Search tips
Search criteria

Results 1-25 (7897)

Clipboard (0)

Related Articles

1.  The Phage Proteomic Tree: a Genome-Based Taxonomy for Phage 
Journal of Bacteriology  2002;184(16):4529-4535.
There are ∼1031 phage in the biosphere, making them the most abundant biological entities on the planet. Despite their great numbers and ubiquitous presence, very little is known about phage biodiversity, biogeography, or phylogeny. Information is limited, in part, because the current ICTV taxonomical system is based on culturing phage and measuring physical parameters of the free virion. No sequence-based taxonomic systems have previously been established for phage. We present here the “Phage Proteomic Tree,” which is based on the overall similarity of 105 completely sequenced phage genomes. The Phage Proteomic Tree places phage relative to both their near neighbors and all other phage included in the analysis. This method groups phage into taxa that predicts several aspects of phage biology and highlights genetic markers that can be used for monitoring phage biodiversity. We propose that the Phage Proteomic Tree be used as the basis of a genome-based taxonomical system for phage.
PMCID: PMC135240  PMID: 12142423
2.  Classification of Lytic Bacteriophages Attacking Dairy Leuconostoc Starter Strains 
Applied and Environmental Microbiology  2013;79(12):3628-3636.
A set of 83 lytic dairy bacteriophages (phages) infecting flavor-producing mesophilic starter strains of the Leuconostoc genus was characterized, and the first in-depth taxonomic scheme was established for this phage group. Phages were obtained from different sources, i.e., from dairy samples originating from 11 German dairies (50 Leuconostoc pseudomesenteroides [Ln. pseudomesenteroides] phages, 4 Ln. mesenteroides phages) and from 3 external phage collections (17 Ln. pseudomesenteroides phages, 12 Ln. mesenteroides phages). All phages belonged to the Siphoviridae family of phages with isometric heads (diameter, 55 nm) and noncontractile tails (length, 140 nm). With the exception of one phage (i.e., phage ΦLN25), all Ln. mesenteroides phages lysed the same host strains and revealed characteristic globular baseplate appendages. Phage ΦLN25, with different Y-shaped appendages, had a unique host range. Apart from two phages (i.e., phages P792 and P793), all Ln. pseudomesenteroides phages shared the same host range and had plain baseplates without distinguishable appendages. They were further characterized by the presence or absence of a collar below the phage head or by unique tails with straight striations. Phages P792 and P793 with characteristic fluffy baseplate appendages could propagate only on other specific hosts. All Ln. mesenteroides and all Ln. pseudomesenteroides phages were members of two (host species-specific) distinct genotypes but shared a limited conserved DNA region specifying their structural genes. A PCR detection system was established and was shown to be reliable for the detection of all Leuconostoc phage types.
PMCID: PMC3675911  PMID: 23563949
3.  Sequencing and Characterization of Pseudomonas aeruginosa phage JG004 
BMC Microbiology  2011;11:102.
Phages could be an important alternative to antibiotics, especially for treatment of multiresistant bacteria as e.g. Pseudomonas aeruginosa. For an effective use of bacteriophages as antimicrobial agents, it is important to understand phage biology but also genes of the bacterial host essential for phage infection.
We isolated and characterized a lytic Pseudomonas aeruginosa phage, named JG004, and sequenced its genome. Phage JG004 is a lipopolysaccharide specific broad-host-range phage of the Myoviridae phage family. The genome of phage JG004 encodes twelve tRNAs and is highly related to the PAK-P1 phage genome. To investigate phage biology and phage-host interactions, we used transposon mutagenesis of the P. aeruginosa host and identified P. aeruginosa genes, which are essential for phage infection. Analysis of the respective P. aeruginosa mutants revealed several characteristics, such as host receptor and possible spermidine-dependance of phage JG004.
Whole genome sequencing of phage JG004 in combination with identification of P. aeruginosa host genes essential for infection, allowed insights into JG004 biology, revealed possible resistance mechanisms of the host bacterium such as mutations in LPS and spermidine biosynthesis and can also be used to characterize unknown gene products in P. aeruginosa.
PMCID: PMC3120641  PMID: 21569567
4.  Molecular relationships among serogroup B bacteriophages of Staphylococcus aureus. 
Journal of Virology  1985;55(1):111-116.
The typing bacteriophages 55, 80, 83A, and 85 of Staphylococcus aureus, representative of the three major lytic groups of serological group B aureophages, have been examined for relatedness of their genomes and virion proteins. Phages 11 and 80 alpha were also examined to determine the relationship of phage 80 alpha to phages 11 and 80. Total genome hybridization measurements divided the phages into two groups. Phages 55 and 80, in the first group, had DNA homology of 50%. Phages 11, 80 alpha, 83A, and 85 formed a second group with 27 to 65% homology. Homology between the two groups was in the range of 14 to 22%. Phage 80 alpha is more closely related to phage 11 than to phage 80, though it is probably not a simple recombinant of phages 11 and 80. Restriction enzyme digestion and phage [32P]DNA hybridization analysis of the endonuclease-generated fragments from each phage DNA confirmed the findings of the DNA homology measurements. The endonuclease fragment patterns generated by EcoRI and HindIII were distinctive for each phage, confirming that none of the phages are closely related. Common sequences were present in most fragments from the phage DNAs when the labeled probe DNA was from a different phage in the same group. Cross-group probing of endonuclease fragments revealed both a diminished level of homology when similar sequences were present and the probable absence of some sequences. Virion proteins, examined by polyacrylamide gel electrophoresis, were similar in number and molecular weight for phages 11, 80 alpha, 83A, and 85, reflecting the DNA homology analyses. The virion proteins from phages 55 and 80, however, were more distinctive, and both differed from the phages in the other group.
PMCID: PMC254904  PMID: 2989549
5.  A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. 
Journal of Bacteriology  1991;173(19):6095-6100.
Phage-resistant mutants, isolated from cultures of Lactococcus lactis subsp. lactis C2 infected with phage c2, did not form plaques but bound phage normally. The mutants were sensitive to another phage, sk1, although the number of plaques was reduced approximately 56% and the plaques were four times smaller. Binding to phage sk1 was reduced about 10%. Another group of phage-resistant mutants, isolated from cultures infected with phage sk1, bound normally to both phages c2 and sk1 but did not form plaques with either phage. Carbohydrate analyses by gas chromatography of the cell walls showed no significant differences in saccharide compositions between the wild-type and phage-resistant cells. However, a difference was observed in the interactions of the phage with the cytoplasmic membranes. Membranes from the wild-type cells, but not mutant cells, inactivated phage c2. Phage sk1 was not inactivated by membrane from either strain. Treatment of wild-type membranes with proteinase K eliminated the ability of the membrane to inactivate the phage, whereas treatment with mutanolysin had no effect. On the basis of this ability to inactivate the phage, a membrane protein was partially purified by gel filtration and ion-exchange chromatography. Under nondenaturing conditions, the phage-inactivating protein has an apparent Mr of approximately 350,000. The protein has an apparent subunit size of 32 kDa, which suggests that it normally exists as a multimer with 10 to 12 subunits or in association with other membrane components. It is proposed that this protein is required for phage c2 infection.
PMCID: PMC208356  PMID: 1917843
6.  Shiga Toxin 2-Converting Bacteriophages Associated with Clonal Variability in Escherichia coli O157:H7 Strains of Human Origin Isolated from a Single Outbreak  
Infection and Immunity  2003;71(8):4554-4562.
Shiga toxin 2 (Stx2)-converting bacteriophages induced from 49 strains of Escherichia coli O157:H7 isolated during a recent outbreak of enterocolitis in Spain were examined in an attempt to identify the variability due to the stx2-converting phages. The bacterial isolates were divided into low-, medium-, and high-phage-production groups on the basis of the number of phages released after mitomycin C induction. Low- and medium-phage-production isolates harbored two kinds of phages but released only one of them, whereas high-phage-production isolates harbored only one of the two phages. One of the phages, φSC370, which was detected only in the isolates with two phages, showed similarities with phage 933W. The second phage, φLC159, differed from φSC370 in morphology and DNA structure. When both phages were present in the same bacterial chromosome, as occurred in most of the isolates, only φSC370 was detected in the supernatants of the induced cultures. If φLC159 was released, its presence was masked by φSC370. When φSC370 was absent, large amounts of φLC159 were released, suggesting that there was some regulation of phage expression between the two phages. To our knowledge, this is the first description of clonal variability due to phage loss. The higher level of phage production was reflected in the larger amounts of Stx2 toxin produced by the cultures. Some relationship between phage production and the severity of symptoms was observed, and consequently these observations suggest that the virulence of the isolates studied could be related to the variability of the induced stx2-converting phages.
PMCID: PMC166033  PMID: 12874335
7.  Human Volunteers Receiving Escherichia coli Phage T4 Orally: a Safety Test of Phage Therapy 
Fifteen healthy adult volunteers received in their drinking water a lower Escherichia coli phage T4 dose (103 PFU/ml), a higher phage dose (105 PFU/ml), and placebo. Fecal coliphage was detected in a dose-dependent way in volunteers orally exposed to phage. All volunteers receiving the higher phage dose showed fecal phage 1 day after exposure; this prevalence was only 50% in subjects receiving the lower phage dose. No fecal phage was detectable a week after a 2-day course of oral phage application. Oral phage application did not cause a decrease in total fecal E. coli counts. In addition, no substantial phage T4 replication on the commensal E. coli population was observed. No adverse events related to phage application were reported. Serum transaminase levels remained in the normal range, and neither T4 phage nor T4-specific antibodies were observed in the serum of the subjects at the end of the study. This is, to our knowledge, the first safety test in the recent English literature which has measured the bioavailability of oral phage in humans and is thus a first step to the rational evaluation of phage therapy for diarrheal diseases.
PMCID: PMC1168693  PMID: 15980363
8.  Isolation and Characterization of a New Generalized Transducing Bacteriophage Different from Pl in Escherichia coli 
Journal of Virology  1971;7(1):168-175.
A new generalized transducing bacteriophage in the Escherichia coli system was isolated and characterized. This phage, designated D108, makes clear plaques on E. coli K-10, K-12, K-12(P1kc), K-12(D6), B/r, C, and 15 T−, and Shigella dysenteriae. The plaque of phage D108 is larger in size than that of phage P1kc. Electron-microscopic observation revealed that phages D108 and P1kc are morphologically different from each other, suggesting that phage D108 belongs to a phage group different from phage P1. The fact that all of the 10 markers tested were transduced by phage D108 indicates that this phage is a generalized transducing phage in the E. coli system. The transduction frequency by phage D108 of chromosomal markers and of a drug resistance factor (R factor) ranged from 2 × 10−6 to 3 × 10−8 and 3 × 10−9 to 6 × 10−10 per phage, respectively. The cotransduction frequency of the thr and leu markers was 2.8% for phage P1kc and 1.5% for phage D108. The CM and TC markers (chloramphenicol-resistant and tetracycline-resistant markers, respectively) of the R factor were not cotransduced by phage D108, but the markers were generally cotransduced by phage P1kc. The results suggest that the transducing particle of phage D108 contains a smaller amount of host deoxyribonucleic acid than does phage P1kc.
PMCID: PMC356090  PMID: 5543429
9.  Bacteriophage of Haemophilus influenzae III. Morphology, DNA Homology, and Immunity Properties of HP1c1, S2, and the Defective Bacteriophage from Strain Rd 
Journal of Virology  1973;11(4):585-591.
The phages HP1c1 and S2 and a defective phage of Haemophilus influenzae have been compared. The morphology of the phages and the mol wt of their DNAs are similar, although the defective phage appears to have a different tail plate region. Electron microscope observation indicates that the defective phage does not attach to the cell surface, and its DNA appears to lack cohesive ends. The homology of the DNAs of the phages has been measured by hydridization. DNA from the defective phage shows little or no homology with the other phage DNAs. HP1c1 and S2 DNAs show a high level of homology. Each of these phages can form plaques on lawns of the lysogen of the other phage but at reduced plating efficiencies, suggesting that the two phages have related but not identical immunity systems.
PMCID: PMC355140  PMID: 4540713
10.  Comparative Study of 35 Bacteriophages of Lactobacillus helveticus: Morphology and Host Range 
This survey included 23 phages isolated from cheese whey and 12 temperate phages induced with mitomycin from their lysogenic host strains. All of the phages had an isometric head and a tail with a contractile sheath. In addition, short-tailed (160-nm-long) and long-tailed (260-nm-long) phages were distinguished. Short-tailed phages were by far the most widespread in French cheese factories (32 of the 35 phages studied). The study of phage relationships enabled two large groups of strains to be distinguished: those not or slightly sensitive to phages and those very sensitive to phages. There was an obvious relationship in the first group between phage sensitivity (or resistance) and the geographic origin of the strains. The second group contained primarily strains from large international collections and those isolated from commercial starters. The relationships among short-tailed phages, either temperate or isolated as lytic, suggest that lysogenic strains could be the major source of phages in French cheese factories.
PMCID: PMC195370  PMID: 16348661
1. The increase in bacteria, phage concentration, and gelatinase concentration in cultures of B. megatherium has been determined. 2. With lysogenic cultures the phage concentration, gelatinase concentration, and bacteria concentration increase logarithmically at first. The phage and gelatinase concentration then decrease while the bacteria concentration increases to a maximum. 3. The results are the same with sensitive cultures if the ratio of phage to bacteria is small. If the ratio of phage to bacteria is large phage, gelatinase, and bacteria concentration all increase at first and then decrease. The maximum rate of increase coincides approximately with the maximum rate of oxygen consumption of the culture. 4. 60–90 per cent of the phage is free from the cells. 5. The amount of phage produced is determined by the combined phage and not by the total phage. 6. Phage is produced during growth of the cells and not during lysis. 7. In a very narrow range of pH near 5.55 no increase in bacteria occurs but large increases in phage may be obtained.
PMCID: PMC2237906  PMID: 19873141
12.  Phage Wrapping with Cationic Polymers Eliminates Non-specific Binding between M13 Phage and High pI Target Proteins 
Journal of the American Chemical Society  2009;131(45):16454-16460.
M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO2, and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient “phage wrapping” strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking non-specific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials, and solve a major problem in phage display – non-specific binding by the phage to high pI target proteins.
PMCID: PMC3197222  PMID: 19856910
13.  Quantitative Models of In Vitro Bacteriophage–Host Dynamics and Their Application to Phage Therapy 
PLoS Pathogens  2009;5(1):e1000253.
Phage therapy is the use of bacteriophages as antimicrobial agents for the control of pathogenic and other problem bacteria. It has previously been argued that successful application of phage therapy requires a good understanding of the non-linear kinetics of phage–bacteria interactions. Here we combine experimental and modelling approaches to make a detailed examination of such kinetics for the important food-borne pathogen Campylobacter jejuni and a suitable virulent phage in an in vitro system. Phage-insensitive populations of C. jejuni arise readily, and as far as we are aware this is the first phage therapy study to test, against in vitro data, models for phage–bacteria interactions incorporating phage-insensitive or resistant bacteria. We find that even an apparently simplistic model fits the data surprisingly well, and we confirm that the so-called inundation and proliferation thresholds are likely to be of considerable practical importance to phage therapy. We fit the model to time series data in order to estimate thresholds and rate constants directly. A comparison of the fit for each culture reveals density-dependent features of phage infectivity that are worthy of further investigation. Our results illustrate how insight from empirical studies can be greatly enhanced by the use of kinetic models: such combined studies of in vitro systems are likely to be an essential precursor to building a meaningful picture of the kinetic properties of in vivo phage therapy.
Author Summary
Phage therapy is an antimicrobial treatment based on specific viruses which are natural predators of bacteria. This approach is being promoted as a possible alternative treatment for use against antibiotic-resistant strains of bacteria. Despite its long history and many potential benefits, adoption of phage therapy has been retarded by a variety of factors, including a poor understanding of the therapeutic consequences of the phage–bacteria relationship. In our work we bring together theory and data by testing kinetic models of phage–bacteria interactions against data for an important agent of human food poisoning, Campylobacter jejuni. Our model explicitly allows for resistant bacteria because these have not been properly accounted for in previous phage therapy theory but will be relevant to practical applications. The excellent fit of our model to the data confirms the value of such combined approaches and supports an interpretative viewpoint based on critical density-dependent thresholds that are not part of standard pharmacology. We also find that phage activity appears to be dose-dependent, and we speculate on possible causes for this. Our work illustrates how mathematical models can considerably enhance insights from empirical studies, as an important step in advancing the understanding of phage therapy.
PMCID: PMC2603284  PMID: 19119417
14.  Hyaluronidase activity of bacteriophages of group A streptococci. 
Infection and Immunity  1977;15(2):527-532.
A sensitive dye-binding assay was employed to study the hyaluronidase associated with temperate and virulent phages infected group A streptococci. Some enzyme was detectable in each purified phage preparation examined, but differences of several orders of magnitude separated the lower enzyme levels in virulent phages that required the addition of hyaluronidase for plaque formation and the higher levels in temperate phages that did not. Infection by virulent phage A25 was accompanied by the production of levels of hyaluronidase proportionate to the average burst size. Hyaluronidase was produced during infection by temperate phages at a much higher level than could be accounted for by the number of phage particles formed. The major portion of this hyaluronidase was free and apparently unassociated with phage or phage fragments. The phage-associated enzyme was tightly bound but could be released and solubilized by treatment with urea.
PMCID: PMC421399  PMID: 321352
15.  Characterization of Lactococcus lactis phage antigens. 
Phage phi 197 is representative of a widespread lactococcal phage group characterized by a particular morphology (prolate head with a noncontractile tail). In order to develop an immunoenzymatic phage detection test, fusion proteins containing beta-galactosidase fused to epitopes of phage phi 197 structural proteins were constructed by cloning random DNA fragments from the phage genome upstream of a lacZ gene on a plasmid vector. Recombinant plasmids containing certain fragments encoded the synthesis of fusion proteins which react with polyclonal antibodies against the phage and confer a Lac+ phenotype on Escherichia coli. Three different epitopes were represented; phage-specific DNA fragments encoding these epitopes were mapped at three locations on the phage genome, and their nucleotide sequences were determined. Two fused phage antigens were conformational epitopes, whereas the phage epitope of protein encoded by the recombinant plasmid designated pOA17 was a denaturation-resistant epitope. This epitope was very immunogenic. Protein encoded by plasmid pOA17 was synthesized in large amounts from a strong promoter. Antibodies raised against this hybrid protein were used to identify the 46-kDa minor phage protein which provides the epitope. Antibody cross-reactivity of phages related to phi 197 showed that this epitope is well conserved in this genetic group.
PMCID: PMC195807  PMID: 1514794
16.  Bacteriophage Tail Components 
Journal of Virology  1970;5(6):740-753.
The protein component of the T-even bacteriophage coat which binds the phage-specific dihydropteroyl polyglutamate has been identified as the phage-induced dihydrofolate reductase. Dihydrofolate reductase activity has been found in highly purified preparations of T-even phage ghosts and phage substructures after partial denaturation. The highest specific enzymatic activity was found in purified tail plate preparations, and it was concluded that this enzyme was a structural component of the phage tail plate. Phage viability was directly correlated with the enzymological properties of the phage tail plate dihydrofolate reductase. All reactions catalyzed by this enzyme which changed the oxidation state of the phage dihydrofolate also inactivated the phage. Properties of two T4D dihydrofolate reductase-negative mutants, wh1 and wh11, have been examined. Various lines of evidence support the view that the product of the wh locus of the phage genome is normally incorporated into the phage tail structure. The effects of various dihydrofolate reductase inhibitors on phage assembly in in vitro complementation experiments with various extracts of conditional lethal T4D mutants have been examined. These inhibitors were found to specifically block complementation when added to extracts which did not contain preformed tail plates. If tail plates were present, inhibitors such as aminopterin, did not affect further phage assembly. This specific inhibition of tail plate formation in vitro confirms the analytical and genetic evidence that this phage-induced “early” enzyme is a component of the phage coat.
PMCID: PMC376068  PMID: 4393396
17.  Inhibition Phenomenon of Staphylococci by Bacteriophages 
Journal of Virology  1970;5(6):709-713.
In the study of the relationship between bacteriophage and strains of staphylococci showing inhibition, slight differences were observed in the ability to adsorb phage between staphylococci of full phage sensitivity and those showing inhibition by phage. Only a few plaques were produced by inhibitory phages adsorbed on strains showing inhibition, whereas almost all of the phages adsorbed on corresponding phage-propagating strains produced plaques. Some strains showing inhibition were converted to full sensitivity to certain phages by heat shock or trypaflavine treatment. Treated strains adsorbed inhibitory phages to almost the same degree as nontreated strains, but most of the phages adsorbed on treated strains produced plaques. Killing was not always observed in cells adsorbing inhibitory phages. These results suggest that inhibition is not due to low adsorption rates, but rather to plaque formation by a small number of the sensitive fraction of the population and overgrowth by nonlysed cells.
PMCID: PMC376064  PMID: 4246881
18.  Factors Affecting Survival of Bacteriophage on Tomato Leaf Surfaces▿  
The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors.
PMCID: PMC1828813  PMID: 17259361
19.  Physiological and Genetic Aspects of Abortive Infection of a Shigella sonnei Strain by Coliphage T7 
Journal of Virology  1968;2(4):335-345.
Phage T7 adsorbed to and lysed cells of Shigella sonnei D2 371-48, although the average burst size was only 0.1 phage per cell (abortive infection). No mechanism of host-controlled modification was involved. Upon infection, T7 rapidly degraded host deoxyribonucleic acid (DNA) to acid-soluble material. Phage-directed DNA synthesis was initiated normally, but after a few minutes the pool of phage DNA, including the parental DNA, was degraded. Addition of chloramphenicol, at the time of phage infection, prevented both the initiation of phage-directed DNA synthesis and the degradation of parental phage DNA. Addition of chloramphenicol 4.5 min after phage was added permitted the onset of phage-directed DNA synthesis but prevented breakdown of phage DNA. Mutants of T7 (ss− mutants) have been isolated which show normal growth in strain D2 371-48. Upon mixed infection of this strain with T7 wild type and an ss− mutant, infection was abortive; no complementation occurred. The DNA of the ss− mutants was degraded in mixed infection like that of the wild type. Revertant mutants which have lost their ability to grow on D2 371-48 were isolated from ss− mutants; they are, in essence, phenotypically like T7 wild type. Independently isolated revertants of ss− mutants did not produce ss− recombinants when they were crossed among themselves. When independently isolated ss− mutants were crossed with each other, wild-type recombinants were found; ss− mutants could then be mapped in a cluster compatible with the length of one cistron. We concluded that T7 codes for an active, chloramphenicol-sensitive function [ss+ function (for suicide in Shigella)] which leads to the breakdown of phage DNA in the Shigella host.
PMCID: PMC375619  PMID: 4911848
20.  Mutants of Salmonella anatum that block bacteriophage epsilon infection at early stages. 
Journal of Bacteriology  1976;127(1):7-13.
A total of six mutants, to which phage epsilon could adsorb but failed to lyse, were isolated from Salmonella anatum and characterized. A significant portion of active phage particles could be recovered from the phage-bacterium complexes before they became irreversibly absorbed, and adsorbed phage did not kill these mutants at all. These reversibly adsorbed phage had become sensitive to chloroform, at least in some cases. The results indicate that the steps that may be blocked are deoxyribonucleic acid ejection or penetration. The mutants were tentatively classified into three groups by their susceptibility to phages c341 and Felix O. The inhibition of phage infection was overcome by host range mutants of phages epsilon and c341. The isolated lipopolysaccharide from the parent strain inactivated phages epsilon, c341, and a host range mutant of epsilon in vitro. However, neither phage epsilon nor c341, or the host range mutant of phage epsilon, was inactivated by incubation with the mutant lipopolysaccharides, even when they were derived from the mutants susceptible to c341 or the host range mutant of epsilon. These results may suggest that more than the receptor lipopolysaccharide of the bacterial surface is involved in the early stages of phage infection.
PMCID: PMC233026  PMID: 931954
21.  Isolation and Partial Characterization of Two Aeromonas hydrophila Bacteriophages 
Two Aeromonas hydrophila bacteriophages, Aeh1 and Aeh2, were isolated from sewage. Both phages showed binal symmetry. The dimensions of A. hydrophila phages Aeh1 and Aeh2 differed from those of the other Aeromonas phages. Also, phage Aeh2 was the largest Aeromonas phage studied to date. Phage Aeh1 formed small, clear plaques, and phage Aeh2 formed turbid plaques with clear centers. Both phages were sensitive to chloroform treatment, being totally inactivated after treatment for 1 h at 60°C at pH 3 and 11. However, the infectivity of Aeh1 phage stocks increased by approximately fivefold after they were treated at pH 10 for 1 h at 22°C. Phages Aeh1 and Aeh2 were serologically unrelated and had latent periods of 39 and 52 min, respectively. The average burst sizes of phages Aeh1 and Aeh2 were 17 and 92 PFU per cell, respectively. Phage Aeh1 infected 13 of 22 A. hydrophila strains tested, whereas phage Aeh2 infected only its original host. Phage Aeh1 infected some A. hydrophila strains only at or below 37°C. Neither phage infected the two A. (Plesiomonas) shigelloides strains used in this study.
PMCID: PMC242514  PMID: 16346300
22.  Lactococcal Bacteriophages Require a Host Cell Wall Carbohydrate and a Plasma Membrane Protein for Adsorption and Ejection of DNA 
The mechanism of the initial steps of bacteriophage infection in Lactococcus lactis subsp. lactis C2 was investigated by using phages c2, ml3, kh, l, h, 5, and 13. All seven phages adsorbed to the same sites on the host cell wall that are composed, in part, of rhamnose. This was suggested by rhamnose inhibition of phage adsorption to cells, competition between phage c2 and the other phages for adsorption to cells, and rhamnose inhibition of lysis of phage-inoculated cultures. The adsorption to the cell wall was found to be reversible upon dilution of the cell wall-adsorbed phage. In a reaction step that apparently follows adsorption to the cell wall, all seven phages adsorbed to a host membrane protein named PIP. This was indicated by the inability of all seven phages to infect a strain selected for resistance to phage c2 and known to have a defective PIP protein. All seven phages were inactivated in vitro by membranes from wild-type cells but not by membranes from the PIP-defective, phage c2-resistant strain. The mechanism of membrane inactivation was an irreversible adsorption of the phage to PIP, as indicated by adsorption of [35S] methionine-labeled phage c2 to purified membranes from phage-sensitive cells but not to membranes from the resistant strain, elimination of adsorption by pretreatment of the membranes with proteinase K, and lack of dissociation of 35S from the membranes upon dilution. Following membrane adsorption, ejection of phage DNA occurred rapidly at 30°C but not at 4°C. These results suggest that many lactococcal phages adsorb initially to the cell wall and subsequently to host cell membrane protein PIP, which leads to ejection of the phage genome.
PMCID: PMC201790  PMID: 16349376
The host ranges of bacteriophages for group A, types 1, 6, 12, and 25 and group C streptococci have been determined. The findings indicate that the susceptibility to these phages is primarily a group-specific phenomenon, although it is modified by several factors such as the hyaluronic acid capsule, lysogeny, and possibly the presence of surface proteins. Phage antibody studies indicate that while the group A phages are antigenically related, they are distinct from the group C phage. This is in agreement with the observation that group A phages are not specific for their homologous streptococcal types. The purified group C carbohydrate inactivates group C phage but not the group A phages, thus suggesting that the carbohydrate, a component of the cell wall, may serve as the phage receptor site. It has not been possible to inactivate the group A phages with group A carbohydrate. Phage lysis of groups A and C streptococci is accompanied by fragmentation of the cell wall since the C carbohydrate has been identified serologically and chemically in the supernate of centrifuged lysates. The immediate lysis of groups A and C hemolytic streptococci and their isolated cell walls by an accesory heat-labile lytic factor in fresh group C lysates is also described.
PMCID: PMC2136776  PMID: 13463248
The Journal of General Physiology  1955;39(2):225-249.
Preparation of Reversibly Inactivated (R.I.) Phage.— If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5–6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.— The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0°C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.— There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20°C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active ⇌ inactive phage, may be repeated many times at 0°C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing irreversible inactivation, above). The concentration required to prevent R.I. is lower, the higher the valency of either the anion or cation. There are great differences, however, between salts of the same valency, so that the chemical nature as well as the valency is important. Peptone, urea, and the amino acids, tryptophan, leucine, isoleucine, methionine, asparagine, dl-cystine, valine, and phenylalanine, stabilize the system at pH 7, so that no change occurs if a mixture of R.I. and active phage is added to such solutions. The active phage remains active and the R.I. phage remains inactive. The R.I. phage in pH 7 peptone becomes active if the pH is changed to 5.0. This does not occur in solutions of urea or the amino acids which stabilize at pH 7.0. Kinetics of Reversible Inactivation.— The inactivation is too rapid, even at 0° to allow the determination of an accurate time-inactivation curve. The rate is independent of the phage concentration and is complete in a few seconds, even in very dilute suspensions containing <1 x 104 particles/ml. This result rules out any type of bimolecular reaction, or any precipitation or agglutination mechanism, since the minimum theoretical time for precipitation (or agglutination) of a suspension of particles in a concentration of only 1 x 104 per ml. would be about 300 days even though every collision were effective. Mechanism of Salt Reactivation.— Addition of varying concentrations of MgSO4 (or many other salts) to a suspension of either active or R.I. phage in 0.01 M, pH 6 acetate buffer results in the establishment of an equilibrium ratio for active/R.I. phage. The higher the concentration of salt, the larger proportion of the phage is active. The results, with MgSO4, are in quantitative agreement with the following reaction: See PDF for Equation Effect of Temperature.— The rate of inactivation is too rapid to be measured with any accuracy, even at 0°C. The rate of reactivation in pH 5 peptone, at 0 and 10°, was measured and found to have a temperature coefficient Q10 = 1.5 corresponding to a value of E (Arrhenius' constant) of 6500 cal. mole–1. This agrees very well with the temperature coefficient for the reactivation of denatured soy bean trypsin inhibitor (Kunitz, 1948). The equilibrium between R.I. and active phage is shifted toward the active side by lowering the temperature. The ratio R.I.P./AP is 4.7 at 15° and 2.8 at 2°. This corresponds to a change in free energy of –600 cal. mole–1 and a heat of reaction of 11,000. These values are much lower than the comparative one for trypsin (Anson and Mirsky, 1934 a) or soy bean trypsin inhibitor (Kunitz, 1948). Neither the inactivation nor the reactivation reactions are affected by light. The results in general indicate that there is an equilibrium between active and R.I. phage. The R.I. phage is probably an intermediate step in the formation of inactive phage. The equilibrium is shifted to the active side by lowering the temperature, adjusting the pH to 7–8 (except in the presence of high concentrations of peptone), raising the salt concentration, or increasing the valency of the ions present. The reaction may be represented by the following: See PDF for Equation The assumption that the active/R.I. phage equilibrium represents an example of native/denatured protein equilibrium predicts all the results qualitatively. Quantitatively, however, it fails to predict the relative rate of digestion of the two forms by trypsin or chymotrypsin, and also the effect of temperature on the equilibrium.
PMCID: PMC2147528  PMID: 13271723
The Journal of General Physiology  1952;35(3):471-481.
B. megatherium cells were grown in various culture media, centrifuged and washed, and suspended in other culture media containing "C" or "T" phage. The per cent of infection, rate of growth, lysis, and phage production were determined. The behavior of the system depends on the culture medium in which the cells were grown and also on the culture medium in which they were mixed with phage. With the T phage it is possible to set up systems which yield the following results: 1. No infection, normal growth, no phage production. 2. Infection, normal growth, no lysis) phage production. 3. Infection, growth for several hours, lysis, and phage production. 4. Infection, no growth, lysis, and phage production. The C phage system is less affected by changes in the culture medium. The change in the behavior of the cells with T phage probably is not due to selection since it occurs without much growth of the culture, and is readily reversible.
PMCID: PMC2147335  PMID: 14898029

Results 1-25 (7897)