Search tips
Search criteria

Results 1-25 (980217)

Clipboard (0)

Related Articles

1.  Genome-wide expression analysis of genetic networks in Neurospora crassa 
Bioinformation  2007;1(10):390-395.
The products of five structural genes and two regulatory genes of the qa gene cluster of Neurospora crassa control the metabolism of quinic acid (QA) as a carbon source. A detailed genetic network model of this metabolic process has been reported. This investigation is designed to expand the current model of the QA reaction network. The ensemble method of network identification was used to model RNA profiling data on the qa gene cluster. Through microarray and cluster analysis, genome-wide identification of RNA transcripts associated with quinic acid metabolism in N. crassa is described and suggests a connection to other metabolic circuits. More than 100 genes whose products include carbon metabolism, protein degradation and modification, amino acid metabolism and ribosome synthesis appear to be connected to quinic acid metabolism. The core of the qa gene cluster network is validated with respect to RNA profiling data obtained from microarrays.
PMCID: PMC1896053  PMID: 17597928
genetic networks; quinic acid; qa gene cluster; genome; microarray
2.  Genetic regulation of the qa gene cluster of Neurospora crassa: induction of qa messenger ribonucleic acid and dependency on qa-1 function. 
Molecular and Cellular Biology  1981;1(9):829-835.
An in vitro protein-synthesizing system (rabbit reticulocyte) was programmed with total polyadenylated messenger ribonucleic acid from wild type and various mutants in the qa gene cluster of Neurospora crassa. The products of two of the qa genes, quinate dehydrogenase (qa-3+) and dehydroshikimate dehydratase (qa-4+), were identified by specific immunoprecipitation and sodium dodecyl sulfate-slab gel electrophoresis. The results indicated that for both genes induction of a specific enzyme activity by quinic acid depends on the de novo synthesis of a specific polypeptide and on the de novo appearance of specific messenger ribonucleic acid detectable by the in vitro translation assay. Furthermore, the results indicated that the appearance of this messenger ribonucleic acid is under the control of the qa-1 gene. The simplest interpretation of these results appears to be that induction of enzyme activity in the qa system is mediated by events at the transcriptional level.
PMCID: PMC369366  PMID: 9279395
3.  Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. 
Molecular and Cellular Biology  1987;7(3):1256-1266.
The qa-1F regulatory gene of Neurospora crassa encodes an activator protein required for quinic acid induction of transcription in the qa gene cluster. This activator protein was expressed in insect cell culture with a baculovirus expression vector. The activator binds to 13 sites in the gene cluster that are characterized by a conserved 16-base-pair sequence of partial dyad symmetry. One site is located between the divergently transcribed qa-1F and qa-1S regulatory genes, corroborating prior evidence that qa-1F is autoregulated and controls expression of the qa-1S repressor. Multiple upstream sites located at variable positions 5' to the qa structural genes appear to allow for greater transcriptional control by qa-1F. Full-length and truncated activator peptides were synthesized in vitro, and the DNA-binding domain was localized to the first 183 amino acids. A 28-amino acid sequence within this region shows striking homology to N-terminal sequences from other lower-eucaryotic activator proteins. A qa-1F(Ts) mutation is located within this putative DNA-binding domain.
PMCID: PMC365200  PMID: 2951591
4.  Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans 
Nature methods  2012;9(4):10.1038/nmeth.1929.
We establish the first transcription-based binary gene expression system in C. elegans using the recently developed Q system. This system, derived from genes in Neurospora crassa, uses the transcriptional activator QF to induce the expression of target genes. Activation can be efficiently suppressed by the transcriptional repressor QS, and suppression in turn can be relieved by the non-toxic small molecule, quinic acid (QA). We used QF/QS and QA to achieve temporal and spatial control of transgene expression in various tissues in C. elegans. We further developed a Split Q system, in which we separated QF into two parts encoding its DNA-binding and transcription-activation domains. Each domain shows negligible transcriptional activity when expressed alone, but co-expression reconstitutes QF activity, providing additional combinatorial power to control gene expression.
PMCID: PMC3846601  PMID: 22406855
5.  Autogenous regulation of the positive regulatory qa-1F gene in Neurospora crassa. 
Molecular and Cellular Biology  1985;5(12):3593-3599.
In Neurospora crassa, the qa-1F regulatory gene positively controls transcription of all genes in the quinic acid (qa) gene cluster. qa-1F is transcribed at a low, uninduced level but is subject to strong (50-fold), autogenous regulation as well as to control by the negative regulatory gene, qa-1S, and the inducer quinic acid. Cloned qa-1F DNA sequences hybridize to two related mRNAs of 2.9 and 3.0 kilobases. When wild-type (qa-1F+) cultures are transferred to inducing conditions, qa-1F mRNA increases for 4 h, remains somewhat level, and decreases after 8 to 10 h. That this control is autogenous, i.e., that the qa-1F gene controls the synthesis of its own mRNA, is indicated by the presence of approximately the same low level of qa-1F mRNA in poly(A)+ RNA from noninducible qa-1F- mutant cultures under inducing conditions as that observed in uninduced wild-type cultures. The qa-1S gene also regulates the transcription of qa-1F, since a qa-1S- mutant, whether in noninducing or inducing conditions, contains a level of qa-1F mRNA that corresponds to the low level observed in uninduced wild-type cultures. These results corroborate the hypothesis (M. E. Case and N. H. Giles, Proc. Natl. Acad. Sci. USA 72:553-557, 1975; V. B. Patel, M. Schweizer, C. C. Dykstra, S. R. Kushner, and N. H. Giles, Proc. Natl. Acad. Sci. USA 78:5783-5787, 1981; L. Huiet, Proc. Natl. Acad. Sci. USA 81:1174-1178, 1984) that the qa-1F gene encodes an activator protein and acts positively in controlling transcription of itself and the other qa genes.
PMCID: PMC369190  PMID: 2943985
6.  Transcriptional Profiling of Cross Pathway Control in Neurospora crassa and Comparative Analysis of the Gcn4 and CPC1 Regulons▿ †  
Eukaryotic Cell  2007;6(6):1018-1029.
Identifying and characterizing transcriptional regulatory networks is important for guiding experimental tests on gene function. The characterization of regulatory networks allows comparisons among both closely and distantly related species, providing insight into network evolution, which is predicted to correlate with the adaptation of different species to particular environmental niches. One of the most intensely studied regulatory factors in the yeast Saccharomyces cerevisiae is the bZIP transcription factor Gcn4p. Gcn4p is essential for a global transcriptional response when S. cerevisiae experiences amino acid starvation. In the filamentous ascomycete Neurospora crassa, the ortholog of GCN4 is called the cross pathway control-1 (cpc-1) gene; it is required for the ability of N. crassa to induce a number of amino acid biosynthetic genes in response to amino acid starvation. Here, we deciphered the CPC1 regulon by profiling transcription in wild-type and cpc-1 mutant strains with full-genome N. crassa 70-mer oligonucleotide microarrays. We observed that at least 443 genes were direct or indirect CPC1 targets; these included 67 amino acid biosynthetic genes, 16 tRNA synthetase genes, and 13 vitamin-related genes. Comparison among the N. crassa CPC1 transcriptional profiling data set and the Gcn4/CaGcn4 data sets from S. cerevisiae and Candida albicans revealed a conserved regulon of 32 genes, 10 of which are predicted to be directly regulated by Gcn4p/CPC1. The 32-gene conserved regulon comprises mostly amino acid biosynthetic genes. The comparison of regulatory networks in species with clear orthology among genes sheds light on how gene interaction networks evolve.
PMCID: PMC1951524  PMID: 17449655
7.  Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa 
BMC Genomics  2012;13:127.
Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina) have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa.
We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC) formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose.
Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa.
PMCID: PMC3364853  PMID: 22462823
8.  Characterization of the Temperature-Sensitive Mutations un-7 and png-1 in Neurospora crassa 
PLoS ONE  2010;5(5):e10703.
The model filamentous fungus Neurospora crassa has been studied for over fifty years and many temperature-sensitive mutants have been generated. While most of these have been mapped genetically, many remain anonymous. The mutation in the N. crassa temperature-sensitive lethal mutant un-7 was identified by a complementation based approach as being in the open reading frame designated NCU00651 on linkage group I. Other mutations in this gene have been identified that lead to a temperature-sensitive morphological phenotype called png-1. The mutations underlying un-7 result in a serine to phenylalanine change at position 273 and an isoleucine to valine change at position 390, while the mutation in png-1 was found to result in a serine to leucine change at position 279 although there were other conservative changes in this allele. The overall morphology of the strain carrying the un-7 mutation is compared to strains carrying the png-1 mutation and these mutations are evaluated in the context of other temperature-sensitive mutants in Neurospora.
PMCID: PMC2872674  PMID: 20502699
9.  Systems Biology of the Clock in Neurospora crassa 
PLoS ONE  2008;3(8):e3105.
A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes.
PMCID: PMC2518617  PMID: 18769678
10.  Evolution and Diversity of a Fungal Self/Nonself Recognition Locus 
PLoS ONE  2010;5(11):e14055.
Self/nonself discrimination is an essential feature for pathogen recognition and graft rejection and is a ubiquitous phenomenon in many organisms. Filamentous fungi, such as Neurospora crassa, provide a model for analyses of population genetics/evolution of self/nonself recognition loci due to their haploid nature, small genomes and excellent genetic/genomic resources. In N. crassa, nonself discrimination during vegetative growth is determined by 11 heterokaryon incompatibility (het) loci. Cell fusion between strains that differ in allelic specificity at any of these het loci triggers a rapid programmed cell death response.
Methodology/Principal Findings
In this study, we evaluated the evolution, population genetics and selective mechanisms operating at a nonself recognition complex consisting of two closely linked loci, het-c (NCU03493) and pin-c (NCU03494). The genomic position of pin-c next to het-c is unique to Neurospora/Sordaria species, and originated by gene duplication after divergence from other species within the Sordariaceae. The het-c pin-c alleles in N. crassa are in severe linkage disequilibrium and consist of three haplotypes, het-c1/pin-c1, het-c2/pin-c2 and het-c3/pin-c3, which are equally frequent in population samples and exhibit trans-species polymorphisms. The absence of recombinant haplotypes is correlated with divergence of the het-c/pin-c intergenic sequence. Tests for positive and balancing selection at het-c and pin-c support the conclusion that both of these loci are under non-neutral balancing selection; other regions of both genes appear to be under positive selection. Our data show that the het-c2/pin-c2 haplotype emerged by a recombination event between the het-c1/pin-c1 and het-c3/pin-c3 approximately 3–12 million years ago.
These results support models by which loci that confer nonself discrimination form by the association of polymorphic genes with genes containing HET domains. Distinct allele classes can emerge by recombination and positive selection and are subsequently maintained by balancing selection and divergence of intergenic sequence resulting in recombination blocks between haplotypes.
PMCID: PMC2988816  PMID: 21124910
11.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing and Mosaic Analysis 
Cell  2010;141(3):536-548.
We describe a new repressible binary expression system based on the regulatory genes from the Neurospora qa gene cluster. This ‘Q system’ offers attractive features for transgene expression in Drosophila and mammalian cells: low basal expression in the absence of the transcriptional activator QF, high QF-induced expression, and QF repression by its repressor QS. Additionally, feeding flies quinic acid can relieve QS repression. The Q system offers many applications including: 1) intersectional ‘logic gates’ with the GAL4 system for manipulating transgene expression patterns, 2) GAL4-independent MARCM analysis, 3) coupled MARCM analysis to independently visualize and genetically manipulate siblings from any cell division. We demonstrate the utility of the Q system in determining cell division patterns of a neuronal lineage and gene function in cell growth and proliferation, and in dissecting neurons responsible for olfactory attraction. The Q system can be expanded to other uses in Drosophila, and to any organism conducive to transgenesis.
PMCID: PMC2883883  PMID: 20434990
12.  The genome sequence of the model ascomycete fungus Podospora anserina 
Genome Biology  2008;9(5):R77.
A 10X draft sequence of Podospora anserina genome shows highly dynamic evolution since its divergence from Neurospora crassa.
The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development.
We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown.
The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.
PMCID: PMC2441463  PMID: 18460219
13.  SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights 
BMC Genomics  2009;10:515.
SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom.
Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution.
This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex pattern of methylation guided by box C/D snoRNAs in multicellular fungus than in unicellular yeasts was revealed, indicating the high diversity of post-transcriptional modification guided by snoRNAs in the fungus kingdom.
PMCID: PMC2780460  PMID: 19895704
14.  Neurospora Clock-Controlled Gene 9 (ccg-9) Encodes Trehalose Synthase: Circadian Regulation of Stress Responses and Development 
Eukaryotic Cell  2002;1(1):33-43.
The circadian clock of Neurospora crassa regulates the rhythmic expression of a number of genes encoding diverse functions which, as an ensemble, are adaptive to life in a rhythmic environment of alternating levels of light and dark, warmth and coolness, and dryness and humidity. Previous differential screens have identified a number of such genes based solely on their cycling expression, including clock-controlled gene 9 (ccg-9). Sequence analysis now shows the predicted CCG-9 polypeptide to be homologous to a novel form of trehalose synthase; as such it would catalyze the synthesis of the disaccharide trehalose, which plays an important role in protecting many cells from environmental stresses. Consistent with this, heat, glucose starvation, and osmotic stress induce ccg-9 transcript accumulation. Surprisingly, however, a parallel role in development is suggested by the finding that inactivation of ccg-9 results in altered conidiophore morphology and abolishes the normal circadian rhythm of asexual macroconidial development. Examination of a clock component, FRQ, in the ccg-9-null strain revealed normal cycling, phosphorylation, and light induction, indicating that loss of the conidiation rhythm is not due to changes in either the circadian oscillator or light input into the clock but pointing instead to a defect in circadian output. These data imply an interplay between a role of trehalose in stress protection and an apparent requirement for trehalose in clock regulation of conidiation under constant environmental conditions. This requirement can be bypassed by a daily light signal which drives a light-entrained rhythm in conidiation in the ccg-9-null strain; this bypass suggests that the trehalose requirement is related to clock control of development and not to the developmental process itself. Circadian control of trehalose synthase suggests a link between clock control of stress responses and that of development.
PMCID: PMC118043  PMID: 12455969
15.  Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. 
Molecular and Cellular Biology  1996;16(2):513-521.
The Neurospora crassa eas (ccg-2) gene, which encodes a fungal hydrophobin, is transcriptionally regulated by the circadian clock. In addition, eas (ccg-2) is positively regulated by light and transcripts accumulate during asexual development. To sort out the basis of this complex regulation, deletion analyses of the eas (ccg-2) promoter were carried out to localize the cis-acting elements mediating clock, light, and developmental control. The primary sequence determinants of a positive activating clock element (ACE) were found to reside in a 45-bp region, just upstream from the TATA box. Using a novel unregulated promoter/reporter system developed for this study, we show that a 68-bp sequence encompassing the ACE is sufficient to confer clock regulation on the eas (ccg-2) gene. Electrophoretic mobility shift assays using the ACE reveal factors present in N. crassa protein extracts that recognize and bind specifically to DNA containing this element. Separate regions of the eas (ccg-2) promoter involved in light induction and developmental control are identified and shown not to be required for clock-regulated expression of eas (ccg-2). The distinct nature of the ACE validates its use as a tool for the identification of upstream regulatory factors involved in clock control of gene expression.
PMCID: PMC231029  PMID: 8552078
16.  The Neurospora crassa dfg5 and dcw1 Genes Encode α-1,6-Mannanases That Function in the Incorporation of Glycoproteins into the Cell Wall 
PLoS ONE  2012;7(6):e38872.
The covalent cross-linking of cell wall proteins into the cell wall glucan/chitin matrix is an important step in the biogenesis of the fungal cell wall. We demonstrate that the Neurospora crassa DFG5 (NCU03770) and DCW1 (NCU08127) enzymes function in vivo to cross-link glycoproteins into the cell wall. Mutants lacking DFG5 or DCW1 release slightly elevated levels of cell wall proteins into their growth medium. Mutants lacking both DFG5 and DCW1 have substantially reduced levels of cell wall proteins in their cell walls and release large amounts of known cell wall proteins into the medium. DFG5 and DCW1 are members of the GH76 family of glycosyl hydrolases, which have specificity to recognize and cleave α-1,6-mannans. A model for incorporation of glycoproteins into the cell wall through the α-1,6-mannan core of the N-linked galactomannan is presented. In this model, DFG5 and DCW1 recognize the N-linked galactomannan present on glycoproteins and cross-link it into the cell wall glucan/chitin matrix.
PMCID: PMC3372484  PMID: 22701726
17.  Transcription Factors in Light and Circadian Clock Signaling Networks Revealed by Genomewide Mapping of Direct Targets for Neurospora White Collar Complex ▿† 
Eukaryotic Cell  2010;9(10):1549-1556.
Light signaling pathways and circadian clocks are inextricably linked and have profound effects on behavior in most organisms. Here, we used chromatin immunoprecipitation (ChIP) sequencing to uncover direct targets of the Neurospora crassa circadian regulator White Collar Complex (WCC). The WCC is a blue-light receptor and the key transcription factor of the circadian oscillator. It controls a transcriptional network that regulates ∼20% of all genes, generating daily rhythms and responses to light. We found that in response to light, WCC binds to hundreds of genomic regions, including the promoters of previously identified clock- and light-regulated genes. We show that WCC directly controls the expression of 24 transcription factor genes, including the clock-controlled adv-1 gene, which controls a circadian output pathway required for daily rhythms in development. Our findings provide links between the key circadian activator and effectors in downstream regulatory pathways.
PMCID: PMC2950426  PMID: 20675579
18.  The circadian clock of Neurospora crassa 
FEMS microbiology reviews  2011;36(1):95-110.
Circadian clocks organize our inner physiology with respect to the external world providing life with the ability to anticipate and thereby better prepare for major fluctuations in its environment. Circadian systems are widely represented in nearly all major branches of life except archaebacteria, and within the eukaryotes the filamentous fungus Neurospora crassa has served for nearly half a century as a durable model organism for uncovering the basic circadian physiology and molecular biology. Studies using Neurospora have clarified our fundamental understanding of the clock as nested positive and negative feedback loops regulated through transcriptional and post-transcriptional processes. These feedback loops are centered on a limited number of proteins that form molecular complexes, and their regulation provides a physical explanation for nearly all clock properties. This review will introduce the basics of circadian rhythms, the model filamentous fungus Neurospora crassa, and provide an overview of the molecular components and regulation of the circadian clock.
PMCID: PMC3203324  PMID: 21707668
Circadian rhythms; Negative feedback; Post-translational modification; Protein phosphorylation; Frequency; White collar
19.  Dissecting Colony Development of Neurospora crassa Using mRNA Profiling and Comparative Genomics Approaches▿ † 
Eukaryotic Cell  2008;7(9):1549-1564.
Colony development, which includes hyphal extension, branching, anastomosis, and asexual sporulation, is a fundamental aspect of the life cycle of filamentous fungi; genetic mechanisms underlying these phenomena are poorly understood. We conducted transcriptional profiling during colony development of the model filamentous fungus Neurospora crassa, using 70-mer oligonucleotide microarrays. Relative mRNA expression levels were determined for six sections of defined age excised from a 27-h-old N. crassa colony. Functional category analysis showed that the expression of genes involved in cell membrane biosynthesis, polar growth, and cellular signaling was enriched at the periphery of the colony. The relative expression of genes involved in protein synthesis and energy production was enriched in the middle section of the colony, while sections of the colony undergoing asexual development (conidiogenesis) were enriched in expression of genes involved in protein/peptide degradation and unclassified proteins. A cross-examination of the N. crassa data set with a published data set of Aspergillus niger revealed shared patterns in the spatiotemporal regulation of gene orthologs during colony development. At present, less than 50% of genes in N. crassa have functional annotation, which imposes the chief limitation on data analysis. Using an evolutionary approach, we observed that the expression of phylogenetically conserved groups of genes was enriched in the middle section of an N. crassa colony whereas expression of genes unique to euascomycete species and of N. crassa orphan genes was enriched at the colony periphery and in the older, conidiating sections of a fungal colony.
PMCID: PMC2547062  PMID: 18676954
20.  Discovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates 
mBio  2014;5(2):e01046-13.
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems.
Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.
PMCID: PMC3977361  PMID: 24692637
21.  Computational Discovery of Transcriptional Regulatory Modules in Fungal Ribosome Biogenesis Genes Reveals Novel Sequence and Function Patterns 
PLoS ONE  2013;8(3):e59851.
Genes involved in ribosome biogenesis and assembly (RBA) are responsible for ribosome formation. In Saccharomyces cerevisiae, their transcription is regulated by two dissimilar DNA motifs. We were interested in analyzing conservation and divergence of RBA transcription regulation machinery throughout fungal evolution. We have identified orthologs of S. cerevisiae RBA genes in 39 species across fungal phylogeny and searched upstream regions of these gene sets for DNA sequences significantly similar to S. cerevisiae RBA regulatory motifs. In addition to confirming known motif arrangements comprising two different motifs in a set of S. cerevisiae close relatives or two instances of the same motif (that we refer to as modules), we have also discovered novel modules in a group of fungi closely related to Neurospora crassa. Despite a single nucleotide difference between consensus sequences of RBA motifs, modules associated with S, cerevisiae group and N. crassa group displayed consistently different characteristics with respect to preferred module organization and several other module properties. For a given species, we have found a correlation between the configuration of the RBA module and significant enrichment in a set of specific Gene Ontology biological processes. We have identified several likely new candidates for a role in ribosome biogenesis in S. cerevisiae based on the combined evidence of RBA module presence in the upstream regions, functional annotation information and microarray expression profiles. We believe that this approach will be useful in terms of generating hypotheses about functional roles of genes for which only fragmentary data from a single source are available.
PMCID: PMC3612091  PMID: 23555806
22.  Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction 
Filamentous fungi are the main source of enzymes used to degrade lignocellulose to fermentable sugars for the production of biofuels. While the most commonly used organism for the production of cellulases in an industrial setting is Trichoderma reesei (Hypocrea jecorina), recent work in the model filamentous fungus Neurospora crassa has shown that the variety of molecular, genetic and biochemical techniques developed for this organism can expedite analyses of the complexities involved in the utilization of lignocellulose as a source of carbon. These include elucidating regulatory networks associated with plant cell wall deconstruction, the identification of signaling molecules necessary for induction of the expression of genes encoding lignocellulolytic enzymes and the characterization of new cellulolytic enzymatic activities. In particular, the availability of a full genome deletion strain set for N. crassa has expedited high throughput screening for mutants that display a cellulolytic phenotype. This review summarizes the key findings of several recent studies using N. crassa to further understanding the mechanisms of plant cell wall deconstruction by filamentous fungi.
PMCID: PMC3598899  PMID: 23339486
Cellulase; Lignocellulosic biofuels; Filamentous fungus; Transcriptome; Secretome; Neurospora; Trichoderma
23.  Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta 
Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems.
PMCID: PMC3089379  PMID: 21402862
Neurospora tetrasperma; Neurospora discreta; optimal codons; gene expression; bias; gene length
24.  The Neurospora circadian clock: simple or complex? 
The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a model system for clock studies; the frequency (frq), white collar-1 and white collar-2 genes and their roles in rhythmicity; the phenomenon of rhythmicity in null frq mutants and its implications for clock mechanisms; the study of output pathways using clock-controlled genes; other rhythms in fungi; mathematical modelling of the Neurospora circadian system; and the application of new technologies to the study of Neurospora rhythmicity. We conclude that there may be many gene products involved in the clock mechanism, there may be multiple interacting oscillators comprising the clock mechanism, there may be feedback from output pathways onto the oscillator(s) and from the oscillator(s) onto input pathways, and there may be several independent clocks coexisting in one organism. Thus even a relatively simple lower eukaryote can be used to address questions about a complex, networked circadian system.
PMCID: PMC1088545  PMID: 11710976
25.  Robustness from flexibility in the fungal circadian clock 
BMC Systems Biology  2010;4:88.
Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock's rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model of the circuit controlling conidiation in the fungus Neurospora crassa.
The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq) gene inhibits its transcriptional activator white collar-1 (wc-1), interlocked with a positive feedback loop in which FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts the behaviour of mutants that uncouple WC-1 production from FRQ's positive feedback, and shows that the positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is quantified using Kitano's measure for the overall robustness of a regulated system output. Further analysis demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on the circuit by the interlocking loop structure.
Our model shows that the behaviour of the fungal clock in light-dark cycles can be accounted for by a transcription-translation feedback model of the central FRQ-WC oscillator. More generally, we provide an example of a biological circuit in which greater flexibility yields improved robustness, while also introducing novel sensitivity analysis techniques applicable to a broader range of cellular oscillators.
PMCID: PMC2913929  PMID: 20576110

Results 1-25 (980217)