Search tips
Search criteria

Results 1-25 (516400)

Clipboard (0)

Related Articles

1.  Role of Endothelium in Vasomotor Responses to Endothelin System and Protein Kinase C Activation in Porcine Retinal Arterioles 
Endothelial cells synthesize vasodilator nitric oxide (NO) and vasoconstrictor endothelin-1 (ET-1) from NO synthase (eNOS) and endothelin-converting enzyme-1 (ECE-1), respectively. Protein kinase C (PKC) and Rho kinase (ROCK) are major signaling molecules mediating vasoconstriction. Although endothelial cells express eNOS, ECE-1, endothelin B (ETB) receptors, PKC, and ROCK, their influences on ET-1–induced vasoconstriction remain elusive. We studied whether these endothelial signaling molecules modulate retinal arteriolar constriction to ET-1.
Porcine retinal arterioles were isolated and pressurized for vasomotor study, under conditions with intact or denuded endothelium, using videomicroscopic techniques.
Retinal arterioles developed similar resting tone (≈45% of maximum diameter) with or without endothelium. Endothelial denudation attenuated vasoconstriction to ET-1 precursor, big ET-1, by almost equal to 50%, but did not affect vasoconstrictions to ET-1, ETB agonist sarafotoxin S6c, or PKC activator phorbol-12, 13-dibutyrate (PDBu). The ROCK inhibitor H-1152 caused vasodilation, and abolished vasoconstrictions to ET-1 and PDBu independent of endothelium. With L-type voltage-operated calcium channel (L-VOCC) blocker nifedipine, PDBu-induced vasoconstriction was abolished and converted to NO-mediated vasodilation in the presence of endothelium. The ET-1–induced vasoconstriction was unaffected by NO released from endothelium during flow elevation.
Endothelial and smooth muscle ECE-1 contribute equally to synthesis of vasoactive ET-1 in retinal arterioles, with nominal role of endothelial ETB receptors in vasoconstriction to ET-1. The PKC activation leads to endothelium-dependent NO-mediated vasodilation when smooth muscle contraction is ablated by L-VOCC blockade. Endothelial cells and NO appear to have modest roles in modulating ROCK-dependent vasoconstriction, and are insufficient to counteract smooth muscle contractions to ET-1 and PKC activation.
Endothelin and protein kinase C (PKC) have been implicated in development of retinal disease, and have vasomotor roles in the retinal circulation. We report on the role of endothelium in vasomotor responses to endothelin system peptides and PKC activation in porcine retinal arterioles.
PMCID: PMC3835269  PMID: 24243985
endothelins; endothelium; arterioles; PKC; retinal blood flow
2.  HSP20 phosphorylation and interstitial metabolites in hypoxia-induced dilation of swine coronary arteries 
Acta physiologica Scandinavica  2005;184(1):37-44.
Hypoxia induces coronary artery dilation, but the responsible mechanism is largely unknown. Many stimuli induce arterial smooth muscle relaxation by reducing ser19-myosin regulatory light chain (MLC) phosphorylation. Other stimuli can induce smooth muscle relaxation without reductions in ser19-MLC phosphorylation. This form of relaxation has been termed force suppression and appears to be associated with heat shock protein 20 (HSP20) phosphorylation on ser16. We investigated whether hypoxia-induced sustained dilation in swine coronary arteries was promoted without ser19-MLC dephosphorylation and associated with ser16-HSP20 phosphorylation. Nitroglycerin vasodilation served as control.
In a pressure myograph, the tunica media of intact pre-contracted (PGF2α;10-5 m) porcine coronary artery segments were cannulated using a microdialysis catheter. Diameter responses and interstitial lactate/pyruvate ratios were studied during 90 min hypoxia, hypoxia + reoxygenation (60 min), nitroglycerin (100 μm, 90 min), and nitroglycerin + wash-out (60 min). The arterial segments were snap-frozen and analysed for ser16-HSP20 phosphorylation and ser19-MLC phosphorylation.
The normalized diameter responses to hypoxia (6.1 ± 4.3%) and nitroglycerin (12.6 ± 1.6%) were both significantly greater than normoxic control arteries (-10.5 ± 1.8%, anova, P < 0.05). Ser16-HSP20 phosphorylation was increased with hypoxia and nitroglycerin treatment and ser16-HSP20 phosphorylation correlated with changes in diameters (n = 29, r2 = 0.64, P < 0.001). Ser19-MLC phosphorylation was not significantly altered by hypoxia. The lactate/pyruvate ratio was significantly increased in hypoxic arteries but did not correlate with diameters or ser16-HSP20 phosphorylation.
Ser16-HSP20 phosphorylation is a potential regulator of hypoxia-induced dilation in coronary arteries.
PMCID: PMC2276684  PMID: 15847642
hypoxia; metabolism; microdialysis; signal transduction; smooth muscle; vasodilation
3.  Estrogen, medroxyprogesterone acetate, endothelial function, and biomarkers of cardiovascular risk in young women 
Medroxyprogesterone acetate (MPA) is widely known for its use in combination hormone therapy for postmenopausal women. However, MPA is also commonly used in young women for contraception and treatment of a number of gynecological conditions. Despite its widespread use, the cardiovascular effects of MPA in young women are unclear. Therefore, the purpose of this study was to determine the acute effects of MPA when used in combination with estradiol on markers of cardiovascular risk in young women. We suppressed endogenous estrogens and progesterone in 10 premenopausal women using a gonadotropin-releasing hormone antagonist (GnRHa) for 10 days. On day 4 of GnRHa subjects received 0.1 mg of estradiol (GnRHa+E2), and on day 7 5 mg of MPA was added (GnRHa+E2+MPA). Endothelium-dependent vasodilation and endothelium-independent vasodilation of the brachial artery, lipids, homocysteine, high-sensitivity C-reactive protein, and endothelin-1 were assessed during treatment with GnRHa, GnRHa+E2, and GnRHa+E2+MPA. Four additional subjects were tested to validate the efficacy of the GnRHa model and confirm the findings. Endothelium-dependent vasodilation was greater during GnRHa+E2 than during GnRHa or GnRHa+E2+MPA (P = 0.006). Endothelin-1 was lower during GnRHa+E2 than GnRHa alone (P = 0.039). Endothelin-1 increased with the addition of MPA and was not significantly different from GnRHa alone. There were no differences in the other markers of cardiovascular risk between hormone treatment days. These data suggest that acute MPA administration negates the beneficial effects of estradiol on endothelium-dependent vasodilation in young women. In addition, these data suggest that estradiol decreases endothelin-1 concentrations and the addition of MPA may counteract the effect of estradiol on endothelin-1.
PMCID: PMC3012002  PMID: 18281378
endothelium; hormones; flow-mediated vasodilation; endothelin-1; progestins
4.  Cerebrospinal Fluid from Patients with Subarachnoid Haemorrhage and Vasospasm Enhances Endothelin Contraction in Rat Cerebral Arteries 
PLoS ONE  2015;10(1):e0116456.
Previous studies have suggested that cerebrospinal fluid from patients with subarachnoid hemorrhage (SAH) leads to pronounced vasoconstriction in isolated arteries. We hypothesized that only cerebrospinal fluid from SAH patients with vasospasm would produce an enhanced contractile response to endothelin-1 in rat cerebral arteries, involving both endothelin ETA and ETB receptors.
Intact rat basilar arteries were incubated for 24 hours with cerebrospinal fluid from 1) SAH patients with vasospasm, 2) SAH patients without vasospasm, and 3) control patients. Arterial segments with and without endothelium were mounted in myographs and concentration-response curves for endothelin-1 were constructed in the absence and presence of selective and combined ETA and ETB receptor antagonists. Endothelin concentrations in culture medium and receptor expression were measured.
Compared to the other groups, the following was observed in arteries exposed to cerebrospinal fluid from patients with vasospasm: 1) larger contractions at lower endothelin concentrations (p<0.05); 2) the increased endothelin contraction was absent in arteries without endothelium; 3) higher levels of endothelin secretion in the culture medium (p<0.05); 4) there was expression of ETA receptors and new expression of ETB receptors was apparent; 5) reduction in the enhanced response to endothelin after ETB blockade in the low range and after ETA blockade in the high range of endothelin concentrations; 6) after combined ETA and ETB blockade a complete inhibition of endothelin contraction was observed.
Our experimental findings showed that in intact rat basilar arteries exposed to cerebrospinal fluid from patients with vasospasm endothelin contraction was enhanced in an endothelium-dependent manner and was blocked by combined ETA and ETB receptor antagonism. Therefore we suggest that combined blockade of both receptors may play a role in counteracting vasospasm in patients with SAH.
PMCID: PMC4309584  PMID: 25629621
5.  Poly(ADP-ribose) polymerase inhibition improves endothelin-1-induced endothelial dysfunction in rat thoracic aorta 
Upsala Journal of Medical Sciences  2014;119(3):215-222.
The aim of this study was to investigate whether poly(ADP-ribose) polymerase (PARP) inhibition improves endothelin-1 (ET-1)-induced endothelial dysfunction (ED).
Isolated rat thoracic aorta rings were incubated with ET-1 (10 nmol/L) in the presence or absence of either polyethylene glycol–superoxide dismutase (PEG-SOD; a cell-permeable superoxide radical scavenger, 41 U/mL) plus apocynin (a NADPH oxidase inhibitor, 300 µmol/L) or PJ34 (an inhibitor of polyADP-ribose polymerase, 3 µmol/L) for 18 h. Isometric tension studies were performed in response to acetylcholine (ACh; an endothelium-dependent vasodilator), sodium nitroprusside (SNP; an endothelium-independent vasodilator), and phenylephrine (Phe). PARP-1 and PAR (an end-product of PARP activity) expressions were evaluated by both Western blot and immunohistochemistry.
Incubation of thoracic aorta rings with ET-1 resulted in a significant inhibition of the response to ACh, while SNP-induced relaxation was unaffected. The contractile response to Phe increased in arteries that were incubated with ET-1. PARP-1 and PAR expressions increased after ET-1 incubation. The diminished vasoreactivity as well as changes in expressions of PARP-1 and PAR in ET-1-incubated vessels were improved by both PEG-SOD plus apocynin and PJ34.
Our studies demonstrate that ED induced by ET-1 seems to be effected via oxidative stress in the thoracic aorta endothelium with subsequent activation of the PARP pathway.
PMCID: PMC4116760  PMID: 24932781
Endothelial dysfunction; endothelin-1; poly(ADP-ribose) polymerase (PARP)
6.  Depolarization-dependent contraction increase after birth and preservation following long-term hypoxia in sheep pulmonary arteries 
Pulmonary Circulation  2012;2(1):41-53.
Membrane depolarization is critical to pulmonary arterial (PA) contraction. Both L-type Ca2+ channels (CaL) and Rho-kinase are important signaling components of this process and mitochondrial and non-mitochondrial generated superoxides can be part of the signaling process. Maturation and long-term hypoxia (LTH) each can modify depolarization-dependent contraction and the role of superoxides. By the use of wire myography, we tested the hypothesis that maturation and LTH increase pulmonary arterial reactivity to high-K+-induced membrane depolarization through enhancements in the importance of CaLand Rho-kinase-dependent pathways. The data show that maturation, but not LTH, increases contraction to 125 mM KCl (high-K+) without altering the EC50. High-K+-dependent contraction was inhibited to a similar extent in fetal and adult PA by multiple CaL blockers, including 10 μM diltiazem, 10 μM verapamil, and 10 μM nifedipine. Postnatal maturation increased the role for 10 μM nifedipine-sensitive CaL, and decreased that for 10 μM Y-27632-sensitive Rho-kinase. In all groups, the combination of nifedipine and Y-27632 effectively inhibited high-K+ contraction. Tempol (3 mM) but not 100 μM apocynin slightly reduced contraction in arteries from fetal hypoxic and adult normoxic and hypoxic sheep, indicating a limited role for non-mitochondrial derived superoxide to high-K+-induced contraction. Western immunoblot for alpha smooth muscle actin indicated small increases in relative abundance in the adult. The data suggest that while CaL therapies more effectively vasodilate PA in adults and rho-kinase therapies are more effective in newborns, combination therapies would provide greater efficacy in both young and mature patients regardless of normoxic or hypoxic conditions.
PMCID: PMC3342748  PMID: 22558519
K+-induced depolarization; L-type Ca2+ channel; myography; rho-kinase; superoxide
7.  Cinnamaldehyde and cinnamaldehyde-containing micelles induce relaxation of isolated porcine coronary arteries: role of nitric oxide and calcium 
Background and purpose
Cinnamaldehyde, a major component of cinnamon, induces the generation of reactive oxygen species and exerts vasodilator and anticancer effects, but its short half-life limits its clinical use. The present experiments were designed to compare the acute relaxing properties of cinnamaldehyde with those of self-assembling polymer micelles either loaded with cinnamaldehyde or consisting of a polymeric prodrug [poly(cinnamaldehyde)] that incorporates the compound in its backbone.
Rings of porcine coronary arteries were contracted with the thromboxane A2 receptor agonist U46619 or 40 mM KCl, and changes in isometric tension were recorded.
Cinnamaldehyde induced concentration-dependent but endothelium-independent, nitric oxide synthase (NOS)-independent, cyclooxygenase-independent, soluble guanylyl cyclase (sGC)-independent, calcium-activated potassium-independent, and TRPA1 channel-independent relaxations. Cinnamaldehyde also inhibited the contractions induced by 40 mM KCl Ca2+ reintroduction in 40 mM KCl Ca2+-free solution or by the Ca2+ channel opener Bay K8644. Cinnamaldehyde-loaded control micelles induced complete, partly endothelium-dependent relaxations sensitive to catalase and inhibitors of NOS or sGC, but not cyclooxygenase or TRPA1, channels. Cinnamaldehyde-loaded micelles also inhibited contractions induced by 40 mM KCl Ca2+ reintroduction or Bay K8644. Poly(cinnamaldehyde) micelles induced only partial, endothelium-dependent relaxations that were reduced by inhibitors of NOS or sGC and by catalase and the antioxidant tiron, but not by indomethacin or TRPA1 channel blockers.
The present findings demonstrate that cinnamaldehyde-loaded and poly(cinnamaldehyde) micelles possess vasodilator properties, but that the mechanism underlying the relaxation that they cause differs from that of cinnamaldehyde, and thus could be used both to relieve coronary vasospasm and for therapeutic drug delivery.
PMCID: PMC4039418  PMID: 24904214
calcium sensitivity; cinnamaldehyde; L-type Ca2+ channel; NO synthase; micelle-forming polymeric prodrug; porcine coronary artery
8.  Circulating and Vascular Bioactive Factors during Hypertension in Pregnancy 
Current bioactive compounds  2010;6(1):60-75.
Normal pregnancy is associated with significant vascular remodeling in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. The pregnancy-associated vascular changes are largely due to alterations in the amount/activity of vascular mediators released from the endothelium, vascular smooth muscle and extracellular matrix. The endothelium releases vasodilator substances such as nitric oxide, prostacyclin and hyperpolarizing factor as well as vasoconstrictor factors such as endothelin, angiotensin II and thromboxane A2. Vascular smooth muscle contraction is mediated by intracellular free Ca2+ concentration ([Ca2+]i), and [Ca2+]i sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Extracellular matrix and vascular remodeling are regulated by matrix metalloproteases. Hypertension in pregnancy and preeclampsia are major complications and life threatening conditions to both the mother and fetus, precipitated by various genetic, dietary and environmental factors. The initiating mechanism of preeclampsia and hypertension in pregnancy is unclear; however, most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduction in the uteroplacental perfusion pressure and placental ischemia/hypoxia. This placental hypoxic state is thought to induce the release of several circulating bioactive factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and vascular receptor antibodies. Increases in the plasma levels and vascular content of these factors during pregnancy could cause an imbalance in the vascular mediators released from the endothelium, smooth muscle and extracellular matrix, and lead to severe vasoconstriction and hypertension. This review will discuss the interactions between the various circulating bioactive factors and the vascular mediators released during hypertension in pregnancy, and provide an insight into the current and future approaches in the management of preeclampsia.
PMCID: PMC2856945  PMID: 20419111
cytokines; endothelium; nitric oxide; vascular smooth muscle; calcium; preeclampsia
9.  Impaired Vascular Regulation in Patients with Obstructive Sleep Apnea 
Rationale: Impaired endothelium-dependent vasodilation has been documented in patients with sleep apnea. This impairment may result in blood flow dysregulation during apnea-induced fluctuations in arterial blood gases.
Objectives: To test the hypothesis that hypoxic and hypercapnic vasodilation in the forearm and cerebral circulation are impaired in patients with sleep apnea.
Methods: We exposed 20 patients with moderate to severe sleep apnea and 20 control subjects, to isocapnic hypoxia and hyperoxic hypercapnia. A subset of 14 patients was restudied after treatment with continuous positive airway pressure.
Measurements and Main Results: Cerebral flow velocity (transcranial Doppler), forearm blood flow (venous occlusion plethysmography), arterial pressure (automated sphygmomanometry), oxygen saturation (pulse oximetry), ventilation (pneumotachograph), and end-tidal oxygen and carbon dioxide tensions (expired gas analysis) were measured during three levels of hypoxia and two levels of hypercapnia. Cerebral vasodilator responses to hypoxia (−0.65 ± 0.44 vs. −1.02 ± 0.72 [mean ± SD] units/% saturation; P = 0.03) and hypercapnia (2.01 ± 0.88 vs. 2.57 ± 0.89 units/mm Hg; P = 0.03) were smaller in patients versus control subjects. Hypoxic vasodilation in the forearm was also attenuated (−0.05 ± 0.09 vs. −0.10 ± 0.09 unit/% saturation; P = 0.04). Hypercapnia did not elicit forearm vasodilation in either group. Twelve weeks of continuous positive airway pressure treatment enhanced hypoxic vasodilation in the cerebral circulation (−0.83 ± 0.32 vs. −0.46 ± 0.29 units/% saturation; P = 0.01) and forearm (−0.19 ± 0.15 vs. −0.02 ± 0.08 units/% saturation; P = 0.003), and hypercapnic vasodilation in the brain showed a trend toward improvement (2.24 ± 0.78 vs. 1.76 ± 0.64 units/mm Hg; P = 0.06).
Conclusions: Vasodilator responses to chemical stimuli in the cerebral circulation and the forearm are impaired in many patients with obstructive sleep apnea. Some of these impairments can be improved with continuous positive airway pressure.
PMCID: PMC2784418  PMID: 19745203
hypoxia; sleep; vasodilation; cerebral vascular circulation; regional blood flow
10.  C-Reactive Protein Impairs Coronary Arteriolar Dilation to Prostacyclin Synthase Activation: Role of Peroxynitrite 
Endothelium-derived vasodilators, i.e., nitric oxide (NO), prostacyclin (PGI2) and prostaglandin E2 (PGE2), play important roles in maintaining cardiovascular homeostasis. C-reactive protein (CRP), a biomarker of inflammation and cardiovascular disease, has been shown to inhibit NO-mediated vasodilation. The goal of this study was to determine whether CRP also affects endothelial arachidonic acid (AA)-prostanoid pathways for vasomotor regulation. Porcine coronary arterioles were isolated and pressurized for vasomotor study, as well as for molecular and biochemical analysis. AA elicited endothelium-dependent vasodilation and PGI2 release. PGI2 synthase (PGI2-S) inhibitor trans-2-phenyl cyclopropylamine blocked vasodilation to AA but not to serotonin (endothelium-dependent NO-mediated vasodilator). Intraluminal administration of a pathophysiological level of CRP (7 μg/mL, 60 minutes) attenuated vasodilations to serotonin and AA but not to nitroprusside, exogenous PGI2, or hydrogen peroxide (endothelium-dependent PGE2 activator). CRP also reduced basal NO production, caused tyrosine nitration of endothelial PGI2-S, and inhibited AA-stimulated PGI2 release from arterioles. Peroxynitrite scavenger urate failed to restore serotonin dilation, but preserved AA-stimulated PGI2 release/dilation and prevented PGI2-S nitration. NO synthase inhibitor L-NAME and superoxide scavenger TEMPOL also protected AA-induced vasodilation. Collectively, our results suggest that CRP stimulates superoxide production and the subsequent formation of peroxynitrite from basal released NO compromises PGI2 synthesis, and thus endothelium-dependent PGI2-mediated dilation, by inhibiting PGI2-S activity through tyrosine nitration. By impairing PGI2-S function, and thus PGI2 release, CRP could promote endothelial dysfunction and participate in the development of coronary artery disease.
PMCID: PMC2703687  PMID: 19410579
prostaglandins; microcirculation; free radicals; vasodilation
11.  Vascular relaxation induced by Eucommiae Ulmoides Oliv. and its compounds Oroxylin A and wogonin: implications on their cytoprotection action 
The vascular relaxation action of Eucommiae Ulmoides Oliv. also known as Duzhong has been seen on arteries of the heart such as the aorta and the coronary artery which are elastic in nature. Duzhong is historically an active ingredient commonly used in hypertensive herbal prescriptions in China. This work investigated the vasodilating effect of Duzhong and its compounds (wogonin 10 μM and oroxylin-A) in the isolated intact rat heart, perfused retrograde according the method of Langendorff and the cytoprotective effect in EA.hy926 cell lines Coronary perfusion pressure was monitored with a pressure transducer connected to a side-arm of the aortic perfusion cannula. Duzhong induced vasorelaxation in a dose dependent manner, on precontracting the vessels with endothelin-1, Duzhong 10 mg/ml, wogonin 10 μM and oroxylin-A 10 μM could significantly lower the perfusion pressure in reference to positive control SNP, Duzhong induced vasodilation was not inhibited by L-NAME (nitric oxide inhibitor), but was significantly inhibited by Tetraethyl ammonium (TEA, a K+ channel blocker and almost abolished by potassium chloride. The underlying mechanism was carried out in EA.hy926 cell lines. When these cells were treated with H2O2, there was higher expression of NOX-4, TNF-α and COX-2 mRNA. However, wogonin treatment attenuated the mRNA of NOX-4, TNF-α and COX-2. Wogonin also upregulated the mRNA expression of CAT, SOD-1 and GSR in oxidative stress induced by H2O2 EA.hy926 cells. Duzhong and compounds can exert an in vitro relaxation effect of the coronary artery and improve the heart function in Langendorff apparatus. This action appears to be endothelium dependent but not NO mediated. Cell culture findings indicated that wogonin can exert vascular and cellular protection by scavenging Reactive Oxygen Species.
PMCID: PMC4238523  PMID: 25419347
Eucommiae Ulmoides Oliv.; endothelium; vasorelaxation; hypertension
12.  Crosstalk between Nitrite, Myoglobin and Reactive Oxygen Species to Regulate Vasodilation under Hypoxia 
PLoS ONE  2014;9(8):e105951.
The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.
PMCID: PMC4141839  PMID: 25148388
13.  Impaired coronary microvascular dilation correlates with enhanced vascular smooth muscle MLC phosphorylation in Diabetes 
Impaired endothelium-independent vasodilation is a known consequence of type-1 and 2 diabetes, and the mechanism of impaired vasodilation is not well understood. The following study investigated the effects of type-1 and 2 diabetes in endothelial-independent vasodilation associated with coronary vascular smooth muscle (VSM) relaxation and contractile signaling mechanisms.
Type-1 diabetes was induced in Yucatan mini-swine via alloxan injection and treated with or without insulin(DM and IDM). Non-diabetic swine served as controls(ND). Expression and/or phosphorylation of determinants of VSM relaxation and contraction signaling were examined in coronary arteries and microvessels. Coronary microvessel relaxation was assessed using sodium nitroprusside(SNP). In addition, SNP-induced vasodilation and myosin light chain (MLC) phosphorylation was determined in coronary microvessels isolated from ND and type-2 diabetic human atrial appendage.
Diabetic impairment in SNP-induced relaxation was completely normalized by insulin. Soluble guanylate cyclase (sGC) VSM expression decreased in both DM and IDM groups and did not correlate with vasorelaxation. Phosphorylation of MLC and myosin phosphatase increased in the DM group and MLC phosphorylation strongly correlated with impaired VSM relaxation(r=.670, p<0.01). Coronary microvessels from type-2 diabetic human patients exhibited similarly impaired vasodilation and enhanced VSM MLC phosphorylation.
Impaired vasodilation in type-1 diabetes correlates with enhanced VSM MLC phosphorylation. In addition, enhanced VSM MLC phosphorylation is associated with impaired vasodilation in type 2 diabetes in humans.
PMCID: PMC3044647  PMID: 19152178
14.  Tranilast Increases Vasodilator Response to Acetylcholine in Rat Mesenteric Resistance Arteries through Increased EDHF Participation 
PLoS ONE  2014;9(7):e100356.
Background and Purpose
Tranilast, in addition to its capacity to inhibit mast cell degranulation, has other biological effects, including inhibition of reactive oxygen species, cytokines, leukotrienes and prostaglandin release. In the current study, we analyzed whether tranilast could alter endothelial function in rat mesenteric resistance arteries (MRA).
Experimental Approach
Acetylcholine-induced relaxation was analyzed in MRA (untreated and 1-hour tranilast treatment) from 6 month-old Wistar rats. To assess the possible participation of endothelial nitric oxide or prostanoids, acetylcholine-induced relaxation was analyzed in the presence of L-NAME or indomethacin. The participation of endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced response was analyzed by preincubation with TRAM-34 plus apamin or by precontraction with a high K+ solution. Nitric oxide (NO) and superoxide anion levels were measured, as well as vasomotor responses to NO donor DEA-NO and to large conductance calcium-activated potassium channel opener NS1619.
Key Results
Acetylcholine-induced relaxation was greater in tranilast-incubated MRA. Acetylcholine-induced vasodilation was decreased by L-NAME in a similar manner in both experimental groups. Indomethacin did not modify vasodilation. Preincubation with a high K+ solution or TRAM-34 plus apamin reduced the vasodilation to ACh more markedly in tranilast-incubated segments. NO and superoxide anion production, and vasodilator responses to DEA-NO or NS1619 remained unmodified in the presence of tranilast.
Conclusions and Implications
Tranilast increased the endothelium-dependent relaxation to acetylcholine in rat MRA. This effect is independent of the nitric oxide and cyclooxygenase pathways but involves EDHF, and is mediated by an increased role of small conductance calcium-activated K+ channels.
PMCID: PMC4081117  PMID: 24992476
15.  Biphasic effects of sodium danshensu on vessel function in isolated rat aorta 
Acta Pharmacologica Sinica  2010;31(4):421-428.
To investigate the effects of sodium danshensu on vessel function in isolated rat aortic ring.
Thoracic aortae from normal rats were isolated and equilibrated in organ bath with Krebs-Henseleit buffer and ring tension was recorded. Effects of sodium danshensu on basal tonus of the vessel and its effects on vessel contraction and relaxation with or without endothelium were observed.
In thoracic arteries under basal tonus, sodium danshensu (0.3–3 g/L) produced a dose-dependent transient contraction. In phenylephrine-precontracted thoracic arteries with or without endothelium, low concentration (0.1–0.3 g/L) of sodium danshensu produced a weak contraction, while high concentrations (1–3 g/L) produced a pronounced vasodilator after a transient vasocontraction. Pre-incubation with sodium danshensu could inhibit vessel contraction induced by phenylephrine and potassium chloride in a concentration-dependent way. Sodium danshensu inhibited phenylephrine- and CaCl2-induced vasoconstriction in Ca2+-free medium. Pre-incubation with tetraethylammonium, a non-selective K+ channel blocker, and apamin, a small-conductance calcium-activated K+ channel blocker partially antagonized the relaxation response induced by sodium danshensu. However, iberiotoxin (big-conductance calcium-sensitive K+ channel blocker), barium chloride (inward rectifier K+ channel blocker), and glibencalmide (ATP-sensitive K+ channel blocker) had no influence on the vasodialtion effect of sodium danshensu.
Sodium danshensu showed a biphasic effects on vessel tension. While low dosage of sodium danshensu produced small contraction possibly through transient enhancement of Ca2+ influx, high dosage produced significant vasodilation mainly through promoting the opening of non-selective K+ channels and small-conductance calcium-sensitive K+ channels in the vascular smooth muscle cells.
PMCID: PMC4007672  PMID: 20228827
isolated aorta rings; sodium danshensu; vessel contraction and relaxation
16.  Xanthine Oxidase Inhibition Attenuates Endothelial Dysfunction Caused by Chronic Intermittent Hypoxia in Rats 
Respiration  2011;82(5):458-467.
Xanthine oxidase is a major source of superoxide in the vascular endothelium. Previous work in humans demonstrated improved conduit artery function following xanthine oxidase inhibition in patients with obstructive sleep apnea. Objectives: To determine whether impairments in endothelium-dependent vasodilation produced by exposure to chronic intermittent hypoxia are prevented by in vivo treatment with allopurinol, a xanthine oxidase inhibitor.
Sprague-Dawley rats received allopurinol (65 mg/kg/day) or vehicle via oral gavage. Half of each group was exposed to intermittent hypoxia (FIO2 = 0.10 for 1 min, 15×/h, 12 h/day) and the other half to normoxia. After 14 days, gracilis arteries were isolated, cannulated with micropipettes, and perfused and superfused with physiological salt solution. Diameters were measured before and after exposure to acetylcholine (10−6M) and nitroprusside (10−4M).
In vehicle-treated rats, intermittent hypoxia impaired acetylcholine-induced vasodilation compared to normoxia (+4 ± 4 vs. +21 ± 6 μm, p = 0.01). Allopurinol attenuated this impairment (+26 ± 6 vs. +34 ± 9 μm for intermittent hypoxia and normoxia groups treated with allopurinol, p = 0.55). In contrast, nitroprusside-induced vasodilation was similar in all rats (p = 0.43). Neither allopurinol nor intermittent hypoxia affected vessel morphometry or systemic markers of oxidative stress. Urinary uric acid concentrations were reduced in allopurinol- versus vehicle-treated rats (p = 0.02).
These data confirm previous findings that exposure to intermittent hypoxia impairs endothelium-dependent vasodilation in skeletal muscle resistance arteries and extend them by demonstrating that this impairment can be prevented with allopurinol. Thus, xanthine oxidase appears to play a key role in mediating intermittent hypoxia-induced vascular dysfunction.
PMCID: PMC3214835  PMID: 21846958
Hypoxia; Allopurinol; Endothelium; Oxidative stress
17.  Estrogen-induced contraction of coronary arteries is mediated by superoxide generated in vascular smooth muscle 
Although previous studies demonstrated beneficial effects of estrogen on cardiovascular function, the Women's Health Initiative has reported an increased incidence of coronary heart disease and stroke in postmenopausal women taking hormone replacement therapy (HRT). The objective of the present study was to identify a molecular mechanism whereby estrogen, a vasodilatory hormone, could possibly increase the risk of cardiovascular disease. Isometric contractile force recordings were performed on endothelium-denuded porcine coronary arteries, while molecular and fluorescence studies identified estrogen signaling molecules in coronary smooth muscle. Estrogen (1-1000nM) relaxed arteries in an endothelium-independent fashion; however, when arteries were pretreated with agents to uncouple NO production from nitric oxide synthase (NOS), estrogen contracted coronary arteries with an EC50 of 7.3 ± 4nM. Estrogen-induced contraction was attenuated by reducing superoxide (O2−). Estrogen-stimulated O2− production was detected in NOS-uncoupled coronary myocytes. Interestingly, only the Type 1 NOS isoform (nNOS) was detected in myocytes, making this protein a likely target mediating both estrogen-induced relaxation and contraction of endothelium-denuded coronary arteries. Estrogen-induced contraction was completely inhibited by 1μM nifedipine or 10μM indomethacin, indicating involvement of dihydropyridine-sensitive calcium channels and contractile prostaglandins. We propose that a single molecular mechanism can mediate the dual and opposite effect of estrogen on coronary arteries: by stimulating Type 1 (n)NOS in coronary arteries, estrogen produces either vasodilation via NO or vasoconstriction via superoxide.
PMCID: PMC1380187  PMID: 16162867
estrogens; nitric oxide; coronary circulation; smooth muscle
18.  Subtype-Specific Estrogen Receptor-Mediated Vasodilator Activity in the Cephalic, Thoracic and Abdominal Vasculature of Female Rat 
Estrogen receptors (ERs) mediate genomic and nongenomic vasodilator effects, but estrogen therapy may not provide systemic vascular protection. To test whether this is due to regional differences in ER distribution or vasodilator activity, cephalic (carotid), thoracic (thoracic aorta, pulmonary) and abdominal arteries (abdominal aorta, mesenteric, renal) from female Sprague-Dawley rats were prepared to measure contraction to phenylephrine (Phe), and relaxation to acetylcholine (ACh) and the ER activators 17β-estradiol (E2) (all ERs), PPT (ERα), DPN (ERβ) and G1 (GPR30). Phe caused contraction that was enhanced in endothelium-denuded aorta, supporting endothelial release of vasodilators. In cephalic and thoracic arteries, ACh relaxation was abolished by the NOS inhibitor L-NAME, suggesting a role of NO. In mesenteric vessels, ACh-induced relaxation was partly inhibited by L-NAME+COX inhibitor indomethacin and blocked by the K+ channel blocker tetraethylammonium (TEA), suggesting a hyperpolarization pathway. E2 and PPT caused similar relaxation in all vessels. DPN and G1 caused smaller relaxation that was more prominent in abdominal vessels. RT-PCR revealed variable ERα mRNA expression, and increased ERβ in carotid artery and GPR30 in abdominal arteries. Western blots revealed greater amounts of ERα, ERβ and GPR30 in abdominal arteries. In thoracic aorta, E2, PPT and DPN-induced relaxation was blocked by L-NAME, and was associated with increased nitrite/nitrate production, suggesting a role of NO. In abdominal vessels, E2, PPT, DPN and G1-induced relaxation persisted in L-NAME+indomethacin+TEA-treated or endothelium-denuded arteries, suggesting direct effect on vascular smooth muscle (VSM). E2, PPT, DPN, and G1 caused greater relaxation of KCl-induced contraction in abdominal vessels, suggesting inhibitory effects on Ca2+ entry. Thus, E2 and ERα stimulation produce similar relaxation of the cephalic, thoracic and abdominal arteries. In the cephalic and thoracic arteries, particularly the thoracic aorta, E2-induced and ERα- and ERβ-mediated vasodilation involve NO production. ERβ- and GPR30-mediated relaxation is greater in the abdominal arteries, and appears to involve hyperpolarization and inhibition of VSM Ca2+ entry. Specific ER agonists could produce vasodilation in specific vascular beds without affecting other vessels in systemic circulation.
PMCID: PMC3664271  PMID: 23429596
estrogen; sex hormones; endothelium; vascular smooth muscle
19.  Pituitary adenylate cyclase activating peptides relax human pulmonary arteries by opening of KATP and KCa channels 
Thorax  1998;53(7):586-587.
BACKGROUND—Pituitary adenylate cyclase activating peptides (PACAPs) are potent endothelium independent dilators of human coronary arteries; however, their effects on human pulmonary arteries are unknown. 
Methods—The vasorelaxant effects of PACAP27 on human pulmonary segmental arteries were studied and the specific potassium (K+) channel regulatory mechanisms in the vasorelaxant effects were tested by means of isometric contraction experiments.
RESULTS—PACAP27 produced dose dependent relaxations of 10 µM rings preconstricted with prostaglandin F2α (PGF2α ) with half maximal relaxation (IC50) at 17 nM. Pretreatment of the vessels with the ATP sensitive K+ (KATP) channel blocker glibenclamide (1 µM) or with the Ca2+ activated K+ (KCa) channel blocker iberiotoxin (100 nM) inhibited the PACAP27 induced relaxation. 
Conclusions—These results provide evidence that PACAPs are potent vasodilators of human pulmonary arteries and that this relaxation might be mediated by opening of KATP and KCa channels.

PMCID: PMC1745275  PMID: 9797759
20.  Risk Factors and Mediators of the Vascular Dysfunction Associated with Hypertension in Pregnancy 
Normal pregnancy is associated with significant hemodynamic changes and vasodilation in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. Hypertension in pregnancy (HTN-Preg) and preeclampsia (PE) are major complications and life-threatening conditions to both the mother and fetus. PE is precipitated by various genetic, dietary and environmental factors. Although the initiating events of PE are unclear, inadequate invasion of cytotrophoblasts into the uterine artery is thought to reduce uteroplacental perfusion pressure and lead to placental ischemia/hypoxia. Placental hypoxia induces the release of biologically active factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and antibodies to vascular angiotensin II receptor. These bioactive factors affect the production/activity of various vascular mediators in the endothelium, smooth muscle and extracellular matrix, leading to severe vasoconstriction and HTN. As an endothelial cell disorder, PE is associated with decreased vasodilator mediators such as nitric oxide, prostacyclin and hyperpolarizing factor and increased vasoconstrictor mediators such as endothelin, angiotensin II and thromboxane A2. PE also involves enhanced mechanisms of vascular smooth muscle contraction including intracellular free Ca2+ concentration ([Ca2+]i), and [Ca2+]i sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Changes in extracellular matrix composition and matrix metalloproteases activity also promote vascular remodeling and further vasoconstriction in the uterine and systemic circulation. Characterization of the predisposing risk factors, the biologically active factors, and the vascular mediators associated with PE holds the promise for early detection, and should help design specific genetic and pharmacological tools for the management of the vascular dysfunction associated with HTN-Preg.
PMCID: PMC2855626  PMID: 20041838
cytokines; endothelium; growth factors; placenta; preeclampsia; vascular smooth muscle
21.  Cellular signalling pathways mediating dilation of porcine pial arterioles to adenosine A2A receptor activation 
Cardiovascular Research  2013;99(1):156-163.
Adenosine is a potent vasodilator contributing to cerebral blood flow regulation during metabolic stress. However, the distribution of adenosine receptor subtypes and underlying signalling mechanisms for dilation of pial arterioles remain unclear. The present study aimed at addressing these issues.
Methods and results
Isolated porcine pial arterioles were subjected to study of vasomotor function, localization of adenosine receptors, and production of nitric oxide (NO). Concentration-dependent vasodilation to adenosine was inhibited by A2A receptor antagonist ZM241385 but not by A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. A2A receptors were detected in endothelium and smooth muscle of pial arterioles via immunohistochemistry. Adenosine significantly increased arteriolar production of NO, and the induced dilation was insensitive to KATP channel blocker glibenclamide but was attenuated by endothelial denudation, NO synthase inhibitor l-NAME, or guanylyl cyclase inhibitor ODQ in a similar manner. Both inward rectifier potassium (Kir) channel inhibitor barium and cAMP signalling inhibitor Rp-8-Br-cAMPS attenuated adenosine-induced dilation. In the presence of l-NAME or the absence of endothelium, addition of Rp-8-Br-cAMPS but not barium further reduced adenosine-induced responses. Barium diminished endothelium-independent vasodilation to NO donor sodium nitroprusside. Comparable to the adenosine-induced response, vasodilation to A2A receptor agonist CGS21680 was attenuated by endothelial removal, ZM241385, l-NAME, barium, or Rp-8-Br-cAMPS, but not by glibenclamide.
Adenosine evokes dilation of porcine pial arterioles via parallel activation of endothelial and smooth muscle A2A receptors. Stimulation of endothelial NO production activates smooth muscle guanylyl cyclase for vasodilation by opening Kir channels. Adenosine also activates smooth muscle cAMP signalling leading to vasodilation.
PMCID: PMC3687749  PMID: 23539502
Adenosine; Microcirculation; Nitric oxide; Potassium channels; Vasodilation
22.  Cerebrovascular responses to insulin in rats 
Effects of insulin on cerebral arteries have never been examined. Therefore, we determined cerebrovascular actions of insulin in rats. Both PCR and immunoblot studies identified insulin receptor expression in cerebral arteries and in cultured cerebral microvascular endothelial cells (CMVECs). Diameter measurements (% change) of isolated rat cerebral arteries showed a biphasic dose response to insulin with an initial vasoconstriction at 0.1 ng/mL (−9.7% ± 1.6%), followed by vasodilation at 1 to 100 ng/mL (31.9% ± 1.4%). Insulin also increased cortical blood flow in vivo (30% ± 8% at 120 ng/mL) when applied topically. Removal of reactive oxygen species (ROS) abolished the vasoconstriction to insulin. Endothelial denudation, inhibition of K+ channels, and nitric oxide (NO) synthase, all diminished insulin-induced vasodilation. Inhibition of cytochrome P450 enhanced vasodilation in endothelium-intact arteries, but promoted vasoconstriction after endothelial denudation. Inhibition of cyclooxygenase abolished vasoconstriction and enhanced vasodilation to insulin in all arteries. Inhibition of endothelin type A receptors enhanced vasodilation, whereas endothelin type B receptor blockade diminished vasodilation. Insulin treatment in vitro increased Akt phosphorylation in cerebral arteries and CMVECs. Fluorescence studies of CMVECs showed that insulin increased intracellular calcium and enhanced the generation of NO and ROS. Thus, cerebrovascular responses to insulin were mediated by complex mechanisms originating in both the endothelium and smooth muscle.
PMCID: PMC2814524  PMID: 19724283
cerebral arteries; cyclooxygenase; endothelin; nitric oxide; P450 monooxygenase; reactive oxygen species
23.  Influence of celecoxib on the vasodilating properties of human mesenteric arteries constricted with endothelin-1 
Biomedical Reports  2014;2(3):412-418.
The mitogenic and vasoconstrictive properties of the vascular system are attributed to endothelin-1 (ET-1). ET-1 serum concentration increases in a number of pathological conditions, particularly in those associated with blood vessel constriction. ET-1 is also associated with the underlying pathomechanisms of primary pulmonary hypertension, arterial hypertension and eclampsia. The aim of this study was to compare the vasodilating properties of selected phosphodiesterase (PDE) inhibitors and celecoxib in human mesenteric arteries constricted with ET-1, and investigate the role of the endothelium in relaxation. Perfused human mesenteric arteries were collected and stored under the same conditions as organs for transplantation. The mesenteric arteries (with and without the endothelium) were constricted by the addition of ET-1 and treated with one of the following: sildenafil (PDE5 inhibitor), zaprinast (PDE5 and 6 inhibitor), rolipram (PDE4 inhibitor) and celecoxib [cyclooxygenase-2 (COX-2) inhibitor]. Based on the observed changes of the perfusion pressure, concentration response curves (CRCs) were prepared for the respective inhibitors and the EC50 (concentration causing an effect equal to half of the maximum effect), pD2 (negative common logarithm of EC50) and relative potency (RP) were calculated. The results suggested that all the inhibitors triggered a concentration-dependent decrease in the perfusion pressure in isolated human superior mesenteric arteries with endothelium constricted by the addition of ET-1. In the arteries without endothelium, CRCs for celecoxib and rolipram were shifted to the right without a significant decrease in the maximum dilating effect. Moreover, CRCs for sildenafil and zaprinast were shifted to the right with a simultaneous significant decrease in the maximum dilating effect and with an increased inclination angle in reference to the concentration axis. In the presence of the endothelium, all of the evaluated PDE inhibitors, as well as celecoxib, reduced the reactivity of the mesenteric arteries caused by ET-1. Sildenafil indicated the lowest efficacy in the presence of the endothelium, but showed a higher potency compared to that of the other compounds. Removing the endothelium significantly reduced the vasodilating efficacy of PDE5 and 6 inhibitors and a statistically significant influence on the vasodilating efficacy of PDE4 inhibitor and celecoxib was observed. The high vasorelaxing efficacy of celecoxib at the background of the PDE inhibitors was observed, not only in the presence, but also in the absence of the endothelium and may be evidence for the relaxation induced by this COX-2 inhibitor in the cAMP- and cGMP-dependent pathways.
PMCID: PMC3990212  PMID: 24748985
endothelin-1; celecoxib; phosphodiesterase inhibitors; constriction; endothelium
24.  Pulmonary vasoreactivity in spontaneously hypertensive rats - Effects of endothelin-1 and leptin 
Respiratory Research  2014;15(1):12.
Systemic hypertension may be associated with an increased pulmonary vascular resistance, which we hypothesized could be, at least in part, mediated by increased leptin.
Vascular reactivity to phenylephrine (1 μmol/L), endothelin-1 (10 nmol/L) and leptin (0.001–100 nmol/L) was evaluated in endothelium-intact and -denuded isolated thoracic aorta and pulmonary arteries from spontaneously hypertensive versus control Wistar rats. Arteries were sampled for pathobiological evaluation and lung tissue for morphometric evaluation.
In control rats, endothelin-1 induced a higher level of contraction in the pulmonary artery than in the aorta. After phenylephrine or endothelin-1 precontraction, leptin relaxed intact pulmonary artery and aortic rings, while no response was observed in denuded arteries. Spontaneously hypertensive rats presented with increased reactivity to phenylephrine and endothelin-1 in endothelium-intact pulmonary arteries. After endothelin-1 precontraction, endothelium-dependent relaxation to leptin was impaired in pulmonary arteries from hypertensive rats. In both strains of rats, aortic segments were more responsive to leptin than pulmonary artery. In hypertensive rats, pulmonary arteries exhibited increased pulmonary artery medial thickness, associated with increased expressions of preproendothelin-1, endothelin-1 receptors type A and B, inducible nitric oxide synthase and decreased endothelial nitric oxide synthase, together with decreased leptin receptor and increased suppressor of cytokine signaling 3 expressions.
Altered pulmonary vascular reactivity in hypertension may be related to a loss of endothelial buffering of vasoconstriction and decreased leptin-induced vasodilation in conditions of increased endothelin-1.
PMCID: PMC3922960  PMID: 24499246
Systemic hypertension; Pulmonary circulation; Vascular reactivity; Leptin; Endothelin-1
25.  Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. 
Journal of Clinical Investigation  1991;88(5):1663-1671.
Flow-mediated vasodilation is endothelium dependent. We hypothesized that flow activates a potassium channel on the endothelium, and that activation of this channel leads to the release of the endogenous nitrovasodilator, nitric oxide. To test this hypothesis, rabbit iliac arteries were perfused at varying flow rates, at a constant pressure of 60 mm Hg. Increments in flow induced proportional increases in vessel diameter, which were abolished by L,N-mono-methylarginine (the antagonist of nitric-oxide synthesis). Barium chloride, depolarizing solutions of potassium, verapamil, calcium-free medium, and antagonists of the KCa channel (charybdotoxin, iberiotoxin) also blocked flow-mediated vasodilation. Conversely, responses to other agonists of endothelium-dependent and independent vasodilation were unaffected by charybdotoxin or iberiotoxin. To confirm that flow activated a specific potassium channel to induce the release of nitric oxide, endothelial cells cultured on micro-carrier beads were added to a flow chamber containing a vascular ring without endothelium. Flow-stimulated endothelial cells released a diffusible vasodilator; the degree of vasorelaxation was dependent upon the flow rate. Relaxation was abrogated by barium, tetraethylammonium ion, or charybdotoxin, but was not affected by apamin, glybenclamide, tetrodotoxin, or ouabain. The data suggest that transmission of a hyperpolarizing current from endothelium to the vascular smooth muscle is not necessary for flow-mediated vasodilation. Flow activates a potassium channel (possibly the KCa channel) on the endothelial cell membrane that leads to the release of nitric oxide.
PMCID: PMC295698  PMID: 1719029

Results 1-25 (516400)