PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (481557)

Clipboard (0)
None

Related Articles

1.  OXIDANT-INDUCED ATROGIN-1 AND TRANSFORMING GROWTH FACTOR-β1 PRECEDE ALCOHOL-RELATED MYOPATHY IN RATS 
Muscle & nerve  2007;36(6):842-848.
Alcohol-related chronic myopathy is characterized by severe biochemical and structural changes to skeletal muscle. Our goals were to: (1) identify early regulatory elements that precede the overt manifestation of plantaris atrophy; and (2) circumvent these derangements by supplementing alcohol-fed rats with the glutathione precursor, procysteine. After 6 weeks of daily ingestion, before the development of overt atrophy of the plantaris muscle, alcohol increased several markers of oxidative stress and increased gene expressions of atrogin-1 and transforming growth factor-β1 (TGF-β1) by ~60- and ~65-fold, respectively, which were attenuated by procysteine supplementation. Interestingly, after 28 weeks of alcohol ingestion, when overt plantaris atrophy had developed, atrogin-1 and TGF-β1 gene expression had returned to baseline levels. Together, these findings suggest that alcohol-induced, redox-sensitive alterations drive pro-atrophy signaling pathways that precede muscle atrophy. Therefore, targeted anti-oxidant treatments such as procysteine supplementation may benefit individuals with chronic alcohol abuse, particularly if given prior to the development of clinically significant myopathy.
doi:10.1002/mus.20883
PMCID: PMC3157955  PMID: 17721978
alcoholic myopathy; atrogin-1; glutathione; oxidative stress; transforming growth factor-β1
2.  Procysteine Increases Alcohol-depleted Glutathione Stores in Rat Plantaris Following a Period of Abstinence 
Aims: To assess the effectiveness of procysteine (PRO) supplementation provided during a period of abstinence (ABS) on alcohol-induced skeletal muscle atrophy and oxidant stress. Methods: Age- and gender-matched Sprague–Dawley rats were fed the Lieber–DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 12 week. Next, subgroups of alcohol-fed rats were fed the control diet for 2 week (ABS) supplemented with either PRO (0.35%, w/v) or vehicle. Plantaris morphology was assessed by hematoxylin and eosin staining. Total, reduced and oxidized glutathione (GSH) levels and total antioxidant potential were determined by commercially available assay kits. Antibody arrays were used to determine cytokine levels. Real-time polymerase chain reaction was used to determine gene expressions of two E3 ubiquitin ligases, atrogin-1 and muscle ring finger protein-1 (MuRF-1). Results: Plantaris muscles from alcohol-fed rats displayed extensive atrophy, as well as decreased GSH levels, a trend for decreased total antioxidant potential and elevated atrogin-1 and MuRF-1 mRNA levels. GSH levels and total antioxidant potential continued to decrease during 2 weeks of ABS from alcohol, which were normalized in abstinent rats provided PRO. Gene levels of both E3 ligases returned to baseline during ABS. In parallel, plantaris cross-sectional area increased in both groups during ABS. Conclusions: PRO supplementation during ABS significantly attenuated alcohol-induced redox stress compared with untreated abstinent rats. Thus, our data may suggest that GSH restoration therapy may provide therapeutic benefits to the overall antioxidant state of skeletal muscle when prescribed in conjunction with an established detoxification program for recovering alcoholics.
doi:10.1093/alcalc/agq066
PMCID: PMC2981520  PMID: 20935073
3.  Procysteine stimulates expression of key anabolic factors and reduces plantaris atrophy in alcohol-fed rats 
Background
Long term alcohol ingestion may produce severe oxidant stress and lead to skeletal muscle dysfunction. Emerging evidence has suggested that members of the interleukin-6 (IL-6) family of cytokines play diverse roles in the regulation of skeletal muscle mass. Thus, our goals were (1) to minimize the degree of oxidant stress and attenuate atrophy by supplementing the diets of alcohol-fed rats with the glutathione precursor, procysteine, and (2) to identify the roles of IL-6 family members in alcoholic myopathy.
Methods
Age- and gender-matched Sprague-Dawley rats were fed the Lieber-DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 35 wk. Subgroups of alcohol-fed rats received procysteine (0.35%, w/v) for the final 12 wk. Plantaris morphology was assessed by hematoxylin and eosin staining. Major components of glutathione metabolism were determined by assay kits. Real time PCR was used to determine expression levels of several genes.
Results
Plantaris muscles from alcohol-fed rats displayed extensive atrophy, as well as decreased glutathione levels, decreased activities of glutathione reductase and glutathione peroxidase, decreased superoxide dismutase (SOD)-2 (Mn-SOD2), and increased NADPH oxidase-1 gene expression - each indicative of significant oxidant stress. Alcohol also induced gene expression of catabolic factors including IL-6, oncostatin M, atrogin-1, muscle ring finger protein-1, and IGFBP-1. Procysteine treatment attenuated plantaris atrophy, restored glutathione levels, and increased catalase, Cu/Zn-SOD1, and Mn-SOD2 mRNA expression, but did not reduce other markers of oxidant stress or levels of these catabolic factors. Instead, procysteine stimulated gene expression of anabolic factors such as insulin-like growth factor-1, ciliary neurotrophic factor and cardiotrophin-1.
Conclusions
Procysteine significantly attenuated, but did not completely abrogate, alcohol-induced oxidant stress or catabolic factors. Rather, procysteine minimized the extent of plantaris atrophy by inducing components of several anabolic pathways. Therefore, anti-oxidant treatments such as procysteine supplementation may benefit individuals with alcoholic myopathy.
doi:10.1111/j.1530-0277.2009.00975.x
PMCID: PMC2723178  PMID: 19426167
alcoholic myopathy; cardiotrophin-1; ciliary neurotrophic factor; interleukin-6; procysteine
4.  Non-invasive Monitoring of L-2-Oxothiazolidine-4-Carboxylate Metabolism in the Rat Brain by In vivo 13C Magnetic Resonance Spectroscopy 
Neurochemical research  2010;36(3):443-451.
The cysteine precursor L-2-oxothiazolidine-4-carboxylate (OTZ, procysteine) can raise cysteine concentration, and thus glutathione levels, in some tissues. OTZ has therefore been proposed as a prodrug for combating oxidative stress. We have synthesized stable isotope labeled OTZ (i.e. L-2-oxo-[5-13C]-thiazolidine-4-carboxylate, 13C-OTZ) and tracked its uptake and metabolism in vivo in rat brain by 13C magnetic resonance spectroscopy. Although uptake and clearance of 13C-OTZ was detectable in rat brain following a bolus dose by in vivo spectroscopy, no incorporation of isotope label into brain glutathione was detectable. Continuous infusion of 13C-OTZ over 20 h, however, resulted in 13C-label incorporation into glutathione, taurine, hypotaurine and lactate at levels sufficient for detection by in vivo magnetic resonance spectroscopy. Examination of brain tissue extracts by mass spectrometry confirmed only low levels of isotope incorporation into glutathione in rats treated with a bolus dose and much higher levels after 20 h of continuous infusion. In contrast to some previous studies, bolus administration of OTZ did not alter brain glutathione levels. Even a continuous infusion of OTZ over 20 h failed to raise brain glutathione levels. These studies demonstrate the utility of in vivo magnetic resonance for non-invasive monitoring of antioxidant uptake and metabolism in intact brain. These types of experiments can be used to evaluate the efficacy of various interventions for maintenance of brain glutathione.
doi:10.1007/s11064-010-0362-5
PMCID: PMC3063897  PMID: 21161591
Magnetic resonance; Metabolism; Cysteine; Glutathione; Taurine
5.  Molecular Regulation of Apoptosis in Fast Plantaris Muscles of Aged Rats 
This study tested the hypothesis that aging exacerbates apoptotic signaling in rat fast plantaris muscle during muscle unloading. Plantaris muscle mass was 22% lower in aged animals and the apoptotic index was 600% higher, when compared to those in young adult animals. Following 14 days of hind-limb unloading, absolute plantaris muscle mass was 20% lower in young adult animals with a corresponding 200% higher elevation of the apoptotic index. Unloading had no affect on muscle weight or apoptotic index of aged plantaris muscles. The changes in proapoptotic messenger RNA (mRNA) for apoptotic protease activating factor-1 (Apaf-1), Bax, and inhibitor of differentiation protein-2 (Id2) were exacerbated with aging. Bax and Bcl-2 protein levels were also altered differently in aged muscle, compared to young. Significant positive correlations were observed between the changes in Id2 and Bax mRNA, and Id2 and caspase-9 mRNA. These data suggest that a pro-apoptotic environment may contribute to aging-associated atrophy in fast skeletal muscle, but apoptotic signaling differs by age.
PMCID: PMC2778222  PMID: 16567372
6.  Heat stress inhibits skeletal muscle hypertrophy 
Cell Stress & Chaperones  2007;12(2):132-141.
Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42°C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The contralateral plantaris muscles served as controls. Heat-stressed and/or overloaded plantaris muscles were assessed for muscle mass, total muscle protein, muscle protein concentration, Type I myosin heavy chain (Type I MHC) content, as well as Hsp72 and Hsp25 content over the course of 7 days following removal of the gastrocnemius muscle. As expected, in non–heat-stressed animals, muscle mass, total muscle protein and MHC I content were significantly increased (P < 0.05) following overload. In addition, Hsp25 and Hsp72 increased significantly after 2 and 3 days of overload, respectively. A prior heat stress–elevated Hsp25 content to levels similar to those measured following overload alone, but heat stress–induced Hsp72 content was increased significantly greater than was elicited by overload alone. Moreover, overloaded muscles from animals that experienced a prior heat stress showed a lower muscle mass increase at 5 and 7 days; a reduced total muscle protein elevation at 3, 5, and 7 days; reduced protein concentration; and a diminished Type I MHC content accumulation at 3, 5, and 7 days relative to non– heat-stressed animals. These data suggest that a prior heat stress and/or the consequent accumulation of Hsps may inhibit increases in muscle mass, total muscle protein content, and Type I MHC in muscles undergoing hypertrophy.
doi:10.1379/CSC-233R.1
PMCID: PMC1949332  PMID: 17688192
7.  The Role of Mitochondrial Oxidation in Endotoxin-Induced Liver-Dependent Swine Pulmonary Edema 
We reported previously studies in an in situ perfused swine preparation demonstrating that endotoxemia induced lung injury required the presence of the liver and that the response was accompanied by oxidative stress. To determine whether lung and liver mitochondrial oxidative stress was important to the response, we compared the effects of equimolar amounts of two antioxidants, n-acetylcysteine, which does not replenish mitochondrial glutathione, and procysteine which does, on endotoxemia induced lung injury in the swine preparation. In a swine perfused liver-lung preparation, we measured physiologic, biochemical and cellular responses of liver and lung to endotoxemia with and without the drugs. Endotoxemia caused oxidation of the mitochondria-specific protein, thioredoxin-2, in both the lungs and the liver. Procysteine reduced thioredoxin-2 oxidation, attenuated hemodynamic, gas exchange, hepatocellular dysfunction, and cytokine responses and prevented lung edema. n-acetylcysteine had more modest effects and did not prevent lung edema. Conclusions: We conclude that mitochondrial oxidation may be critical to the pathogenesis of endotoxemia-induced liver-dependent lung injury and that choices of antioxidant therapy for such conditions must consider the desired subcellular target in order to be optimally effective.
doi:10.1016/j.pupt.2012.08.002
PMCID: PMC3439596  PMID: 22925572
sepsis; oxidant stress; mitochondria
8.  CHRONIC ALCOHOL NEUROADAPTATION AND STRESS CONTRIBUTE TO SUSCEPTIBILITY FOR ALCOHOL CRAVING AND RELAPSE 
Pharmacology & therapeutics  2010;129(2):149-171.
Alcoholism is a chronic relapsing disorder. Major characteristics observed in alcoholics during an initial period of alcohol abstinence are altered physiological functions and a negative emotional state. Evidence suggests that a persistent, cumulative adaptation involving a kindling/allostasis-like process occurs during the course of repeated chronic alcohol exposures that is critical for the negative symptoms observed during alcohol withdrawal. Basic studies have provided evidence for specific neurotransmitters within identified brain sites being responsible for the negative emotion induced by the persistent cumulative adaptation following intermittent-alcohol exposures. After an extended period of abstinence, the cumulative alcohol adaptation increases susceptibility to stress- and alcohol cue-induced negative symptoms and alcohol seeking, both of which can facilitate excessive ingestion of alcohol. In the alcoholic, stressful imagery and alcohol cues alter physiological responses, enhance negative emotion, and induce craving. Brain fMRI imaging following stress and alcohol cues has documented neural changes in specific brain regions of alcoholics not observed in social drinkers. Such altered activity in brain of abstinent alcoholics to stress and alcohol cues is consistent with a continuing ethanol adaptation being responsible. Therapies in alcoholics found to block responses to stress and alcohol cues would presumably be potential treatments by which susceptibility for continued alcohol abuse can be reduced. By continuing to define the neurobiological basis of the sustained alcohol adaptation critical for the increased susceptibility of alcoholics to stress and alcohol cues that facilitate craving, a new era is expected to evolve in which the high rate of relapse in alcoholism is minimized. 250
doi:10.1016/j.pharmthera.2010.09.007
PMCID: PMC3026093  PMID: 20951730
alcoholism; alcohol; adaptation; stress; corticotropin releasing factor; cytokines; brain sites; substance P; relapse; brain imaging
9.  Chronic alcohol ingestion exacerbates skeletal muscle myopathy in HIV-1 transgenic rats 
Background
Separately, chronic alcohol ingestion and HIV-1 infection are associated with severe skeletal muscle derangements, including atrophy and wasting, weakness, and fatigue. One prospective cohort study reported that 41% of HIV-infected patients met the criteria for alcoholism, however; few reports exist on the co-morbid effects of these two disease processes on skeletal muscle homeostasis. Thus, we analyzed the atrophic effects of chronic alcohol ingestion in HIV-1 transgenic rats and identified alterations to several catabolic and anabolic factors.
Findings
Relative plantaris mass, total protein content, and fiber cross-sectional area were reduced in each experimental group compared to healthy, control-fed rats. Alcohol abuse further reduced plantaris fiber area in HIV-1 transgenic rats. Consistent with previous reports, gene levels of myostatin and its receptor activin IIB were not increased in HIV-1 transgenic rat muscle. However, myostatin and activin IIB were induced in healthy and HIV-1 transgenic rats fed alcohol for 12 weeks. Catabolic signaling factors such as TGFβ1, TNFα, and phospho-p38/total-p38 were increased in all groups compared to controls. There was no effect on IL-6, leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), or ciliary neurotrophic factor (CNTF) in control-fed, transgenic rats. However, the co-morbidity of chronic alcohol abuse and HIV-1-related protein expression decreased expression of the two anabolic factors, CT-1 and CNTF.
Conclusions
Consistent with previous reports, alcohol abuse accentuated skeletal muscle atrophy in an animal model of HIV/AIDS. While some catabolic pathways known to drive alcoholic or HIV-1-associated myopathies were also elevated in this co-morbid model (e.g., TGFβ1), consistent expression patterns were not apparent. Thus, specific alterations to signaling mechanisms such as the induction of the myostatin/activin IIB system or reductions in growth factor signaling via CT-1- and CNTF-dependent mechanisms may play larger roles in the regulation of muscle mass in alcoholic, HIV-1 models.
doi:10.1186/1742-6405-8-30
PMCID: PMC3170178  PMID: 21846370
10.  NEUROPEPTIDE Y (NPY) SUPPRESSES ETHANOL DRINKING IN ETHANOL-ABSTINENT, BUT NOT NON-ETHANOL-ABSTINENT, WISTAR RATS 
Alcohol (Fayetteville, N.Y.)  2008;42(7):541-551.
In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring (P) rats and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on 2-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exposure, cycles of ethanol abstinence, or both. Ethanol-drinking Wistars were given six weeks of access to 15% (v/v) ethanol and water followed by either: two cycles of one week ethanol vapor exposure and two weeks with no ethanol; two cycles of one week ethanol bottle availability and two weeks with no ethanol; or two weeks of ethanol vapor exposure. Rats were infused ICV with one of four NPY doses (0.0, 2.5, 5.0, or 10.0 µg) following the ethanol exposure patterns described above, and tested for ethanol drinking and feeding in a 2-bottle choice situation. NPY dose-dependently increased food intake regardless of ethanol exposure history, but suppressed ethanol drinking only in rats that underwent cycles of ethanol access and ethanol abstinence. These results support the notion that dysregulation of brain NPY systems during chronic intermittent ethanol exposure is important in the motivational drive for subsequent relapse to ethanol drinking.
doi:10.1016/j.alcohol.2008.07.001
PMCID: PMC2610687  PMID: 18835592
Neuropeptide Y; Dependence; Ethanol Vapor; Ethanol Abstinence
11.  The effects of glutathione depletion on thermotolerance and heat stress protein synthesis. 
British Journal of Cancer  1984;49(6):753-758.
The effects of cellular glutathione depletion by buthionine sulfoximine on the development of thermotolerance and synthesis of heat stress protein was studied. Cellular glutathione levels were found to increase rapidly following an acute heat treatment of either 12 min at 45.5 degrees C or 1 h at 43 degrees C and remain elevated for prolonged periods. Glutathione depletion and prevention of glutathione synthesis by buthionine sulfoximine resulted in inhibition of the development of thermotolerance and a decrease in total protein as well as specific heat stress proteins. While the degree of inhibition of thermotolerance was similar for both glutathione depletion protocols, inhibition in heat stress protein synthesis was greater when glutathione was depleted to low levels prior to heating. The possible role of glutathione and the cellular redox state to thermotolerance and synthesis of heat stress protein is discussed.
Images
PMCID: PMC1976852  PMID: 6733022
12.  The effect of acetaminophen (four grams a day for three consecutive days) on hepatic tests in alcoholic patients – a multicenter randomized study 
BMC Medicine  2007;5:13.
Background
Hepatic failure has been associated with reported therapeutic use of acetaminophen by alcoholic patients. The highest risk period for alcoholic patients is immediately after discontinuation of alcohol intake. This period exhibits the largest increase in CYP2E1 induction and lowest glutathione levels. Our hypothesis was that common liver tests would be unaffected by administration of the maximum recommended daily dosage of acetaminophen for 3 consecutive days to newly-abstinent alcoholic subjects.
Methods
Adult alcoholic subjects entering two alcohol detoxification centers were enrolled in a prospective double-blind, randomized, placebo-controlled trial. Subjects were randomized to acetaminophen, 4 g/day, or placebo for 3 consecutive days. The study had 95% probability of detecting a 15 IU/L difference in serum ALT.
Results
A total of 443 subjects were enrolled: 308 (258 completed) received acetaminophen and 135 subjects (114 completed) received placebo. Study groups did not differ in demographics, alcohol consumption, nutritional status or baseline laboratory assessments. The peak mean ALT activity was 57 ± 45 IU/L and 55 ± 48 IU/L in the acetaminophen and placebo groups, respectively. Subgroup analyses for subjects presenting with an elevated ALT, subjects fulfilling a diagnosis of alcoholic hepatitis and subjects attaining a peak ALT greater than 200 IU/L showed no statistical difference between the acetaminophen and control groups. The one participant developing an increased international normalized ratio was in the placebo group.
Conclusion
Alcoholic patients treated with the maximum recommended daily dose of acetaminophen for 3 consecutive days did not develop increases in serum transaminase or other measures of liver injury. Treatment of pain or fever for 3 days with acetaminophen appears safe in newly-abstinent alcoholic patients, such as those presenting for acute medical care.
doi:10.1186/1741-7015-5-13
PMCID: PMC1894983  PMID: 17537264
13.  Sprint-Interval Training Induces Heat Shock Protein 72 in Rat Skeletal Muscles 
Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs) in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT) on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old) were randomly assigned to a control (CON) or a SIT group (n = 8/group). Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week) on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast) and soleus (slow) muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase) and histochemical properties (muscle fiber type compositions and cross sectional area) in both muscles were also determined. The SIT resulted in significantly (p < 0.05) higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05). Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles.
Key PointsThere is no study about the effects of high intensity but short duration exercise, or sprint-interval training (SIT) on heat shock protein 72 (HSP72) level in skeletal muscles.The SIT program (≤ 10 min·day-1) accumulated HSP72 in rat skeletal muscles.The SIT-induced accumulation of HSP72 in the plantaris (fast) muscle was drastic compared to the soleus (slow) muscle and accompanied with the improvements of enzyme activities, fast-to-slow shift within fast muscle fiber type and muscle hypertrophy.
PMCID: PMC3827560  PMID: 24259991
Hindlimb; treadmill running; enzyme activity; fiber type shift; hypertrophy
14.  Effects of voluntary wheel running on satellite cells in the rat plantaris muscle  
This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p < 0.05). The percentage of satellite cells was also positively correlated with distance run in the training group (r = 0.61, p < 0.05). Voluntary running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run.
Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.
PMCID: PMC3737783  PMID: 24150556
Endurance training; muscle damage; hypertrophy; myonuclear; Pax7.
15.  Neuropeptide Y Administration into the Amygdala Suppresses Ethanol Drinking in Alcohol-Preferring (P) Rats Following Multiple Deprivations 
The present experiment examines the effects of NPY administered into the amygdala on ethanol drinking by alcohol-preferring P rats following long-term continuous ethanol access, with and without multiple periods of imposed ethanol abstinence. P rats had access to 15% (v/v) ethanol and water for 11 weeks followed by 2 weeks of ethanol abstinence, re-exposure to ethanol for 2 weeks, 2 more weeks of ethanol abstinence, and a final ethanol re-exposure. Immediately prior to the second ethanol re-exposure, 4 groups of rats received bilateral infusions NPY (0.25, 0.5, 1.0 μg) or artificial cerebrospinal fluid (aCSF) into the amygdala. Two additional groups were given uninterrupted ethanol access and were infused with a single NPY dose (1.0 μg) or aCSF. The highest NPY dose (1.0 μg) suppressed ethanol intake for 24 hrs in rats with a history of ethanol abstinence (i.e. deprivation) periods, but had no effect in rats with a history of continuous ethanol access. Water and food intakes were not altered. These results suggest that the amygdala mediates the suppressive effects of centrally administered NPY on ethanol drinking, and that NPY may block relapse-like drinking by opposing the anxiogenic effects of ethanol abstinence.
doi:10.1016/j.pbb.2008.04.005
PMCID: PMC2474782  PMID: 18499241
Alcohol-preferring rats; neuropeptide Y; abstinence; deprivation; anxiety; amygdala; allostasis
16.  Aging Influences Adaptations of the Neuromuscular Junction to Endurance Training 
Neuroscience  2011;190:56-66.
This investigation sought to determine if aging affected adaptations of the neuromuscular junction (NMJ) to exercise training. Twenty young adult (8 mo), and 20 aged (24 mo) rats were assigned to either a program of treadmill exercise, or sedentary conditions. Following the 10 week experimental period, rats were euthanized, and soleus and plantaris muscles were removed and frozen. Longitudinal sections of the muscles were fluorescently stained to visualize pre-synaptic nerve terminals, and post-synaptic endplates on both slow- and fast-twitch fibers. Images were collected with confocal microscopy and quantified. Muscle cross-sections were histochemically stained to assess muscle fiber profiles (size and fiber type). Our analysis of NMJs revealed a high degree of specificity and sensitivity to aging, exercise training, and their interaction. In the soleus, slow-twitch NMJs demonstrated significant (P ≤ 0.05) training-induced adaptations in young adult, but not aged rats. In the fast-twitch NMJs of the soleus, aging, but not training was associated with remodeling. In the plantaris, aging but not training, remodeled the predominant fast-twitch NMJs, but only pre-synaptically. In contrast, the slow-twitch NMJs of the plantaris displayed morphologic adaptations to both aging and exercise in pre- and post-synaptic components. Muscle fiber profiles indicated that changes in NMJ size were unrelated to adaptations of their fibers. Our data show that aging interferes with the ability of NMJs to adapt to exercise training. Results also reveal complexity in the coordination of synaptic responses among different muscles, and different fiber types within muscles, in their adaptation to aging and exercise training.
doi:10.1016/j.neuroscience.2011.05.070
PMCID: PMC3156295  PMID: 21683772
synapse; endplate; nerve terminal; neuromuscular junction; muscle fiber; exercise
17.  Altered Regulation of Contraction-Induced Akt/mTOR/p70S6k Pathway Signaling in Skeletal Muscle of the Obese Zucker Rat 
Experimental Diabetes Research  2010;2009:384683.
Increased muscle loading results in the phosphorylation of the 70 kDa ribosomal S6 kinase (p70S6k), and this event is strongly correlated with the degree of muscle adaptation following resistance exercise. Whether insulin resistance or the comorbidities associated with this disorder may affect the ability of skeletal muscle to activate p70S6k signaling following an exercise stimulus remains unclear. Here, we compare the contraction-induced activation of p70S6k signaling in the plantaris muscles of lean and insulin resistant obese Zucker rats following a single bout of increased contractile loading. Compared to lean animals, the basal phosphorylation of p70S6k (Thr389; 37.2% and Thr421/Ser424; 101.4%), Akt (Thr308; 25.1%), and mTOR (Ser2448; 63.0%) was higher in obese animals. Contraction increased the phosphorylation of p70S6k (Thr389), Akt (Ser473), and mTOR (Ser2448) in both models however the magnitude and kinetics of activation differed between models. These results suggest that contraction-induced activation of p70S6k signaling is altered in the muscle of the insulin resistant obese Zucker rat.
doi:10.1155/2009/384683
PMCID: PMC2847874  PMID: 20368999
18.  BINGE ALCOHOL TREATMENT OF ADOLESCENT RATS FOLLOWED BY ALCOHOL ABSTINENCE IS ASSOCIATED WITH SITE-SPECIFIC DIFFERENCES IN BONE LOSS AND INCOMPLETE RECOVERY OF BONE MASS AND STRENGTH 
Alcohol (Fayetteville, N.Y.)  2008;42(8):649-656.
We previously demonstrated that alcohol-fed adolescent rats exhibit reductions in lumbar spine bone mineral density and vertebral body height, suggesting that chronic alcohol consumption has negative consequences for skeletal development during adolescence. Binge alcohol consumption is common in adolescents and young adults, yet little is known about its consequences on skeletal integrity or the attainment of peak bone mass. We used a previously validated binge alcohol exposure model to test the hypothesis that binge alcohol treatment of adolescent rats would be associated with distinct temporal and site-specific bone loss profiles, with incomplete recovery from bone loss following a period of alcohol abstinence. Seventy-two male adolescent Sprague-Dawley rats were assigned to one of 6 treatment groups (n = 12/group) receiving binge alcohol (3g/kg) or saline ip, 3 consecutive days (acute binge), 4 consecutive weekly (3-day) binge cycles (chronic binge), or 4 weekly binge cycles followed by a 30-day abstinence period without alcohol or saline injections (chronic binge with abstinence). Cancellous BMD was determined by pQCT and compressive strength determined by biomechanical testing. Serum testosterone and osteocalcin levels were measured by ELISA. Tibial cancellous BMD was significantly reduced by 25% (p < 0.05) after both acute and chronic binge alcohol treatment and vertebral cancellous BMD was significantly reduced by 15% (p<0.05) after chronic binge exposure. Vertebral compressive strength was also significantly decreased by 31% (p<0.05) after chronic binge alcohol treatment. Tibial cancellous BMD returned to control levels after the 30-day alcohol abstinence period, but vertebral cancellous BMD remained 15% below control values (p <0.05) 30 days after termination of binge alcohol exposures. Serum osteocalcin levels were significantly decreased following acute binge alcohol exposure (p<0.05). These results show that binge alcohol exposure can produce both short and long-term skeletal damage in the adolescent rat. This data may have relevance to peak bone mass attainment and future risk of skeletal disease in adolescents and young adults who engage in repeated binge drinking episodes.
doi:10.1016/j.alcohol.2008.08.005
PMCID: PMC2633927  PMID: 19038696
Binge alcohol; adolescent rat; peak bone mass; osteoporosis; fracture
19.  Activation of brain NOP receptors attenuates acute and protracted alcohol withdrawal symptoms in the rat 
BACKGROUND
Alcohol withdrawal, refers to a cluster of symptoms that may occur from suddenly ceasing the use of alcohol after chronic or prolonged ingestion. These symptoms make alcohol abstinence difficult and increase the risk of relapse in recovering alcoholics. In previous studies, we demonstrated that treatment with N/OFQ significantly reduces alcohol consumption and attenuates alcohol-seeking behaviour induced by environmental conditioning factors or by stress in rats. In the present study we evaluated whether activation of brain NOP receptors may also attenuate alcohol withdrawal signs in rats.
METHODS
For this purpose animals were subjected to a 6 day chronic alcohol intoxication (by intragastric administration) and at 8, 10 and 12 hours following cessation of alcohol exposure they were treated intracerebroventricularly (ICV) with N/OFQ (0.0, 1.0 and 3.0 μg/rat). Somatic withdrawal signs were scored after ICV treatment. In a subsequent experiment, to evaluate N/OFQ effects on alcohol withdrawal-induced anxiety another group of rats was subjected to ethanol intoxication and after one week was tested for anxiety behavior in the elevated plus maze (EPM). In the last experiment an additional group of rats was tested for anxiety elicited by acute ethanol intoxication (hangover anxiety). For this purpose, animals received an acute dose (3.0 g/kg) of 20% alcohol and 12-h later were tested in the EPM following ICV N/OFQ (0.0, 1.0 and 2.0μg/rat).
RESULTS
Results showed that N/OFQ significantly reduced the expression of somatic withdrawal signs and reversed anxiety-like behaviors associated with both chronic and acute alcohol intoxication. N/OFQ did not affect anxiety scores in nondependent animals.
CONCLUSIONS
The present findings suggest that the N/OFQ-NOP receptor system may represent a promising target for the development of new treatments to ameliorate alcohol withdrawal symptoms.
doi:10.1111/j.1530-0277.2010.01392.x
PMCID: PMC3066303  PMID: 21223310
Nociceptin; Orphanin FQ; Alcoholism; Withdrawal; Anxiety
20.  The Role of Alcoholics' Insight in Abstinence from Alcohol in Male Korean Alcohol Dependents 
Journal of Korean Medical Science  2007;22(1):132-137.
This study was performed to examine the relationship between the abstinence results of alcohol dependents after discharge and the level of insight at the time of discharge. 117 male Korean alcohol dependents discharged from a community-based alcohol treatment center were followed up to determine the initial months of abstinence on a successive basis (IMA), total months of abstinence during 12-month period (TMA), and complete abstinence for one full year after discharge. Analyses of abstinence results with adjustment for the differences in baseline characteristics were performed for subjects' insight levels (poor, fair and good). The mean IMA of patients with good insight was significantly (p<0.01) longer than that of patients with poor insight and TMA of patients with good insight was significantly (p<0.001) longer than that of others. Using patients with good insight as the reference, patients with poor insight showed an adjusted odds ratio (OR) of 0.07 (95% confidence interval [CI]=0.01-0.75, p<0.05) for complete abstinence for one full year after discharge and patients with fair insight, adjusted OR of 0.17 (95% CI=0.03-0.81, p<0.05). These results suggest that alcohol dependents' insight could be regarded as a factor related with abstinence.
doi:10.3346/jkms.2007.22.1.132
PMCID: PMC2693550  PMID: 17297266
Insight; Alcoholism; Alcohol Dependence; Abstinence
21.  Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration 
Cocaine-responsive gene expression changes have been described after either no drug abstinence or short periods of abstinence. Little data exist on the persistence of these changes after long-term abstinence. Previously, we reported that after discrete-trial, cocaine self-administration and 10 days of forced abstinence, incubation of cocaine reinforcement was observable by a progressive ratio schedule. The present study used rat discrete-trial cocaine self-administration and long-term forced abstinence to examine: extinction responding, mRNA abundance of known cocaine-responsive genes, and chromatin remodeling. At 30 and 100 days of abstinence, extinction responding increased compared to 3-day abstinent rats. Decreases in both medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) c-fos, Nr4a1, Arc, and EGR1 mRNA were observed, and in most cases persisted, for 100 days of abstinence. The signaling peptides CART and NPY transiently increased in the mPFC, but returned to baseline levels following 10 days of abstinence. To investigate a potential regulatory mechanism for these persistent mRNA changes, levels of histone H3 acetylation at promoters for genes with altered mRNA expression were examined. In the mPFC, histone H3 acetylation decreased after 1 and 10 days of abstinence at the promoter for EGR1. H3 acetylation increased for NPY after 1 day of abstinence and returned to control levels by 10 days of abstinence. Behaviorally, these results demonstrate incubation after discrete-trial cocaine self-administration and prolonged forced abstinence. This incubation is accompanied by changes in gene expression that persist long after cessation of drug administration and may be regulated by chromatin remodeling.
doi:10.1038/sj.npp.1301577
PMCID: PMC2810407  PMID: 17851536
cocaine; abstinence; behavior; medial prefrontal cortex; nucleus accumbens; functional genomics; extinction; incubation; addiction
22.  Effects of short deprivation and re-exposure intervals on the ethanol drinking behavior of selectively bred high alcohol-consuming rats 
Alcohol (Fayetteville, N.Y.)  2008;42(5):407-416.
Alcoholics generally display cycles of excessive ethanol intake, abstinence and relapse behavior. Using an animal model of relapse-like drinking, the alcohol deprivation effect (ADE), our laboratory has shown that repeated 2-week cycles of ethanol deprivation and re-exposure, following an initial 6 week access period, result in a robust ADE by alcohol-preferring (P) and high alcohol-drinking (HAD-1 and HAD-2) rats. These rat lines have been selectively bred to prefer a 10% ethanol solution over water. The present study examined whether P and HAD rats would display an ADE using much shorter ethanol deprivation and re-exposure intervals. Rats were given either continuous or periodic concurrent access to multiple concentrations [10%, 20%, and 30%, volume/volume (vol./vol.)] of ethanol. The periodic protocol involved access to ethanol for 12 days followed by 4 cycles of 4 days of deprivation and 4 days of re-exposure to ethanol access. HAD rats displayed a robust 24 hour ADE upon 1st re-exposure (HAD-1: ~ 5 vs. 8 g/kg/day; HAD-2: ~ 6 vs. 9 g/kg/day, baseline vs. re-exposure), whereas P rats (~ 7 vs. 8 g/kg/day) displayed a modest, nonsignificant, increase in 24 hour intake. In a separate group of rats, ethanol intake and blood alcohol concentrations (BACs) after the 1st hour of the 4th re-exposure cycle were HAD-1: 2.0 g/kg and 97 mg%, HAD-2: 2.3 g/kg and 73 mg%, and P: 1.2 g/kg and 71 mg%; with all three lines displaying a robust 1st hour ADE. These findings suggest that (a) an ADE may be observed with short ethanol deprivation and re-exposure intervals in HAD rats, and (b) the genetic make-up of the P and HAD rats influences the expression of this ADE.
doi:10.1016/j.alcohol.2008.03.130
PMCID: PMC2600571  PMID: 18486429
Alcohol deprivation effect; High-alcohol-consuming rats; Selectively bred rats; Adult
23.  Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence 
Neuron  2010;65(5):682-694.
Summary
The cellular mechanisms underlying pathological alcohol seeking remain poorly understood. Here, we show an enhancement of nucleus accumbens (NAcb) core action potential firing ex vivo after protracted abstinence from alcohol but not sucrose self-administration. Increased firing is associated with reduced small-conductance calcium-activated potassium channels (SK) currents and decreased SK3 but not SK2 subunit protein expression. Furthermore, SK activation ex vivo produces greater firing suppression in NAcb core neurons from alcohol- versus sucrose-abstinent rats. Accordingly, SK activation in the NAcb core significantly reduces alcohol but not sucrose seeking after abstinence. In contrast, NAcb shell and lateral dorsal striatal firing ex vivo are not altered after abstinence from alcohol, and SK activation in these regions has little effect on alcohol seeking. Thus, decreased NAcb core SK currents and increased excitability represents a critical mechanism that facilitates motivation to seek alcohol after abstinence.
doi:10.1016/j.neuron.2010.02.015
PMCID: PMC2847608  PMID: 20223203
alcohol; relapse; SK; firing; action potential
24.  Disruption of Long-Term Alcohol-Related Memory Reconsolidation: Role of β-Adrenoceptors and NMDA Receptors 
Disrupting reconsolidation of drug-related memories may be effective in reducing the incidence of relapse. In the current study we examine whether alcohol-related memories are prone to disruption by the β-adrenergic receptor antagonist propranolol (10 mg/kg) and the NMDA receptor antagonist MK801 (0.1 mg/kg) following their reactivation. In operant chambers, male Wistar rats were trained to self-administer a 12% alcohol solution. After 3 weeks of abstinence, the animals were placed in the self-administration cages and were re-exposed to the alcohol-associated cues for a 20-min retrieval period, immediately followed by a systemic injection of either propranolol, MK801 or saline. Rats were tested for cue-induced alcohol seeking on the following day. Retrieval session, injection and test were repeated on two further occasions at weekly intervals. Both propranolol and MK801 administration upon reactivation did not reduce alcohol seeking after the first reactivation test. However, a significant reduction of alcohol seeking was observed over three post-training tests in propranolol treated animals, and MK801 treated animals showed a strong tendency toward reduced alcohol seeking (p = 0.06). Our data indicate that reconsolidation of alcohol-related memories can be disrupted after a long post-training interval and that particularly β-adrenergic receptors may represent novel targets for pharmacotherapy of alcoholism, in combination with cue-exposure therapies.
doi:10.3389/fnbeh.2010.00179
PMCID: PMC2998860  PMID: 21152256
alcohol; β-adrenergic receptor; instrumental learning; memory reconsolidation; NMDA receptor; propranolol
25.  Pharmacologically induced alcohol craving in treatment seeking alcoholics correlates with alcoholism severity, but is insensitive to acamprosate 
Modulation of alcohol craving induced by challenge stimuli may predict the efficacy of new pharmacotherapies for alcoholism. We evaluated two pharmacological challenges, the α2-adrenergic antagonist yohimbine, which reinstates alcohol seeking in rats, and the serotonergic compound meta-chlorophenylpiperazine (mCPP), previously reported to increase alcohol craving in alcoholics. To assess the predictive validity of this approach, the approved alcoholism medication acamprosate was evaluated for its ability to modulate challenge-induced cravings.
Thirty-five treatment seeking alcohol dependent inpatients in early abstinence were randomized to placebo or acamprosate (2997mg daily). Following two weeks of medication, subjects underwent three challenge sessions with yohimbine, mCPP or saline infusion under double blind conditions, carried out in counterbalanced order, and separated by at least 5 days. Ratings of cravings and anxiety, as well as biochemical measures were obtained. Twenty-five subjects completed all three sessions and were included in the analysis.
Cravings were modestly but significantly higher following both yohimbine and mCPP challenge compared to saline infusion. mCPP but not yohimbine significantly increased anxiety ratings. Both challenges produced robust ACTH, cortisol and prolactin responses. There was a significant correlation between craving and the degree of alcoholism severity. Acamprosate administration did not influence craving.
Both yohimbine and mCPP challenge lead to elevated alcohol craving in a clinical population of alcoholics, and these cravings correlate with alcoholism severity. Under the experimental conditions used, alcohol cravings induced by these two stimuli are not sensitive to acamprosate at clinically used doses.
doi:10.1038/npp.2010.253
PMCID: PMC3077446  PMID: 21289601
alcoholism; craving; yohimbine; meta-Chlorophenylpiperazine; acamprosate

Results 1-25 (481557)