thousands of chromosomes to attain higher accuracy than is possible with the HapMap alone, and that our approach is more accurate than competing methods on both current and next-generation datasets. We also highlight the modeling issues that arise in imputation datasets.
doi:10.1371/journal.pgen.1000529
PMCID: PMC2689936  PMID: 19543373
11.  Performance of Genotype Imputation for Rare Variants Identified in Exons and Flanking Regions of Genes 
PLoS ONE  2011;6(9):e24945.
Genotype imputation has the potential to assess human genetic variation at a lower cost than assaying the variants using laboratory techniques. The performance of imputation for rare variants has not been comprehensively studied. We utilized 8865 human samples with high depth resequencing data for the exons and flanking regions of 202 genes and Genome-Wide Association Study (GWAS) data to characterize the performance of genotype imputation for rare variants. We evaluated reference sets ranging from 100 to 3713 subjects for imputing into samples typed for the Affymetrix (500K and 6.0) and Illumina 550K GWAS panels. The proportion of variants that could be well imputed (true r2>0.7) with a reference panel of 3713 individuals was: 31% (Illumina 550K) or 25% (Affymetrix 500K) with MAF (Minor Allele Frequency) less than or equal 0.001, 48% or 35% with 0.0010.05. The performance for common SNPs (MAF>0.05) within exons and flanking regions is comparable to imputation of more uniformly distributed SNPs. The performance for rare SNPs (0.01
doi:10.1371/journal.pone.0024945
PMCID: PMC3176314  PMID: 21949800
Human Heredity  2011;73(1):18-25.
Genotype imputations based on 1000 Genomes (1KG) Project data have the advantage of imputing many more SNPs than imputations based on HapMap data. It also provides an opportunity to discover associations with relatively rare variants. Recent investigations are increasingly using 1KG data for genotype imputations, but only limited evaluations of the performance of this approach are available. In this paper, we empirically evaluated imputation performance using 1KG data by comparing imputation results to those using the HapMap Phase II data that have been widely used. We used three reference panels: the CEU panel consisting of 120 haplotypes from HapMap II and 1KG data (June 2010 release) and the EUR panel consisting of 566 haplotypes also from 1KG data (August 2010 release). We used Illumina 324,607 autosomal SNPs genotyped in 501 individuals of European ancestry. Our most important finding was that both 1KG reference panels provided much higher imputation yield than the HapMap II panel. There were more than twice as many successfully imputed SNPs as there were using the HapMap II panel (6.7 million vs. 2.5 million). Our second most important finding was that accuracy using both 1KG panels was high and almost identical to accuracy using the HapMap II panel. Furthermore, after removing SNPs with MACH Rsq <0.3, accuracy for both rare and low frequency SNPs was very high and almost identical to accuracy for common SNPs. We found that imputation using the 1KG-EUR panel had advantages in successfully imputing rare, low frequency and common variants. Our findings suggest that 1KG-based imputation can increase the opportunity to discover significant associations for SNPs across the allele frequency spectrum. Because the 1KG Project is still underway, we expect that later versions will provide even better imputation performance.
doi:10.1159/000334084
PMCID: PMC3322630  PMID: 22212296
1000 Genomes Project; HapMap Project; Genome-wide association study; Imputation performance
Human genetics  2013;132(5):509-522.
A great promise of publicly sharing genome-wide association data is the potential to create composite sets of controls. However, studies often use different genotyping arrays, and imputation to a common set of SNPs has shown substantial bias: a problem which has no broadly applicable solution. Based on the idea that using differing genotyped SNP sets as inputs creates differential imputation errors and thus bias in the composite set of controls, we examined the degree to which each of the following occurs: (1) imputation based on the union of genotyped SNPs (i.e., SNPs available on one or more arrays) results in bias, as evidenced by spurious associations (type 1 error) between imputed genotypes and arbitrarily assigned case/control status; (2) imputation based on the intersection of geno-typed SNPs (i.e., SNPs available on all arrays) does not evidence such bias; and (3) imputation quality varies by the size of the intersection of genotyped SNP sets. Imputations were conducted in European Americans and African Americans with reference to HapMap phase II and III data. Imputation based on the union of genotyped SNPs across the Illumina 1M and 550v3 arrays showed spurious associations for 0.2 % of SNPs: ~2,000 false positives per million SNPs imputed. Biases remained problematic for very similar arrays (550v1 vs. 550v3) and were substantial for dissimilar arrays (Illumina 1M vs. Affymetrix 6.0). In all instances, imputing based on the intersection of genotyped SNPs (as few as 30 % of the total SNPs genotyped) eliminated such bias while still achieving good imputation quality.
doi:10.1007/s00439-013-1266-7
PMCID: PMC3628082  PMID: 23334152
PLoS Genetics  2008;4(12):e1000279.
Imputation-based association methods provide a powerful framework for testing untyped variants for association with phenotypes and for combining results from multiple studies that use different genotyping platforms. Here, we consider several issues that arise when applying these methods in practice, including: (i) factors affecting imputation accuracy, including choice of reference panel; (ii) the effects of imputation accuracy on power to detect associations; (iii) the relative merits of Bayesian and frequentist approaches to testing imputed genotypes for association with phenotype; and (iv) how to quickly and accurately compute Bayes factors for testing imputed SNPs. We find that imputation-based methods can be robust to imputation accuracy and can improve power to detect associations, even when average imputation accuracy is poor. We explain how ranking SNPs for association by a standard likelihood ratio test gives the same results as a Bayesian procedure that uses an unnatural prior assumption—specifically, that difficult-to-impute SNPs tend to have larger effects—and assess the power gained from using a Bayesian approach that does not make this assumption. Within the Bayesian framework, we find that good approximations to a full analysis can be achieved by simply replacing unknown genotypes with a point estimate—their posterior mean. This approximation considerably reduces computational expense compared with published sampling-based approaches, and the methods we present are practical on a genome-wide scale with very modest computational resources (e.g., a single desktop computer). The approximation also facilitates combining information across studies, using only summary data for each SNP. Methods discussed here are implemented in the software package BIMBAM, which is available from http://stephenslab.uchicago.edu/software.html.
Author Summary
Genotype imputation is becoming a popular approach to comparing and combining results of multiple association studies that used different SNP genotyping platforms. The basic idea is to exploit the fact that, due to correlation among untyped and typed SNPs, genotypes of untyped SNPs in each study can be inferred (“imputed”) from the genotypes at typed SNPs, often with high accuracy. In this paper, we consider several issues that arise when applying these methods in practice, including factors affecting imputation accuracy, the importance of taking account of imputation uncertainty when testing for association between imputed SNPs and phenotype, how imputation accuracy affects power, and how to combine results across studies when only single-SNP summary data can be shared among research groups.
doi:10.1371/journal.pgen.1000279
PMCID: PMC2585794  PMID: 19057666
Genetic epidemiology  2012;36(2):107-117.
Genetic imputation has become standard practice in modern genetic studies. However, several important issues have not been adequately addressed including the utility of study-specific reference, performance in admixed populations, and quality for less common (minor allele frequency [MAF] 0.005–0.05) and rare (MAF < 0.005) variants. These issues only recently became addressable with genome-wide association studies (GWAS) follow-up studies using dense genotyping or sequencing in large samples of non-European individuals. In this work, we constructed a study-specific reference panel of 3,924 haplotypes using African Americans in the Women’s Health Initiative (WHI) genotyped on both the Metabochip and the Affymetrix 6.0 GWAS platform. We used this reference panel to impute into 6,459 WHI SNP Health Association Resource (SHARe) study subjects with only GWAS genotypes. Our analysis confirmed the imputation quality metric Rsq (estimated r2, specific to each SNP) as an effective post-imputation filter. We recommend different Rsq thresholds for different MAF categories such that the average (across SNPs) Rsq is above the desired dosage r2 (squared Pearson correlation between imputed and experimental genotypes).With a desired dosage r2 of 80%, 99.9% (97.5%, 83.6%, 52.0%, 20.5%) of SNPs with MAF > 0.05 (0.03–0.05, 0.01–0.03, 0.005–0.01, and 0.001–0.005) passed the post-imputation filter. The average dosage r2 for these SNPs is 94.7%, 92.1%, 89.0%, 83.1%, and 79.7%, respectively. These results suggest that for African Americans imputation of Metabochip SNPs from GWAS data, including low frequency SNPs with MAF 0.005–0.05, is feasible and worthwhile for power increase in downstream association analysis provided a sizable reference panel is available.
doi:10.1002/gepi.21603
PMCID: PMC3410659  PMID: 22851474
genotype imputation; Metabochip; internal reference; African Americans; rare variants
Genetic epidemiology  2012;36(5):508-516.
Genotype imputation provides imputation of untyped SNPs that are present on a reference panel such as those from the HapMap Project. It is popular for increasing statistical power and comparing results across studies using different platforms. Imputation for African American populations is challenging because their LD blocks are shorter and also because no ideal reference panel is available due to admixture. In this paper, we evaluated three imputation strategies for African Americans. The intersection strategy used a combined panel consisting of SNPs polymorphic in both CEU and YRI. The union strategy used a panel consisting of SNPs polymorphic in either CEU or YRI. The merge strategy merged results from two separate imputations, one using CEU and the other using YRI. Because recent investigators are increasingly using the data from the 1000 Genomes (1KG) Project for genotype imputation, we evaluated both 1KG-based imputations and HapMap-based imputations. We used 23,707 SNPs from chromosomes 21 and 22 on Affymetrix SNP Array 6.0 genotyped for 1,075 HyperGEN African Americans. We found that 1KG-based imputations provided a substantially larger number of variants than HapMap-based imputations, about three times as many common variants and eight times as many rare and low frequency variants. This higher yield is expected because the 1KG panel includes more SNPs. Accuracy rates using 1KG data were slightly lower than those using HapMap data before filtering, but slightly higher after filtering. The union strategy provided the highest imputation yield with next highest accuracy. The intersection strategy provided the lowest imputation yield but the highest accuracy. The merge strategy provided the lowest imputation accuracy. We observed that SNPs polymorphic only in CEU had much lower accuracy, reducing the accuracy of the union strategy. Our findings suggest that 1KG-based imputations can facilitate discovery of significant associations for SNPs across the whole MAF spectrum. Because the 1KG Project is still underway, we expect that later versions will provide better imputation performance.
doi:10.1002/gepi.21647
PMCID: PMC3703942  PMID: 22644746
BMC Genetics  2011;12:10.
Background
Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers.
Results
In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10 -5 for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers.
Conclusions
Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.
doi:10.1186/1471-2156-12-10
PMCID: PMC3224203  PMID: 21251252
Imputation allows the inference of unobserved genotypes in low-density data sets, and is often used to test for disease association at variants that are poorly captured by standard genotyping chips (such as low-frequency variants). Although much effort has gone into developing the best imputation algorithms, less is known about the effects of reference set choice on imputation accuracy. We assess the improvements afforded by increases in reference size and diversity, specifically comparing the HapMap2 data set, which has been used to date for imputation, and the new HapMap3 data set, which contains more samples from a more diverse range of populations. We find that, for imputation into Western European samples, the HapMap3 reference provides more accurate imputation with better-calibrated quality scores than HapMap2, and that increasing the number of HapMap3 populations included in the reference set grant further improvements. Improvements are most pronounced for low-frequency variants (frequency <5%), with the largest and most diverse reference sets bringing the accuracy of imputation of low-frequency variants close to that of common ones. For low-frequency variants, reference set diversity can improve the accuracy of imputation, independent of reference sample size. HapMap3 reference sets provide significant increases in imputation accuracy relative to HapMap2, and are of particular use if highly accurate imputation of low-frequency variants is required. Our results suggest that, although the sample sizes from the 1000 Genomes Pilot Project will not allow reliable imputation of low-frequency variants, the larger sample sizes of the main project will allow.
doi:10.1038/ejhg.2011.10
PMCID: PMC3110048  PMID: 21364697
imputation; reference sets; rare variants
BMC Medical Genomics  2012;5:12.
Background
We explored the imputation performance of the program IMPUTE in an admixed sample from Mexico City. The following issues were evaluated: (a) the impact of different reference panels (HapMap vs. 1000 Genomes) on imputation; (b) potential differences in imputation performance between single-step vs. two-step (phasing and imputation) approaches; (c) the effect of different INFO score thresholds on imputation performance and (d) imputation performance in common vs. rare markers.
Methods
The sample from Mexico City comprised 1,310 individuals genotyped with the Affymetrix 5.0 array. We randomly masked 5% of the markers directly genotyped on chromosome 12 (n = 1,046) and compared the imputed genotypes with the microarray genotype calls. Imputation was carried out with the program IMPUTE. The concordance rates between the imputed and observed genotypes were used as a measure of imputation accuracy and the proportion of non-missing genotypes as a measure of imputation efficacy.
Results
The single-step imputation approach produced slightly higher concordance rates than the two-step strategy (99.1% vs. 98.4% when using the HapMap phase II combined panel), but at the expense of a lower proportion of non-missing genotypes (85.5% vs. 90.1%). The 1,000 Genomes reference sample produced similar concordance rates to the HapMap phase II panel (98.4% for both datasets, using the two-step strategy). However, the 1000 Genomes reference sample increased substantially the proportion of non-missing genotypes (94.7% vs. 90.1%). Rare variants (<1%) had lower imputation accuracy and efficacy than common markers.
Conclusions
The program IMPUTE had an excellent imputation performance for common alleles in an admixed sample from Mexico City, which has primarily Native American (62%) and European (33%) contributions. Genotype concordances were higher than 98.4% using all the imputation strategies, in spite of the fact that no Native American samples are present in the HapMap and 1000 Genomes reference panels. The best balance of imputation accuracy and efficiency was obtained with the 1,000 Genomes panel. Rare variants were not captured effectively by any of the available panels, emphasizing the need to be cautious in the interpretation of association results for imputed rare variants.
doi:10.1186/1755-8794-5-12
PMCID: PMC3436779  PMID: 22549150
PLoS ONE  2012;7(12):e51589.
Imputation has been widely used in genome-wide association studies (GWAS) to infer genotypes of un-genotyped variants based on the linkage disequilibrium in external reference panels such as the HapMap and 1000 Genomes. However, imputation has only rarely been performed based on family relationships to infer genotypes of un-genotyped individuals. Using 8998 Framingham Heart Study (FHS) participants genotyped with Affymetrix 550K SNPs, we imputed genotypes of same set of SNPs for additional 3121 participants, most of whom were never genotyped due to lack of DNA sample. Prior to imputation, 122 pedigrees were too large to be handled by the imputation software Merlin. Therefore, we developed a novel pedigree splitting algorithm that can maximize the number of genotyped relatives for imputing each un-genotyped individual, while keeping new sub-pedigrees under a pre-specified size. In GWAS of four phenotypes available in FHS (Alzheimer disease, circulating levels of fibrinogen, high-density lipoprotein cholesterol, and uric acid), we compared results using genotyped individuals only with results using both genotyped and imputed individuals. We studied the impact of applying different imputation quality filtering thresholds on the association results and did not found a universal threshold that always resulted in a more significant p-value for previously identified loci. However most of these loci had a lower p-value when we only included imputed genotypes with with ≥60% SNP- and ≥50% person-specific imputation certainty. In summary, we developed a novel algorithm for splitting large pedigrees for imputation and found a plausible imputation quality filtering threshold based on FHS. Further examination may be required to generalize this threshold to other studies.
doi:10.1371/journal.pone.0051589
PMCID: PMC3524237  PMID: 23284720
Background
The use of whole-genome sequence data can lead to higher accuracy in genome-wide association studies and genomic predictions. However, to benefit from whole-genome sequence data, a large dataset of sequenced individuals is needed. Imputation from SNP panels, such as the Illumina BovineSNP50 BeadChip and Illumina BovineHD BeadChip, to whole-genome sequence data is an attractive and less expensive approach to obtain whole-genome sequence genotypes for a large number of individuals than sequencing all individuals. Our objective was to investigate accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle.
Methods
Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Holstein Friesian bulls were used. Beagle software was used for imputation from the BovineSNP50 (3132 SNPs) and BovineHD (40 492 SNPs) beadchips. Accuracy was calculated as the correlation between observed and imputed genotypes and assessed by five-fold cross-validation. Three scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the individuals as reference individuals were investigated.
Results
Mean accuracies of imputation per SNP from the BovineHD panel to sequence data and from the BovineSNP50 panel to sequence data for scenarios S40 and S80 ranged from 0.77 to 0.83 and from 0.37 to 0.46, respectively. Stepwise imputation from the BovineSNP50 to BovineHD panel and then to sequence data for scenario S40 improved accuracy per SNP to 0.65 but it varied considerably between SNPs.
Conclusions
Accuracy of imputation to whole-genome sequence data was generally high for imputation from the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Stepwise imputation from the BovineSNP50 to the BovineHD beadchip and then to sequence data substantially improved accuracy of imputation. SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputation varied more. Linkage disequilibrium between an imputed SNP and the SNP on the lower density panel, minor allele frequency of the imputed SNP and size of the reference group affected imputation reliability.
doi:10.1186/1297-9686-46-41
PMCID: PMC4226983  PMID: 25022768
Background
Genotype imputation from low-density (LD) to high-density single nucleotide polymorphism (SNP) chips is an important step before applying genomic selection, since denser chips tend to provide more reliable genomic predictions. Imputation methods rely partially on linkage disequilibrium between markers to infer unobserved genotypes. Bos indicus cattle (e.g. Nelore breed) are characterized, in general, by lower levels of linkage disequilibrium between genetic markers at short distances, compared to taurine breeds. Thus, it is important to evaluate the accuracy of imputation to better define which imputation method and chip are most appropriate for genomic applications in indicine breeds.
Methods
Accuracy of genotype imputation in Nelore cattle was evaluated using different LD chips, imputation software and sets of animals. Twelve commercial and customized LD chips with densities ranging from 7 K to 75 K were tested. Customized LD chips were virtually designed taking into account minor allele frequency, linkage disequilibrium and distance between markers. Software programs FImpute and BEAGLE were applied to impute genotypes. From 995 bulls and 1247 cows that were genotyped with the Illumina® BovineHD chip (HD), 793 sires composed the reference set, and the remaining 202 younger sires and all the cows composed two separate validation sets for which genotypes were masked except for the SNPs of the LD chip that were to be tested.
Results
Imputation accuracy increased with the SNP density of the LD chip. However, the gain in accuracy with LD chips with more than 15 K SNPs was relatively small because accuracy was already high at this density. Commercial and customized LD chips with equivalent densities presented similar results. FImpute outperformed BEAGLE for all LD chips and validation sets. Regardless of the imputation software used, accuracy tended to increase as the relatedness between imputed and reference animals increased, especially for the 7 K chip.
Conclusions
If the Illumina® BovineHD is considered as the target chip for genomic applications in the Nelore breed, cost-effectiveness can be improved by genotyping part of the animals with a chip containing around 15 K useful SNPs and imputing their high-density missing genotypes with FImpute.
Electronic supplementary material
The online version of this article (doi:10.1186/s12711-014-0069-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s12711-014-0069-1
PMCID: PMC4192291
BMC Genomics  2014;15:610.
Background
Genome-wide association studies (GWAS) have successfully identified genes associated with complex human diseases. Although much of the heritability remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect association findings. There is no published tool that predicts and converts among all major allele definitions.
Results
In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even significantly higher when compared to the imputation with singletons in the reference), especially for rare SNPs.
Conclusion
GACT is a new, powerful, and user-friendly tool with both command-line and interactive online versions that can accurately predict, and convert between any of the common allele definitions and between genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep-sequencing, particularly for data from the dbGaP and other public databases.
GACT software
http://www.uvm.edu/genomics/software/gact
doi:10.1186/1471-2164-15-610
PMCID: PMC4223508  PMID: 25038819
Allele definition (nomenclature); Genome build; Genome-wide association study (GWAS); Imputation; Meta-analysis
Background: The activity of thiopurine methyltransferase (TPMT) is subject to genetic variation. Loss-of-function alleles are associated with various degrees of myelosuppression after treatment with thiopurine drugs, thus genotype-based dosing recommendations currently exist. The aim of this study was to evaluate the potential utility of leveraging genomic data from large biorepositories in the identification of individuals with TPMT defective alleles.
Material and methods: TPMT variants were imputed using the 1000 Genomes Project reference panel in 87,979 samples from the biobank at The Children's Hospital of Philadelphia. Population ancestry was determined by principal component analysis using HapMap3 samples as reference. Frequencies of the TPMT imputed alleles, genotypes and the associated phenotype were determined across the different populations. A sample of 630 subjects with genotype data from Sanger sequencing (N = 59) and direct genotyping (N = 583) (12 samples overlapping in the two groups) was used to check the concordance between the imputed and observed genotypes, as well as the sensitivity, specificity and positive and negative predictive values of the imputation.
Results: Two SNPs (rs1800460 and rs1142345) that represent three TPMT alleles (*3A, *3B, and *3C) were imputed with adequate quality. Frequency for the associated enzyme activity varied across populations and 89.36–94.58% were predicted to have normal TPMT activity, 5.3–10.31% intermediate and 0.12–0.34% poor activities. Overall, 98.88% of individuals (623/630) were correctly imputed into carrying no risk alleles (553/553), heterozygous (45/46) and homozygous (25/31). Sensitivity, specificity and predictive values of imputation were over 90% in all cases except for the sensitivity of imputing homozygous subjects that was 80.64%.
Conclusion: Imputation of TPMT alleles from existing genomic data can be used as a first step in the screening of individuals at risk of developing serious adverse events secondary to thiopurine drugs.
doi:10.3389/fgene.2014.00096
PMCID: PMC4026736  PMID: 24860591
TPMT; genotype imputation; DNA biobank; pharmacogenetics; Electronic Medical Records
PLoS ONE  2012;7(11):e50610.
Genotype imputation, used in genome-wide association studies to expand coverage of single nucleotide polymorphisms (SNPs), has performed poorly in African Americans compared to less admixed populations. Overall, imputation has typically relied on HapMap reference haplotype panels from Africans (YRI), European Americans (CEU), and Asians (CHB/JPT). The 1000 Genomes project offers a wider range of reference populations, such as African Americans (ASW), but their imputation performance has had limited evaluation. Using 595 African Americans genotyped on Illumina’s HumanHap550v3 BeadChip, we compared imputation results from four software programs (IMPUTE2, BEAGLE, MaCH, and MaCH-Admix) and three reference panels consisting of different combinations of 1000 Genomes populations (February 2012 release): (1) 3 specifically selected populations (YRI, CEU, and ASW); (2) 8 populations of diverse African (AFR) or European (AFR) descent; and (3) all 14 available populations (ALL). Based on chromosome 22, we calculated three performance metrics: (1) concordance (percentage of masked genotyped SNPs with imputed and true genotype agreement); (2) imputation quality score (IQS; concordance adjusted for chance agreement, which is particularly informative for low minor allele frequency [MAF] SNPs); and (3) average r2hat (estimated correlation between the imputed and true genotypes, for all imputed SNPs). Across the reference panels, IMPUTE2 and MaCH had the highest concordance (91%–93%), but IMPUTE2 had the highest IQS (81%–83%) and average r2hat (0.68 using YRI+ASW+CEU, 0.62 using AFR+EUR, and 0.55 using ALL). Imputation quality for most programs was reduced by the addition of more distantly related reference populations, due entirely to the introduction of low frequency SNPs (MAF≤2%) that are monomorphic in the more closely related panels. While imputation was optimized by using IMPUTE2 with reference to the ALL panel (average r2hat = 0.86 for SNPs with MAF>2%), use of the ALL panel for African American studies requires careful interpretation of the population specificity and imputation quality of low frequency SNPs.
doi:10.1371/journal.pone.0050610
PMCID: PMC3511547  PMID: 23226329

Results 1-25 (999589)