Search tips
Search criteria

Results 1-25 (945108)

Clipboard (0)

Related Articles

1.  Kinetics of iron removal by phlebotomy in patients with iron overload after allogeneic hematopoietic cell transplantation 
Excess body iron could persist for years after allogeneic hematopoietic cell transplantation (HCT) with possible deleterious sequels. An iron depletive therapy with phlebotomy seems rational. Kinetics of iron removal by phlebotomy without erythropoietin support in non-thalassemic adult patients with iron overload after HCT and the impact of pre- and post-HCT hemochromatosis (HFE) genotype on iron mobilization were investigated. Patients and methods: Phlebotomy was initiated in 61 recipients of allografts due to hematologic malignancies (median age 48 years) after a median of 18 months. The prephlebotomy median serum ferritin (SF) was 1697ng/ml and the median number of blood transfusions 28 units. Alanine aminotransferase (ALT)/aspartate aminotransferase (AST), alkaline phosphates (AP), and bilirubin were elevated in 55.7%, 64% and 11.5% patients respectively. HFE-genotype was elucidated by polymerase chain reaction using hybridization probes and melting curve analysis. Results: Phlebotomy was well-tolerated irrespective of age or conditioning. A negative iron balance in 80% of patients (median SF 1086 ng/ml) and a rise in hemoglobin were observed (p<0.0001). Higher transfusional burden and SF were associated with a greater iron mobilization per session (p=0.02). In 58% of patients, a plateau after an initial steady decline in SF was followed by a second decline under further phlebotomy. The improvement in ALT (p=0.002), AST (p=0.03), AP (p=0.01), and bilirubin (p<0.0001) did not correlate with the decline in SF. Mutant HFE-gene variants were detected in 14/55 (25%) pre-HCT and 22/55 (40%) patients post-HCT. Overall, dissimilar pre- and posttransplantational HFE-genotypes were detected in 20/55 (40%) patients. Posttransplantational mutant HFE variants correlated with a slower decline in SF (p=0.007). Conclusions: Phlebotomy is a convenient therapy of iron overload in survivors of HCT. A negative iron balance and a rise in hemoglobin were observed in the majority of patients. Liver dysfunction improved irrespective of SF reduction suggesting a probable rapid decline of the deleterious labile plasma iron. In recipients of grafts with mutant HFE variants a “mixed chimerism” of HFE in body tissues might be created with a change in the set point for iron regulation. The transient plateau in SF after an initial decline might reflect iron mobilization from various tissues.
PMCID: PMC3512175  PMID: 23226624
Iron overload; ferritin; phlebotomy; allogeneic HCT
2.  The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis 
BMC Nephrology  2013;14:48.
Aim of this study was to evaluate whether the A736V TMPRSS6 polymorphism, a major genetic determinant of iron metabolism in healthy subjects, influences serum levels of hepcidin, the hormone regulating iron metabolism, and erythropoiesis in chronic hemodialysis (CHD).
To this end, we considered 199 CHD patients from Northern Italy (157 with hepcidin evaluation), and 188 healthy controls without iron deficiency, matched for age and gender. Genetic polymorphisms were evaluated by allele specific polymerase chain reaction assays, and hepcidin quantified by mass spectrometry.
Serum hepcidin levels were not different between the whole CHD population and controls (median 7.1, interquartile range (IQR) 0.55-17.1 vs. 7.4, 4.5-17.9 nM, respectively), but were higher in the CHD subgroup after exclusion of subjects with relative iron deficiency (p = 0.04). In CHD patients, the A736V TMPRSS6 polymorphism influenced serum hepcidin levels in individuals positive for mutations in the HFE gene of hereditary hemochromatosis (p < 0.0001). In particular, the TMPRSS6 736 V variant was associated with higher hepcidin levels (p = 0.017). At multivariate analysis, HFE and A736V TMPRSS6 genotypes predicted serum hepcidin independently of ferritin and C reactive protein (p = 0.048). In patients without acute inflammation and overt iron deficiency (C reactive protein <1 mg/dl and ferritin >30 ng/ml; n = 86), hepcidin was associated with lower mean corpuscular volume (p = 0.002), suggesting that it contributed to iron-restricted erythropoiesis. In line with previous results, in patients without acute inflammation and severe iron deficiency the “high hepcidin” 736 V TMPRSS6 variant was associated with higher erythropoietin maintenance dose (p = 0.016), independently of subclinical inflammation (p = 0.02).
The A736V TMPRSS6 genotype influences hepcidin levels, erythropoiesis, and anemia management in CHD patients. Evaluation of the effect of TMPRSS6 genotype on clinical outcomes in prospective studies in CHD may be useful to predict the outcomes of hepcidin manipulation, and to guide treatment personalization by optimizing anemia management.
PMCID: PMC3585892  PMID: 23433094
Anemia; Chronic kidney disease; Erythropoietin; Genetics; Inflammation; Iron; Hemodialysis; Hepcidin; Hfe gene; Matriptase-2; Tmprss6
3.  Iron Overload in Patients with Acute Leukemia or MDS Undergoing Myeloablative Stem Cell Transplantation 
Patients with hematologic malignancies undergoing allogeneic stem cell transplantation (HSCT) commonly have an elevated serum ferritin prior to HSCT, which has been associated with increased mortality after transplantation. This has led to the suggestion that iron overload is common and deleterious in this patient population. However, the relationship between serum ferritin and parenchymal iron overload in such patients is unknown. We report a prospective study of 48 patients with acute leukemia (AL) or myelodysplastic syndromes (MDS) under going myeloablative HSCT, using magnetic resonance imaging (MRI) to estimate liver iron content (LIC) and cardiac iron. The median (and range) pre-HSCT value of serum ferritin was 1549 ng/ mL (20–6989); serum hepcidin, 59 ng/mL (10–468); labile plasma iron, 0 LPI units (0.0–0.9). Eighty-five percent of patients had hepatic iron overload (HIO), and 42% had significant HIO (LIC ≥5.0 mg/gdw). Only 1 patient had cardiac iron overload. There was a strong correlation between pre-HSCT serum ferritin and estimated LIC (r =.75), which was mostly dependent on prior transfusion history. Serum hepcidin was appropriately elevated in patients with HIO. Labile plasma iron elevation was rare. A regression calibration analysis supported the hypothesis that elevated pre-HSCT LIC is significantly associated with inferior post-HSCT survival. These results contribute to our understanding of the prevalence, mechanism, and consequences of iron overload in HSCT.
PMCID: PMC3954514  PMID: 20854920
Iron overload; Acute myeloid leukemia; Acute lymphoblastic leukemia; Myelodysplastic syndromes; Stem cell transplantation
4.  Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations 
Hepatology (Baltimore, Md.)  2012;56(5):1730-1740.
Hepcidin regulation is linked to both iron and inflammatory signals and may influence iron loading in nonalcoholic steatohepatitis (NASH). The aim of this study was to examine the relationships among HFE genotype, serum hepcidin level, hepatic iron deposition and histology in nonalcoholic fatty liver disease (NAFLD). SNP genotyping for C282Y (rs1800562) and H63D (rs1799945) HFE mutations was performed in 786 adult subjects in the NASH Clinical Research Network (CRN). Clinical, histologic, and laboratory data were compared using nonparametric statistics and multivariate logistic regression. NAFLD patients with C282Y, but not H63D mutations, had lower median serum hepcidin levels (57 vs 65 ng/ml, p=0.01) and higher mean hepatocellular (HC) iron grades (0.59 vs 0.28, p<0.001), compared to wild type (WT) subjects. Subjects with hepatic iron deposition had higher serum hepcidin levels than subjects without iron for all HFE genotypes (p<0.0001). Hepcidin levels were highest among patients with mixed HC/reticuloendothelial system cell (RES) iron deposition. H63D mutations were associated with higher steatosis grades and NAFLD activity scores (OR≥1.4, CI >1.0≤2.5, p≤0.041), compared to WT, but not with either HC or RES iron. NAFLD patients with C282Y mutations had less ballooning or NASH (OR ≤0.62, 95% CI >0.39<0.94, p≤0.024) compared to WT subjects.
Presence of C282Y mutations in patients with NAFLD is associated with greater HC iron deposition and decreased serum hepcidin levels and there is a positive relationship between hepatic iron stores and serum hepcidin level across all HFE genotypes. These data suggest that body iron stores are the major determinant of hepcidin regulation in NAFLD regardless of HFE genotype. A potential role for H63D mutations in NAFLD pathogenesis is possible through iron-independent mechanisms.
PMCID: PMC3462887  PMID: 22611049
NAFLD; Steatohepatitis; HFE; hepcidin; iron
5.  Effects of a 7-day military training exercise on inflammatory biomarkers, serum hepcidin, and iron status 
Nutrition Journal  2013;12:141.
Hepcidin, a peptide that is released into the blood in response to inflammation, prevents cellular iron export and results in declines in iron status. Elevated serum and urinary levels of hepcidin have been observed in athletes following exercise, and declines in iron status have been reported following prolonged periods of training. The objective of this observational study was to characterize the effects of an occupational task, military training, on iron status, inflammation, and serum hepcidin.
Volunteers (n = 21 males) included Norwegian Soldiers participating in a 7-day winter training exercise that culminated in a 3-day, 54 km ski march. Fasted blood samples were collected at baseline, on day 4 (PRE, prior to the ski march), and again on day 7 (POST, following the ski march). Samples were analyzed for hemoglobin, serum ferritin, soluble transferrin receptor (sTfR), interleukin-6 (IL-6), and serum hepcidin. Military training affected inflammation and serum hepcidin levels, as IL-6 and hepcidin concentrations increased (P < 0.05) from the baseline to POST (mean ± SD, 9.1 ± 4.9 vs. 14.5 ± 8.4 pg/mL and 6.5 ± 3.5 vs. 10.2 ± 6.9 ng/mL, respectively). Iron status was not affected by the training exercise, as sTfR levels did not change over the course of the 7-day study.
Military training resulted in significant elevations in IL-6 and serum hepcidin. Future studies should strive to identify the role of hepcidin in the adaptive response to exercise, as well as countermeasures for the prevention of chronic or repeated elevations in serum hepcidin due to exercise or sustained occupational tasks which may result in longer term decrements in iron status.
PMCID: PMC3830559  PMID: 24188143
Physical activity; Operational stress; Military; Ferritin; Inflammation; Iron absorption; Soluble transferrin receptor
6.  Mechanism underlying the transient increase of serum iron during FOLFOX/FOLFIRI therapy 
Molecular and Clinical Oncology  2014;2(6):968-972.
In patients with advanced colorectal cancer (CRC), a transient significant increase of serum iron is observed during chemotherapy with leucovorin and fluorouracil plus oxaliplatin (FOLFOX) or leucovorin and fluorouracil plus irinotecan (FOLFIRI). Serum iron may be a useful and convenient predictor of the response to chemotherapy; however, the mechanism underlying its increase has not been fully elucidated. Accordingly, the mechanism underlying the elevation of serum iron during chemotherapy was investigated in 20 patients with advanced CRC who were treated between September, 2012 and July, 2013. The levels of iron, ferritin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), hemoglobin (Hb), hepcidin-25, interleukin (IL)-6 and soluble transferrin receptor (sTfR) were measured before and 48 h after chemotherapy. The serum levels of iron and hepcidin-25 were found to be significantly increased after chemotherapy (P<0.0001), whereas those of IL-6 were significantly decreased (P=0.0057). There were no significant changes in any of the other parameters. The lack of significant changes in AST, ALT and Hb suggested that the elevation of serum iron was not due to the destruction of hepatocytes, whereas the stable sTfR level suggested no destruction of erythroblasts. Hepcidin-25 regulates iron metabolism and decreases serum iron levels; it is increased by an iron load and IL-6, but is decreased under anemic or hypoxic conditions. The suppression of erythropoiesis increases serum iron levels and chemotherapy suppresses erythropoiesis. As serum iron and hepcidin-25 were both significantly increased and IL-6 was significantly decreased, with no significant changes in sTfR, it appears that the elevation of serum iron during chemotherapy may be secondary to reduced iron consumption by erythropoiesis, leading to increased expression of hepcidin-25 and suppression of Il-6 via negative feedback.
PMCID: PMC4179814  PMID: 25279183
serum iron; hepcidin; interleukin-6; soluble transferrin receptor; chemotherapy
7.  Inverse Relationship of Serum Hepcidin Levels with CD4 Cell Counts in HIV-Infected Patients Selected from an Indonesian Prospective Cohort Study 
PLoS ONE  2013;8(11):e79904.
Distortion of iron homeostasis may contribute to the pathogenesis of human immunodeficiency virus (HIV) infection and tuberculosis (TB). We studied the association of the central iron-regulatory hormone hepcidin with the severity of HIV and the association between hepcidin and other markers of iron homeostasis with development of TB.
Three groups of patients were selected from a prospective cohort of HIV-infected subjects in Bandung, Indonesia. The first group consisted of HIV-infected patients who started TB treatment more than 30 days after cohort enrollment (cases). The second group consisted of HIV-infected patients who were matched for age, gender and CD4 cell count to the cases group (matched controls). The third group consisted of HIV-infected patients with CD4 cell counts above 200 cells/mm3 (unmatched controls). Iron parameters including hepcidin were compared using samples collected at cohort enrollment, and compared with recently published reference values for serum hepcidin.
A total of 127 HIV-infected patients were included, 42 cases together with 42 matched controls and 43 unmatched controls. Patients with advanced HIV infection had elevated serum hepcidin and ferritin levels. Hepcidin levels correlated inversely with CD4 cells and hemoglobin. Cases had significantly higher hepcidin and ferritin concentrations at cohort enrollment compared to matched controls, but these differences were fully accounted for by the cases who started TB treatment between day 31 and 60 after enrollment. Hepcidin levels were not different in those with or without hepatitis C infection.
Iron metabolism is distorted in advanced HIV infection with CD4 cell counts correlating inversely with serum hepcidin levels. High serum hepcidin levels and hyperferritinemia were found in patients starting TB treatment shortly after cohort enrollment, suggesting that these parameters have a predictive value for development of manifest TB in HIV-infected patients.
PMCID: PMC3823592  PMID: 24244576
8.  Is iron overload in alcohol-related cirrhosis mediated by hepcidin? 
In this case report we describe the relationship between ferritin levels and hepcidin in a patient with alcohol-related spur cell anemia who underwent liver transplantation. We demonstrate a reciprocal relationship between serum or urinary hepcidin and serum ferritin, which indicates that inadequate hepcidin production by the diseased liver is associated with elevated serum ferritin. The ferritin level falls with increasing hepcidin production after transplantation. Neither inflammatory indices (IL6) nor erythropoietin appear to be related to hepcidin expression in this case. We suggest that inappropriately low hepcidin production by the cirrhotic liver may contribute substantially to elevated tissue iron stores in cirrhosis and speculate that hepcidin replacement in these patients may be of therapeutic benefit in the future.
PMCID: PMC2791283  PMID: 19998511
Alcohol; Iron; Anaemia; Hepcidin; Cirrhosis
9.  Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models 
PLoS ONE  2011;6(3):e16762.
The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.
PMCID: PMC3050808  PMID: 21408141
10.  Hepcidin-25, Mean Corpuscular Volume, and Ferritin as Predictors of Response to Oral Iron Supplementation in Hemodialysis Patients 
Nutrients  2014;7(1):103-118.
The benefit of oral iron therapy (OIT) and factors predictive of OIT response are not established in hemodialysis (HD) patients with iron deficiency anemia (IDA). We examined the values of hepcidin-25, mean corpuscular volume (MCV), and ferritin as predictors of OIT response. Oral ferrous fumarate (50 mg/day, 8 weeks) was given to 51 HD patients with IDA (hemoglobin (Hb) < 12 g/dL, ferritin < 100 ng/mL) treated with an erythropoietin activator. Sixteen patients were responders (improvement of Hb (ΔHb) ≥ 2 g/dL) and 35 were non-responders (ΔHb < 2g/dL). Baseline Hb, MCV, serum hepcidin-25, ferritin, iron parameters, and C-reactive protein (CRP) before and ΔHb after OIT were compared between groups. Hepcidin-25, MCV, ferritin, and transferrin saturation were lower in the responders than in the non-responders. Hepcidin-25 positively correlated with ferritin. Hepcidin-25, MCV, and ferritin positively correlated with baseline Hb and negatively correlated with ΔHb. Despite normal CRP levels in all patients, CRP correlated positively with hepcidin-25 and ferritin. Stepwise multiple linear regression analysis and receiver operating characteristics curve analysis revealed that hepcidin-25, MCV, and ferritin could predict OIT response. We conclude that hepcidin-25, MCV, and ferritin could be useful markers of iron storage status and may help predict OIT response in HD patients.
PMCID: PMC4303829  PMID: 25551249
anemia; ferritin; hemodialysis; hepcidin; iron; mean corpuscular volume
11.  An Insight into the Relationships between Hepcidin, Anemia, Infections and Inflammatory Cytokines in Pediatric Refugees: A Cross-Sectional Study 
PLoS ONE  2008;3(12):e4030.
Hepcidin, a key regulator of iron homeostasis, is increased in response to inflammation and some infections, but the in vivo role of hepcidin, particularly in children with iron deficiency anemia (IDA) is unclear. We investigated the relationships between hepcidin, cytokines and iron status in a pediatric population with a high prevalence of both anemia and co-morbid infections.
Methodology/Principal Findings
African refugee children <16 years were consecutively recruited at the initial post-resettlement health check with 181 children meeting inclusion criteria. Data on hematological parameters, cytokine levels and co-morbid infections (Helicobacter pylori, helminth and malaria) were obtained and urinary hepcidin assays performed. The primary outcome measure was urinary hepcidin levels in children with and without iron deficiency (ID) and/or ID anaemia (IDA). The secondary outcome measures included were the relationship between co-morbid infections and (i) ID and IDA, (ii) urinary hepcidin levels and (iii) cytokine levels. IDA was present in 25/181 (13.8%). Children with IDA had significantly lower hepcidin levels (IDA median hepcidin 0.14 nmol/mmol Cr (interquartile range 0.05–0.061) versus non-IDA 2.96 nmol/mmol Cr, (IQR 0.95–6.72), p<0.001). Hemoglobin, log-ferritin, iron, mean cell volume (MCV) and transferrin saturation were positively associated with log-hepcidin levels (log-ferritin beta coefficient (β): 1.30, 95% CI 1.02 to 1.57) and transferrin was inversely associated (β: −0.12, 95% CI −0.15 to −0.08). Cytokine levels (including IL-6) and co-morbid infections were not associated with IDA or hepcidin levels.
This is the largest pediatric study of the in vivo associations between hepcidin, iron status and cytokines. Gastro-intestinal infections (H. pylori and helminths) did not elevate urinary hepcidin or IL-6 levels in refugee children, nor were they associated with IDA. Longitudinal and mechanistic studies of IDA will further elucidate the role of hepcidin in paediatric iron regulation.
PMCID: PMC2603326  PMID: 19107209
12.  Tubular reabsorption and local production of urine hepcidin-25 
BMC Nephrology  2013;14:70.
Hepcidin is a central regulator of iron metabolism. Serum hepcidin levels are increased in patients with renal insufficiency, which may contribute to anemia. Urine hepcidin was found to be increased in some patients after cardiac surgery, and these patients were less likely to develop acute kidney injury. It has been suggested that urine hepcidin may protect by attenuating heme-mediated injury, but processes involved in urine hepcidin excretion are unknown.
To assess the role of tubular reabsorption we compared fractional excretion (FE) of hepcidin-25 with FE of β2-microglobulin (β2m) in 30 patients with various degrees of tubular impairment due to chronic renal disease. To prove that hepcidin is reabsorbed by the tubules in a megalin-dependent manner, we measured urine hepcidin-1 in wild-type and kidney specific megalin-deficient mice. Lastly, we evaluated FE of hepcidin-25 and β2m in 19 patients who underwent cardiopulmonary bypass surgery. Hepcidin was measured by a mass spectrometry assay (MS), whereas β2m was measured by ELISA.
In patients with chronic renal disease, FE of hepcidin-25 was strongly correlated with FE of β2m (r = 0.93, P <0.01). In megalin-deficient mice, urine hepcidin-1 was 7-fold increased compared to wild-type mice (p < 0.01) indicating that proximal tubular reabsorption occurs in a megalin- dependent manner. Following cardiac surgery, FE of hepcidin-25 increased despite a decline in FE of β2m, potentially indicating local production at 12–24 hours.
Hepcidin-25 is reabsorbed by the renal tubules and increased urine hepcidin-25 levels may reflect a reduction in tubular uptake. Uncoupling of FE of hepcidin-25 and β2m in cardiac surgery patients suggests local production.
PMCID: PMC3623618  PMID: 23531037
AKI; β2-microglobulin; Hepcidin; Megalin; Kidney tubules
13.  Iron Status and the Acute Post-Exercise Hepcidin Response in Athletes 
PLoS ONE  2014;9(3):e93002.
This study explored the relationship between serum ferritin and hepcidin in athletes. Baseline serum ferritin levels of 54 athletes from the control trial of five investigations conducted in our laboratory were considered; athletes were grouped according to values <30 μg/L (SF<30), 30–50 μg/L (SF30–50), 50–100 μg/L (SF50–100), or >100 μg/L (SF>100). Data pooling resulted in each athlete completing one of five running sessions: (1) 8×3 min at 85% vVO2peak; (2) 5×4 min at 90% vVO2peak; (3) 90 min continuous at 75% vVO2peak; (4) 40 min continuous at 75% vVO2peak; (5) 40 min continuous at 65% vVO2peak. Athletes from each running session were represented amongst all four groups; hence, the mean exercise duration and intensity were not different (p>0.05). Venous blood samples were collected pre-, post- and 3 h post-exercise, and were analysed for serum ferritin, iron, interleukin-6 (IL-6) and hepcidin-25. Baseline and post-exercise serum ferritin levels were different between groups (p<0.05). There were no group differences for pre- or post-exercise serum iron or IL-6 (p>0.05). Post-exercise IL-6 was significantly elevated compared to baseline within each group (p<0.05). Pre- and 3 h post-exercise hepcidin-25 was sequentially greater as the groups baseline serum ferritin levels increased (p<0.05). However, post-exercise hepcidin levels were only significantly elevated in three groups (SF30–50, SF50–100, and SF>100; p<0.05). An athlete's iron stores may dictate the baseline hepcidin levels and the magnitude of post-exercise hepcidin response. Low iron stores suppressed post-exercise hepcidin, seemingly overriding any inflammatory-driven increases.
PMCID: PMC3965532  PMID: 24667393
14.  Distinct requirements for Hfe in basal and induced hepcidin levels in iron overload and inflammation 
Hepcidin is a negative regulator of iron absorption produced mainly by the liver in response to changes in iron stores and inflammation, and its levels have been shown to regulate the intestinal basolateral iron transporter ferroportin1 (Fp1). Hereditary hemochromatosis patients and Hfe-deficient mice show inappropriate expression of hepcidin but, in apparent contradiction, still retain the ability to regulate iron absorption in response to alterations of iron metabolism. To further understand the molecular relationships among Hfe, hepcidin, and Fp1, we investigated hepcidin and Fp1 regulation in Hfe-deficient mice (Hfe−/− and β2m−/−) in response to iron deprivation, iron loading, and acute inflammation. We found that whereas basal hepcidin levels were manifestly dependent on the presence of Hfe and on the mouse background, all Hfe-deficient mice were still able to regulate hepcidin in situations of altered iron homeostasis. In the liver, Fp1 was modulated in opposite directions by iron and LPS, and its regulation in Hfe-deficient mice was similar to that observed in wild-type mice. In addition, we found that iron-deprived mice were able to mount a robust response after LPS challenge and that Toll-like receptor 4 (TLR-4)-deficient mice fail to regulate hepcidin expression in response to LPS. In conclusion, these results suggest that although Hfe is necessary for the establishment of hepcidin basal levels, it is dispensable for hepcidin regulation through both the iron-sensing and inflammatory pathways, and hepatic Fp1 regulation is largely independent of hepcidin and Hfe. The inflammatory pathway overrides the iron-sensing pathway and is TLR-4 dependent.
PMCID: PMC2891007  PMID: 16565419 CAMSID: cams1056
ferroportin 1; Toll-like receptor 4; β2m; hereditary hemochromatosis; lipopolysaccharide
15.  Is serum hepcidin causative in hemochromatosis? Novel analysis from a liver transplant with hemochromatosis 
Hepcidin is a circulating hepatic hormone that regulates iron balance. It has been speculated that hepcidin insufficiency or dysregulation may be the primary defect in genetic hemochromatosis.
A 62-year-old woman underwent elective liver transplantation for chronic hepatitis C cirrhosis. Genetic testing for hemochromatosis was subsequently performed on the donor and recipient. Liver iron concentration was measured in the donated liver at the time of transplantation, and at day 2 and day 652 post-transplant. Serum hepcidin was measured at day 935 in the recipient and in three other liver transplant recipients.
The donor was discovered to have significant iron overload without fibrosis, with a liver iron concentration of 326 μmol/g (normal is 0 μmol/g to 35 μmol/g). Genetic testing confirmed that the 89-year-old female donor was a typical C282Y homozygote for hemochromatosis. The recipient did not carry either the C282Y or the H63D mutation of the HFE gene for hemochromatosis. Liver biopsy was performed on the recipient on day 2 and day 652 post-transplant; the liver iron concentrations were 333 μmol/g and 253 μmol/g, respectively. Serum hepcidin in the recipient was elevated at 111 ng/mL compared with that of the three other ambulatory liver transplant recipients (66 ng/mL, 76 ng/mL and 81 ng/mL).
The liver transplant recipient described in the present report demonstrated a slight decrease in liver iron concentration over a 1.8-year follow-up period without specific therapy. Hepcidin insufficiency as a primary cause of genetic hemochromatosis seems unlikely based on the clinical profile of the present patient and the hepcidin measurements.
PMCID: PMC2661307  PMID: 18925311
Hemochromatosis; HFE; Iron overload
16.  Hepcidin: A useful marker in chronic obstructive pulmonary disease 
Annals of Thoracic Medicine  2012;7(1):31-35.
This study was designed to evaluate the levels of hepcidin in the serum of patients with chronic obstructive pulmonary disease (COPD).
In the study, 74 male patients (ages 45-75) in a stable period for COPD were grouped as Group I: Mild COPD (n:25), Group II: Moderate COPD (n:24), and Group III: Severe COPD (n:25). Healthy non-smoker males were included in Group IV (n:35) as a control group. The differences of hepcidin level among all the groups were examined. Also, in the patient groups with COPD, hepcidin level was compared with age, body mass index, cigarette (package/year), blood parameters (iron, total iron binding capacity, ferritin, hemoglobin, hematocrit [hct]), respiratory function tests, and arterial blood gas results.
Although there was no difference between the healthy control group and the mild COPD patient group (P=0.781) in terms of hepcidin level, there was a difference between the moderate (P=0.004) and the severe COPD patient groups (P=0.002). The hepcidin level of the control group was found to be higher than the moderate and severe COPD patient groups. In the severe COPD patients, hepcidin level increased with the increase in serum iron (P=0.000), hct (P=0.009), ferritin levels (P=0.012), and arterial oxygen saturation (SaO2, P=0.000).
The serum hepcidin level that is decreased in severe COPD brings into mind that it may play a role in the mechanism to prevent hypoxemia. The results suggest that serum hepcidin level may be a useful marker in COPD. Larger prospective studies are needed to confirm our findings between hepcidin and COPD.
PMCID: PMC3277039  PMID: 22347348
Chronic obstructive pulmonary disease; hepcidin; hypoxemia
17.  The Relation of Hepcidin to Iron Disorders, Inflammation and Hemoglobin in Chronic Kidney Disease 
PLoS ONE  2014;9(6):e99781.
The metabolism of hepcidin is profoundly modified in chronic kidney disease (CKD). We investigated its relation to iron disorders, inflammation and hemoglobin (Hb) level in 199 non-dialyzed, non-transplanted patients with CKD stages 1–5. All had their glomerular filtration rate measured by 51Cr-EDTA renal clearance (mGFR), as well as measurements of iron markers including hepcidin and of erythropoietin (EPO). Hepcidin varied from 0.2 to 193 ng/mL. The median increased from 23.3 ng/mL [8.8–28.7] to 36.1 ng/mL [14.1–92.3] when mGFR decreased from ≥60 to <15 mL/min/1.73 m2 (p = 0.02). Patients with absolute iron deficiency (transferrin saturation (TSAT) <20% and ferritin <40 ng/mL) had the lowest hepcidin levels (5.0 ng/mL [0.7–11.7]), and those with a normal iron profile (TSAT ≥20% and ferritin ≥40), the highest (34.5 ng/mL [23.7–51.6]). In multivariate analysis, absolute iron deficiency was associated with lower hepcidin values, and inflammation combined with a normal or functional iron profile with higher values, independent of other determinants of hepcidin concentration, including EPO, mGFR, and albuminemia. The hepcidin level, although it rose overall when mGFR declined, collapsed in patients with absolute iron deficiency. There was a significant interaction with iron status in the association between Hb and hepcidin. Except in absolute iron deficiency, hepcidin’s negative association with Hb level indicates that it is not down-regulated in CKD anemia.
PMCID: PMC4076189  PMID: 24978810
18.  Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading 
Hepatology (Baltimore, Md.)  2011;53(4):1333-1341.
In response to iron loading, hepcidin synthesis is homeostatically increased to limit further absorption of dietary iron and its release from stores. Mutations in HFE, transferrin receptor 2 (Tfr2), hemojuvelin (HJV) or bone morphogenetic protein 6 (BMP6) prevent appropriate hepcidin response to iron, allowing increased absorption of dietary iron, and eventually iron overload. To understand the role each of these proteins plays in hepcidin regulation by iron, we analyzed hepcidin mRNA responsiveness to short and long-term iron challenge in iron-depleted Hfe, Tfr2, Hjv and Bmp6 mutant mice. After 1-day (acute) iron challenge, Hfe−/− showed a smaller hepcidin increase than their wild-type strain-matched controls, Bmp6−/− nearly no increase, and Tfr2 and Hjv mutants no increase in hepcidin expression, indicating that all four proteins participate in hepcidin regulation by acute iron changes. After a 21-day (chronic) iron challenge, Hfe and Tfr2 mutants increased hepcidin expression to nearly wild-type levels but a blunted increase of hepcidin was seen in Bmp6−/− and Hjv−/− mice. BMP6, whose expression is also regulated by iron, may mediate hepcidin regulation by iron stores. None of the mutant strains (excepting Bmp6−/− mice) had impaired BMP6 mRNA response to chronic iron loading. Conclusion: TfR2, HJV and BMP6 and, to a lesser extent, HFE, are required for the hepcidin response to acute iron loading, but are partially redundant for hepcidin regulation during chronic iron loading, and are not involved in the regulation of BMP6 expression. Our findings support a model in which acute increases in holotransferrin concentrations transmitted through HFE, TfR2 and HJV augment BMP receptor sensitivity to BMPs. A distinct regulatory mechanism that senses hepatic iron may modulate hepcidin response to chronic iron loading.
PMCID: PMC3074982  PMID: 21480335
Hereditary hemochromatosis; bone morphogenetic protein 6; hemojuvelin; HFE; transferrin receptor 2
19.  Comparative evaluation of the effects of treatment with tocilizumab and TNF-α inhibitors on serum hepcidin, anemia response and disease activity in rheumatoid arthritis patients 
Arthritis Research & Therapy  2013;15(5):R141.
Anemia of inflammation (AI) is a common complication of rheumatoid arthritis (RA) and has a negative impact on RA symptoms and quality of life. Upregulation of hepcidin by inflammatory cytokines has been implicated in AI. In this study, we evaluated and compared the effects of IL-6 and TNF-α blocking therapies on anemia, disease activity, and iron-related parameters including serum hepcidin in RA patients.
Patients (n = 93) were treated with an anti-IL-6 receptor antibody (tocilizumab) or TNF-α inhibitors for 16 weeks. Major disease activity indicators and iron-related parameters including serum hepcidin-25 were monitored before and 2, 4, 8, and 16 weeks after the initiation of treatment. Effects of tocilizumab and infliximab (anti-TNF-α antibody) on cytokine-induced hepcidin expression in hepatoma cells were analyzed by quantitative real-time PCR.
Anemia at base line was present in 66% of patients. Baseline serum hepcidin-25 levels were correlated positively with serum ferritin, C-reactive protein (CRP), vascular endothelial growth factor (VEGF) levels and Disease Activity Score 28 (DAS28). Significant improvements in anemia and disease activity, and reductions in serum hepcidin-25 levels were observed within 2 weeks in both groups, and these effects were more pronounced in the tocilizumab group than in the TNF-α inhibitors group. Serum hepcidin-25 reduction by the TNF-α inhibitor therapy was accompanied by a decrease in serum IL-6, suggesting that the effect of TNF-α on the induction of hepcidin-25 was indirect. In in vitro experiments, stimulation with the cytokine combination of IL-6+TNF-α induced weaker hepcidin expression than did with IL-6 alone, and this induction was completely suppressed by tocilizumab but not by infliximab.
Hepcidin-mediated iron metabolism may contribute to the pathogenesis of RA-related anemia. In our cohort, tocilizumab was more effective than TNF-α inhibitors for improving anemia and normalizing iron metabolism in RA patients by inhibiting hepcidin production.
PMCID: PMC3978580  PMID: 24286116
20.  Hepcidin levels in diabetes mellitus and polycystic ovary syndrome 
Diabetic Medicine  2013;30(12):1495-1499.
Increased body iron is associated with insulin resistance. Hepcidin is the key hormone that negatively regulates iron homeostasis. We hypothesized that individuals with insulin resistance have inadequate hepcidin levels for their iron load.
Serum concentrations of the active form of hepcidin (hepcidin-25) and hepcidin:ferritin ratio were evaluated in participants with Type 2 diabetes (n = 33, control subjects matched for age, gender and BMI,n = 33) and participants with polycystic ovary syndrome (n = 27, control subjects matched for age and BMI,n = 16). To investigate whether any changes observed were associated with insulin resistance rather than insulin deficiency or hyperglycaemia per se, the same measurements were made in participants with Type 1 diabetes (n = 28, control subjects matched for age, gender and BMI,n = 30). Finally, the relationship between homeostasis model assessment of insulin resistance and serum hepcidin:ferritin ratio was explored in overweight or obese participants without diabetes (n = 16).
Participants with Type 2 diabetes had significantly lower hepcidin and hepcidin:ferritin ratio than control subjects (P < 0.05 and P < 0.01, respectively). Participants with polycystic ovary syndrome had a significantly lower hepcidin:ferritin ratio than control subjects (P < 0.05). There was no significant difference in hepcidin or hepcidin:ferritin ratio between participants with Type 1 diabetes and control subjects (P = 0.88 and P = 0.94). Serum hepcidin:ferritin ratio inversely correlated with homeostasis model assessment of insulin resistance (r = –0.59, P < 0.05).
Insulin resistance, but not insulin deficiency or hyperglycaemia per se, is associated with inadequate hepcidin levels. Reduced hepcidin concentrations may cause increased body iron stores in insulin-resistant states.
PMCID: PMC4232927  PMID: 23796160
21.  Hepcidin Expression in Iron Overload Diseases Is Variably Modulated by Circulating Factors 
PLoS ONE  2012;7(5):e36425.
Hepcidin is a regulatory hormone that plays a major role in controlling body iron homeostasis. Circulating factors (holotransferrin, cytokines, erythroid regulators) might variably contribute to hepcidin modulation in different pathological conditions. There are few studies analysing the relationship between hepcidin transcript and related protein expression profiles in humans. Our aims were: a. to measure hepcidin expression at either hepatic, serum and urinary level in three paradigmatic iron overload conditions (hemochromatosis, thalassemia and dysmetabolic iron overload syndrome) and in controls; b. to measure mRNA hepcidin expression in two different hepatic cell lines (HepG2 and Huh-7) exposed to patients and controls sera to assess whether circulating factors could influence hepcidin transcription in different pathological conditions. Our findings suggest that hepcidin assays reflect hepatic hepcidin production, but also indicate that correlation is not ideal, likely due to methodological limits and to several post-trascriptional events. In vitro study showed that THAL sera down-regulated, HFE-HH and C-NAFLD sera up-regulated hepcidin synthesis. HAMP mRNA expression in Huh-7 cells exposed to sera form C-Donors, HFE-HH and THAL reproduced, at lower level, the results observed in HepG2, suggesting the important but not critical role of HFE in hepcidin regulation.
PMCID: PMC3346721  PMID: 22586470
22.  Increased Serum Hepcidin Levels in Subjects with the Metabolic Syndrome: A Population Study 
PLoS ONE  2012;7(10):e48250.
The recent discovery of hepcidin, the key iron regulatory hormone, has changed our view of iron metabolism, which in turn is long known to be linked with insulin resistant states, including type 2 diabetes mellitus and the Metabolic Syndrome (MetS). Serum ferritin levels are often elevated in MetS (Dysmetabolic hyperferritinemia - DHF), and are sometimes associated with a true mild-to-moderate hepatic iron overload (dysmetabolic iron overload syndrome - DIOS). However, the pathophysiological link between iron and MetS remains unclear. This study was aimed to investigate, for the first time, the relationship between MetS and hepcidin at population level. We measured serum hepcidin levels by Mass Spectrometry in 1,391 subjects from the Val Borbera population, and evaluated their relationship with classical MetS features. Hepcidin levels increased significantly and linearly with increasing number of MetS features, paralleling the trend of serum ferritin. In multivariate models adjusted for relevant variables including age, C-Reactive Protein, and the HFE C282Y mutation, ferritin was the only significant independent predictor of hepcidin in males, while in females MetS was also independently associated with hepcidin. Overall, these data indicate that the fundamental iron regulatory feedback is preserved in MetS, i.e. that hepcidin tends to progressively increase in response to the increase of iron stores. Due to recently discovered pleiotropic effects of hepcidin, this may worsen insulin resistance and contribute to the cardiovascular complications of MetS.
PMCID: PMC3483177  PMID: 23144745
23.  Reduced serum hepcidin levels in patients with chronic hepatitis C 
Journal of hepatology  2009;51(5):845-852.
Patients with chronic hepatitis C (CHC) often have increased liver iron, a condition associated with reduced sustained response to antiviral therapy, more rapid progression to cirrhosis, and development of hepatocellular carcinoma. The hepatic hormone hepcidin is the major regulator of iron metabolism and inhibits iron absorption and recycling from erythrophagocytosis. Hepcidin decrease is a possible pathophysiological mechanism of iron overload in CHC, but studies in humans have been hampered so far by the lack of reliable quantitative assays for the 25-amino acid bioactive peptide in serum (s-hepcidin).
Using a recently validated immunoassay, we measured s-hepcidin levels in 81 untreated CHC patients and 57 controls with rigorous definition of normal iron status. All CHC patients underwent liver biopsy with histological iron score.
S-hepcidin was significantly lower in CHC patients than in controls (geometric means with 95% confidence intervals: 33.7, 21.5–52.9 vs. 90.9, 76.1–108.4 ng/mL, respectively; p < 0.001). In CHC patients, s-hepcidin significantly correlated with serum ferritin and histological total iron score, but not with s-interleukin-6. After stratification for ferritin quartiles, s-hepcidin increased significantly across quartiles in both controls and CHC patients (chi for trend, p < 0.001). However, in CHC patients, s-hepcidin was significantly lower than in controls for each corresponding quartile (analysis of variance, p < 0.001).
These results, together with very recent studies in animal and cellular models, indicate that although hepcidin regulation by iron stores is maintained in CHC, the suppression of this hormone by hepatitis C virus is likely an important factor in liver iron accumulation in this condition.
PMCID: PMC2761995  PMID: 19729219
Chronic hepatitis C; Hemochromatosis; Hepcidin; Iron overload; Ferritin
24.  Iron status in patients with chronic heart failure 
European Heart Journal  2012;34(11):827-834.
The changes in iron status occurring during the course of heart failure (HF) and the underlying pathomechanisms are largely unknown. Hepcidin, the major regulatory protein for iron metabolism, may play a causative role. We investigated iron status in a broad spectrum of patients with systolic HF in order to determine the changes in iron status in parallel with disease progression, and to associate iron status with long-term prognosis.
Methods and results
Serum concentrations of ferritin, transferrin saturation (Tsat), soluble transferrin receptor (sTfR), and hepcidin were assessed as the biomarkers of iron status in 321 patients with chronic systolic HF [age: 61 ± 11 years, men: 84%, left ventricular ejection fraction: 31 ± 9%, New York Heart Association (NYHA) class: 72/144/87/18] at a tertiary cardiology centre and 66 age- and gender-matched healthy subjects. Compared with healthy subjects, asymptomatic HF patients had similar haematological status, but increased iron stores (evidenced by higher serum ferritin without distinct inflammation, P < 0.01) with markedly elevated serum hepcidin (P < 0.001). With increasing HF severity, patients in advanced NYHA classes had iron deficiency (ID) (reduced serum ferritin, low Tsat, high sTfR), iron-restricted erythropoiesis (reduced haemoglobin, high red cell distribution width), and inflammation (high serum high-sensitivity-C-reactive protein and interleukin 6), which was accompanied by decreased circulating hepcidin (all P < 0.001). In multivariable Cox models, low hepcidin was independently associated with increased 3-year mortality among HF patients (P < 0.001).
Increased level of circulating hepcidin characterizes an early stage of HF, and is not accompanied by either anaemia or inflammation. The progression of HF is associated with the decline in circulating hepcidin and the development of ID. Low hepcidin independently relates to unfavourable outcome.
PMCID: PMC3697803  PMID: 23178646
Heart failure; Iron deficiency; Ferritin; Hepcidin; Prognosis
25.  Association of Hepcidin mRNA Expression With Hepatocyte Iron Accumulation and Effects of Antiviral Therapy in Chronic Hepatitis C Infection 
Hepatitis Monthly  2014;14(11):e21184.
Iron overload is frequently observed in patients with chronic hepatitis C (CHC) and is associated with the increased risk of liver fibrosis and carcinogenesis. Hepcidin is a regulator of iron homeostasis and a component of innate immunity. Based on experimental studies, iron overload might be a result of low hepcidin synthesis in CHC.
The aim of this case-control study was to assess hepcidin mRNA expression in liver tissue of patients with CHC in terms of iron metabolism parameters, hemochromatosis (HFE) gene mutations, disease activity, and efficacy of antiviral treatment with pegylated interferon and ribavirin.
Patients and Methods:
A total of 31 patients with CHC, who were qualified for antiviral therapy, were compared with 19 patients with chronic hepatitis B (CHB). In both groups, liver function tests and serum iron parameters were assayed and hepcidin mRNA expression was measured in liver specimens using real time PCR with normalization to reference genes mRNA of stable expression.
Patients with CHC had lower hepcidin mRNA expression and more frequently iron deposits in hepatocytes than subjects with CHB did. In CHC group, hepcidin mRNA expression was positively correlated with alanine aminotransferase activity and serum iron concentration. Low expression of hepcidin had no correlation with tissue iron overload in those with CHC. In univariate analysis, HCV viral load and efficacy of antiviral treatment were not significantly associated with hepcidin mRNA expression.
Further studies on the role of hepcidin in pathogenesis of CHC are needed to assess the potency of its use in antiviral treatment.
PMCID: PMC4286710  PMID: 25598789
Hepatitis C; Hepcidin; Iron Overload; Liver; Interferon-alpha

Results 1-25 (945108)