PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (826940)

Clipboard (0)
None

Related Articles

1.  Evolution and Taxonomic Classification of Alphapapillomavirus 7 Complete Genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70 
PLoS ONE  2013;8(8):e72565.
Background
The species Alphapapillomavirus 7 (alpha-7) contains human papillomavirus genotypes that account for 15% of invasive cervical cancers and are disproportionately associated with adenocarcinoma of the cervix. Complete genome analyses enable identification and nomenclature of variant lineages and sublineages.
Methods
The URR/E6 region was sequenced to screen for novel variants of HPV18, 39, 45, 59, 68, 70, 85 and 97 from 1147 cervical samples obtained from multiple geographic regions that had previously been shown to contain an alpha-7 HPV isolate. To study viral heterogeneity, the complete 8 kb genome of 128 isolates, including 109 sequenced for this analysis, were annotated and analyzed. Viral evolution was characterized by constructing phylogenic trees using maximum-likelihood and Bayesian algorithms. Global and pairwise alignments were used to calculate total and ORF/region nucleotide differences; lineages and sublineages were assigned using an alphanumeric system. The prototype genome was assigned to the A lineage or A1 sublineage.
Results
The genomic diversity of alpha-7 HPV types ranged from 1.1% to 6.7% nucleotide sequence differences; the extent of genome-genome pairwise intratype heterogeneity was 1.1% for HPV39, 1.3% for HPV59, 1.5% for HPV45, 1.6% for HPV70, 2.1% for HPV18, and 6.7% for HPV68. ME180 (previously a subtype of HPV68) was designated as the representative genome for HPV68 sublineage C1. Each ORF/region differed in sequence diversity, from most variable to least variable: noncoding region 1 (NCR1) / noncoding region 2 (NCR2) > upstream regulatory region (URR) > E6 / E7 > E2 / L2 > E1 / L1.
Conclusions
These data provide estimates of the maximum viral genomic heterogeneity of alpha-7 HPV type variants. The proposed taxonomic system facilitates the comparison of variants across epidemiological and molecular studies. Sequence diversity, geographic distribution and phylogenetic topology of this clinically important group of HPVs suggest an independent evolutionary history for each type.
doi:10.1371/journal.pone.0072565
PMCID: PMC3745470  PMID: 23977318
2.  Evolutionary Dynamics of Variant Genomes of Human Papillomavirus Types 18, 45, and 97▿ †  
Journal of Virology  2008;83(3):1443-1455.
Human papillomavirus type 18 (HPV18) and HPV45 account for approximately 20% of all cervix cancers. We show that HPV18, HPV45, and the recently discovered HPV97 comprise a clade sharing a most recent common ancestor within HPV α7 species. Variant lineages of these HPV types were classified by sequence analysis of the upstream regulatory region/E6 region among cervical samples from a population-based study in Costa Rica, and 27 representative genomes from each major variant lineage were sequenced. Nucleotide variation within HPV18 and HPV45 was 3.82% and 2.39%, respectively, and amino acid variation was 4.73% and 2.87%, respectively. Only 18 nucleotide variations, of which 10 were nonsynonymous, were identified among three HPV97 genomes. Full-genome comparisons revealed maximal diversity between HPV18 African and non-African variants (2.6% dissimilarity), whereas HPV18 Asian-American [E1 (AA)] and European (E2) variants were closely related (less than 0.5% dissimilarity); HPV45 genomes had a maximal difference of 1.6% nucleotides. Using a Bayesian Markov chain Monte Carlo (MCMC) method, the divergence times of HPV18, -45, and -97 from their most recent common ancestors indicated that HPV18 diverged approximately 7.7 million years (Myr) ago, whereas HPV45 and HPV97 split off around 5.7 Myr ago, in a period encompassing the divergence of the great ape species. Variants within the HPV18/45/97 lineages were estimated to have diverged from their common ancestors in the genus Homo within the last 1 Myr (<0.7 Myr). To investigate the molecular basis of HPV18, HPV45, and HPV97 evolution, regression models of codon substitution were used to identify lineages and amino acid sites under selective pressure. The E5 open reading frame (ORF) of HPV18 and the E4 ORFs of HPV18, HPV45, and HPV18/45/97 had nonsynonymous/synonymous substitution rate ratios (dN/dS) over 1 indicative of positive Darwinian selection. The L1 ORF of HPV18 genomes had an increased proportion of nonsynonymous substitutions (4.93%; average dN/dS ratio [M3] = 0.3356) compared to HPV45 (1.86%; M3 = 0.1268) and HPV16 (2.26%; M3 = 0.1330) L1 ORFs. In contrast, HPV18 and HPV16 genomes had similar amino acid substitution rates within the E1 ORF (2.89% and 3.24%, respectively), while HPV45 E1 was highly conserved (amino acid substitution rate was 0.77%). These data provide an evolutionary history of this medically important clade of HPVs and identify an unexpected divergence of the L1 gene of HPV18 that may have clinical implications for the long-term use of an L1-virus-like particle-based prophylactic vaccine.
doi:10.1128/JVI.02068-08
PMCID: PMC2620887  PMID: 19036820
3.  Global Genomic Diversity of Human Papillomavirus 6 Based on 724 Isolates and 190 Complete Genome Sequences 
Journal of Virology  2014;88(13):7307-7316.
ABSTRACT
Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution.
IMPORTANCE This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.
doi:10.1128/JVI.00621-14
PMCID: PMC4054425  PMID: 24741079
4.  Human Papillomavirus Type 6 and 11 Genetic Variants Found in 71 Oral and Anogenital Epithelial Samples from Australia 
PLoS ONE  2013;8(5):e63892.
Genetic variation of 49 human papillomavirus (HPV) 6 and 22 HPV11 isolates from recurrent respiratory papillomatosis (RRP) (n = 17), genital warts (n = 43), anal cancer (n = 6) and cervical neoplasia cells (n = 5), was determined by sequencing the long control region (LCR) and the E6 and E7 genes. Comparative analysis of genetic variability was examined to determine whether different disease states resulting from HPV6 or HPV11 infection cluster into distinct variant groups. Sequence variation analysis of HPV6 revealed that isolates cluster into variants within previously described HPV6 lineages, with the majority (65%) clustering to HPV6 sublineage B1 across the three genomic regions examined. Overall 72 HPV6 and 25 HPV11 single nucleotide variations, insertions and deletions were observed within samples examined. In addition, missense alterations were observed in the E6/E7 genes for 6 HPV6 and 5 HPV11 variants. No nucleotide variations were identified in any isolates at the four E2 binding sites for HPV6 or HPV11, nor were any isolates found to be identical to the HPV6 lineage A or HPV11 sublineage A1 reference genomes. Overall, a high degree of sequence conservation was observed between isolates across each of the regions investigated for both HPV6 and HPV11. Genetic variants identified a slight association with HPV6 and anogenital lesions (p = 0.04). This study provides important information on the genetic diversity of circulating HPV 6 and HPV11 variants within the Australian population and supports the observation that the majority of HPV6 isolates cluster to the HPV6 sublineage B1 with anogenital lesions demonstrating an association with this sublineage (p = 0.02). Comparative analysis of Australian isolates for both HPV6 and HPV11 to those from other geographical regions based on the LCR revealed a high degree of sequence similarity throughout the world, confirming previous observations that there are no geographically specific variants for these HPV types.
doi:10.1371/journal.pone.0063892
PMCID: PMC3656832  PMID: 23691108
5.  Classification and nomenclature system for Human Alphapapillomavirus variants: general features, nucleotide landmarks and assignment of HPV6 and HPV11 isolates to variant lineages 
Background
Papillomaviruses constitute a family of viruses that can be classified into genera, species and types based on their viral genome heterogeneity. Currently circulating infectious human Alphapapillomaviruses (alpha-PVs) constitute a set of viral genomes that have evolved from archaic times and display features of host co-speciation. Viral variants are more recently evolved genomes that require a standardized classification and nomenclature.
Objectives
To describe a system for the classification and nomenclature of HPV viral variants and provide landmarks for the numbering of nucleotide positions.
Methods
The complete 8 kb genomes of the alpha-9 species group and HPV6 and 11 types, collected from isolates throughout the world were obtained from published reports and GenBank. Complete genomes for each HPV type were aligned using the E1 start codon and sequence divergence was calculated by global and pairwise alignments using the MUSCLE program. Phylogenetic trees were constructed from the aligned sequences using a maximum likelihood method (RAxML).
Results
Pairwise comparisons of nucleotide differences between complete genomes of each type from alpha-9 HPV isolates (HPV16, 31, 33, 35, 52, 58 and 67) revealed a trimodal distribution. Maximum heterogeneity for variants within a type varied from 0.6%-2.3%. Nucleotide differences of approximately 1.0%-10.0% and 0.5%-1.0% of the complete genomes were used to define variant lineages and sublineages, respectively. Analysis of 43 HPV6 complete genomes indicated the presence of 2 variant lineages, whereas 32 HPV11 isolates were highly similar and clustered into 2 sublineages. A table was constructed of the human alpha-PV landmark nucleotide sequences for future reference and alignments.
Conclusions
A proposed nomenclature system for viral variants and coordination of nucleotide positions will facilitate the comparison of variants across geographic regions and amongst different populations. In addition, this system will facilitate study of pathogenic, tissue tropism and functional differences amongst variant lineages of and polymorphisms within HPV variants.
PMCID: PMC3690374  PMID: 22131111
human alpha-PV; HPV6; HPV11; HPV variants; classification
6.  Phylogenetic analysis of 48 papillomavirus types and 28 subtypes and variants: a showcase for the molecular evolution of DNA viruses. 
Journal of Virology  1992;66(10):5714-5725.
Papillomaviruses are attractive models for studying the molecular evolution of DNA viruses because of the large number of isolates that exhibit genomic diversity and host species and tissue specificity. To examine their relationship, we selected two amino acid sequences, one of 52 residues within the early gene E1 and the other of 44 residues within the late gene L1, which allowed insertion- and deletion-free alignment of all accessible papillomavirus sequences. We constructed phylogenetic trees from the amino acid and corresponding nucleotide sequences from 28 published and 20 newly determined animal and human papillomavirus (HPV) genomic sequences by using distance matrix, maximum-likelihood, and parsimony methods. The trees agreed in all important topological aspects. One major branch with two clearly separated clusters contained 11 HPV types associated with epidermodysplasia verruciformis. A second major branch had all the papillomaviruses involved in genital neoplasia and, in distant relationship, the cutaneous papillomaviruses HPV type 2a (HPV-2a), HPV-3, and HPV-10 as well as the "butcher's" papillomavirus HPV-7 and two simian papillomaviruses. Four artiodactyl (even-toed hoofed mammal) papillomaviruses, the cottontail rabbit papillomavirus, and avian (chaffinch) papillomavirus type 1 formed a third major branch. Last, four papillomaviruses exhibited little affinity to any of these three branches; these were the cutaneous types HPV-1a, HPV-4, and HPV-41 and B-group bovine papillomavirus type 4. The phylogeny suggests that some branches of papillomavirus evolution are restricted to particular target tissues and that a general process of long-term papillomavirus-host coevolution has occurred. This latter hypothesis is still conjectural because of bias in the current data base for human types and the paucity of animal papillomavirus sequences. The comparison of evolutionary distances for the most closely related types with those of 28 subtypes and variants of HPV-2, HPV-5, HPV-6, HPV-16, and HPV-18 supports the type as a natural taxonomic unit, with subtypes and variants being expressions of minor intratype genomic diversity similar to that found in the natural populations of all biological species. An exception to this seems to be HPV-2c, which has an evolutionary distance from HPV-2a of the intertype magnitude and may eventually have to be regarded as a distinct type. We describe an experimental approach that estimates the taxonomic and phylogenetic positions of newly identified papillomaviruses without viral isolation and complete genomic sequencing.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC241446  PMID: 1326639
7.  Sequence Imputation of HPV16 Genomes for Genetic Association Studies 
PLoS ONE  2011;6(6):e21375.
Background
Human Papillomavirus type 16 (HPV16) causes over half of all cervical cancer and some HPV16 variants are more oncogenic than others. The genetic basis for the extraordinary oncogenic properties of HPV16 compared to other HPVs is unknown. In addition, we neither know which nucleotides vary across and within HPV types and lineages, nor which of the single nucleotide polymorphisms (SNPs) determine oncogenicity.
Methods
A reference set of 62 HPV16 complete genome sequences was established and used to examine patterns of evolutionary relatedness amongst variants using a pairwise identity heatmap and HPV16 phylogeny. A BLAST-based algorithm was developed to impute complete genome data from partial sequence information using the reference database. To interrogate the oncogenic risk of determined and imputed HPV16 SNPs, odds-ratios for each SNP were calculated in a case-control viral genome-wide association study (VWAS) using biopsy confirmed high-grade cervix neoplasia and self-limited HPV16 infections from Guanacaste, Costa Rica.
Results
HPV16 variants display evolutionarily stable lineages that contain conserved diagnostic SNPs. The imputation algorithm indicated that an average of 97.5±1.03% of SNPs could be accurately imputed. The VWAS revealed specific HPV16 viral SNPs associated with variant lineages and elevated odds ratios; however, individual causal SNPs could not be distinguished with certainty due to the nature of HPV evolution.
Conclusions
Conserved and lineage-specific SNPs can be imputed with a high degree of accuracy from limited viral polymorphic data due to the lack of recombination and the stochastic mechanism of variation accumulation in the HPV genome. However, to determine the role of novel variants or non-lineage-specific SNPs by VWAS will require direct sequence analysis. The investigation of patterns of genetic variation and the identification of diagnostic SNPs for lineages of HPV16 variants provides a valuable resource for future studies of HPV16 pathogenicity.
doi:10.1371/journal.pone.0021375
PMCID: PMC3121793  PMID: 21731721
8.  Human Papillomavirus 45 Genetic Variation and Cervical Cancer Risk Worldwide 
Journal of Virology  2014;88(8):4514-4521.
ABSTRACT
Human papillomavirus 45 (HPV45) is a member of the HPV18-related alpha-7 species and accounts for approximately 5% of all cervical cancer cases worldwide. This study evaluated the genetic diversity of HPV45 and the association of HPV45 variants with the risk of cervical cancer by sequencing the entire E6 and E7 open reading frames of 300 HPV45-positive cervical samples from 36 countries. A total of 43 HPV45 sequence variants were identified that formed 5 phylogenetic sublineages, A1, A2, A3, B1, and B2, the distribution of which varied by geographical region. Among 192 cases of cervical cancer and 101 controls, the B2 sublineage was significantly overrepresented in cervical cancer, both overall and in Africa and Europe separately. We show that the sequence analysis of E6 and E7 allows the classification of HPV45 variants and that the risk of cervical cancer may differ by HPV45 variant sublineage.
IMPORTANCE This work describes the largest study to date of human papillomavirus 45 (HPV45)-positive cervical samples and provides a comprehensive reference for phylogenetic classification for use in epidemiological studies of the carcinogenicity of HPV45 genetic variants, particularly as our findings suggest that the B2 sublineage of HPV45 is associated with a higher risk of cervical cancer.
doi:10.1128/JVI.03534-13
PMCID: PMC3993765  PMID: 24501412
9.  A population-based prospective study of carcinogenic human papillomavirus (HPV) variant lineages, viral persistence, and cervical neoplasia 
Cancer research  2010;70(8):3159-3169.
HPV types differ profoundly in cervical carcinogenicity. For the most carcinogenic type, HPV16, variant lineages representing further evolutionary divergence also differ in cancer risk. Variants of the remaining 10-15 carcinogenic HPV types have not been well-studied.
In the first prospective, population-based study of HPV variants, we explored whether, on average, the oldest evolutionary branches within each carcinogenic type predicted different risks of ≥2-year viral persistence and/or precancer and cancer (CIN3+). We examined the natural history of HPV variants in the 7-year, 10,049-woman Guanacaste Cohort Study, using a nested case-control design. Infections were assigned to a variant lineage determined by phylogenetic parsimony methods based on URR/E6 sequences. We used the Fisher's combination test to evaluate significance of the risk associations, cumulating evidence across types.
Globally, for HPV types including HPV16, the p-value was 0.01 for persistence and 0.07 for CIN3+. Excluding HPV16, the p-values were 0.04 and 0.37, respectively. For HPV16, non-European viral variants were significantly more likely than European variants to cause persistence (OR = 2.6, p = 0.01) and CIN3+ (OR = 2.4, p = 0.004). HPV35 and HPV51 variant lineages also predicted CIN3+.
HPV variants generally differ in risk of persistence. For some HPV types, especially HPV16, variant lineages differ in risk of CIN3+. The findings indicate that continued evolution of HPV types has led to even finer genetic discrimination linked to HPV natural history and cervical cancer risk. Larger viral genomic studies are warranted, especially to identify the genetic basis for HPV16's unique carcinogenicity.
doi:10.1158/0008-5472.CAN-09-4179
PMCID: PMC2855741  PMID: 20354192
HPV; variants; evolution; cervix; cancer
10.  Human Papillomavirus Type 16 Genetic Variants: Phylogeny and Classification Based on E6 and LCR 
Journal of Virology  2012;86(12):6855-6861.
Naturally occurring genetic variants of human papillomavirus type 16 (HPV16) are common and have previously been classified into 4 major lineages; European-Asian (EAS), including the sublineages European (EUR) and Asian (As), African 1 (AFR1), African 2 (AFR2), and North-American/Asian-American (NA/AA). We aimed to improve the classification of HPV16 variant lineages by using a large resource of HPV16-positive cervical samples collected from geographically diverse populations in studies on HPV and/or cervical cancer undertaken by the International Agency for Research on Cancer. In total, we sequenced the entire E6 genes and long control regions (LCRs) of 953 HPV16 isolates from 27 different countries worldwide. Phylogenetic analyses confirmed previously described variant lineages and subclassifications. We characterized two new sublineages within each of the lineages AFR1 and AFR2 that are robustly classified using E6 and/or the LCR. We could differentiate previously identified AA1, AA2, and NA sublineages, although they could not be distinguished by E6 alone, requiring the LCR for correct phylogenetic classification. We thus provide a classification system for HPV16 genomes based on 13 and 32 phylogenetically distinguishing positions in E6 and the LCR, respectively, that distinguish nine HPV16 variant sublineages (EUR, As, AFR1a, AFR1b, AFR2a, AFR2b, NA, AA1, and AA2). Ninety-seven percent of all 953 samples fitted this classification perfectly. Other positions were frequently polymorphic within one or more lineages but did not define phylogenetic subgroups. Such a standardized classification of HPV16 variants is important for future epidemiological and biological studies of the carcinogenic potential of HPV16 variant lineages.
doi:10.1128/JVI.00483-12
PMCID: PMC3393538  PMID: 22491459
11.  Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma 
Genome Medicine  2013;5(2):15.
Background
Human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) represents a distinct clinical and epidemiological condition compared with HPV-negative (HPV-) HNSCC. To test the possible involvement of epigenetic modulation by HPV in HNSCC, we conducted a genome-wide DNA-methylation analysis.
Methods
Using laser-capture microdissection of 42 formalin-fixed paraffin wax-embedded (FFPE) HNSCCs, we generated DNA-methylation profiles of 18 HPV+ and 14 HPV- samples, using Infinium 450 k BeadArray technology. Methylation data were validated in two sets of independent HPV+/HPV- HNSCC samples (fresh-frozen samples and cell lines) using two independent methods (Infinium 450 k and whole-genome methylated DNA immunoprecipitation sequencing (MeDIP-seq)). For the functional analysis, an HPV- HNSCC cell line was transduced with lentiviral constructs containing the two HPV oncogenes (E6 and E7), and effects on methylation were assayed using the Infinium 450 k technology.
Results and discussion
Unsupervised clustering over the methylation variable positions (MVPs) with greatest variation showed that samples segregated in accordance with HPV status, but also that HPV+ tumors are heterogeneous. MVPs were significantly enriched at transcriptional start sites, leading to the identification of a candidate CpG island methylator phenotype in a sub-group of the HPV+ tumors. Supervised analysis identified a strong preponderance (87%) of MVPs towards hypermethylation in HPV+ HNSCC. Meta-analysis of our HNSCC and publicly available methylation data in cervical and lung cancers confirmed the observed DNA-methylation signature to be HPV-specific and tissue-independent. Grouping of MVPs into functionally more significant differentially methylated regions identified 43 hypermethylated promoter DMRs, including for three cadherins of the Polycomb group target genes. Integration with independent expression data showed strong negative correlation, especially for the cadherin gene-family members. Combinatorial ectopic expression of the two HPV oncogenes (E6 and E7) in an HPV- HNSCC cell line partially phenocopied the hypermethylation signature seen in HPV+ HNSCC tumors, and established E6 as the main viral effector gene.
Conclusions
Our data establish that archival FFPE tissue is very suitable for this type of methylome analysis, and suggest that HPV modulates the HNSCC epigenome through hypermethylation of Polycomb repressive complex 2 target genes such as cadherins, which are implicated in tumor progression and metastasis.
doi:10.1186/gm419
PMCID: PMC3706778  PMID: 23419152
12.  Intratype variation in 12 human papillomavirus types: a worldwide perspective. 
Journal of Virology  1996;70(5):3127-3136.
In this study, we have examined intratype human papillomavirus (HPV) sequence variation in a worldwide collection of cervical specimens. Twelve different HPV types including HPV-18, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-58, HPV-59, HPV-68 (ME180), MM9/PAP238A (recently designated HPV-73), and a novel partial genomic HPV sequence designated MM4/Wl3B were analyzed in this study. Cervical specimens were collected as part of epidemiological investigations conducted in New Mexico and an international study of invasive cervical cancer (IBSCC). Specimens from several countries including Argentina, Brazil, Bolivia, Benin, Cuba, Colombia, Chile, Germany, Mali, Panama, Paraguay, Spain, Algeria, Uganda, Guinea, Tanzania, Indonesia, Philippines, Thailand, and the United States were evaluated. Specimen DNAs were subjected to amplification with the MY09/11 L1 consensus PCR system. The PCR products were cloned, and an approximately 410-bp region in the L1 open reading frame was sequenced from 146 specimens (approximately 60,000 bp). Within a single HPV type, nucleotide diversity varied between 0.2 and 2.9% (i.e., between any pair of variants) and the majority of nucleotide changes were synonymous (amino acid conserving). These data provide information pertinent to HPV diagnostic probe development and are potentially relevant to future rational vaccine strategies. Similarly, amino acid diversity varied between 0 and 5.1%. Some of these amino acid changes may represent markers of intertype evolutionary relationships. Presuming that HPVs have evolved under the same constraints as their corresponding hosts, the limited genetic diversity observed for all HPVs studied to date may reflect an evolutionary bottleneck occurring in both virus and host populations.
PMCID: PMC190175  PMID: 8627792
13.  Amino acid sequence diversity of the major human papillomavirus capsid protein: Implications for current and next generation vaccines☆ 
Infection, Genetics and Evolution  2013;18(100):151-159.
Highlights
•We evaluated amino acid diversity of the major capsid protein of HPV.•Residues displaying high entropy were found within surface-exposed domains.•We discuss the implications of this diversity on the current and next generation HPV vaccines.
Despite the fidelity of host cell polymerases, the human papillomavirus (HPV) displays a degree of genomic polymorphism resulting in distinct genotypes and intra-type variants. The current HPV vaccines target the most prevalent genotypes associated with cervical cancer (HPV16/18) and genital warts (HPV6/11). Although these vaccines confer some measure of cross-protection, a multivalent HPV vaccine is in the pipeline that aims to broaden vaccine protection against other cervical cancer-associated genotypes including HPV31, HPV33, HPV45, HPV52 and HPV58. Both current and next generation vaccines comprise virus-like particles, based upon the major capsid protein, L1, and vaccine-induced, type-specific protection is likely mediated by neutralizing antibodies targeting L1 surface-exposed domains.
The aim of this study was to perform an in silico analysis of existing full length L1 sequences representing vaccine-relevant HPV genotypes in order to address the degree of naturally-occurring, intra-type polymorphisms. In total, 1281 sequences from the Americas, Africa, Asia and Europe were assembled. Intra-type entropy was low and/or limited to non-surface-exposed residues for HPV6, HPV11 and HPV52 suggesting a minimal effect on vaccine antibodies for these genotypes. For HPV16, intra-type entropy was high but the present analysis did not reveal any significant polymorphisms not previously identified. For HPV31, HPV33, HPV58, however, intra-type entropy was high, mostly mapped to surface-exposed domains and in some cases within known neutralizing antibody epitopes. For HPV18 and HPV45 there were too few sequences for a definitive analysis, but HPV45 displayed some degree of surface-exposed residue diversity. In most cases, the reference sequence for each genotype represented a minority variant and the consensus L1 sequences for HPV18, HPV31, HPV45 and HPV58 did not reflect the L1 sequence of the currently available HPV pseudoviruses. These data highlight a number of variant amino acid residues that warrant further investigation for vaccine and natural history studies of HPV.
doi:10.1016/j.meegid.2013.05.013
PMCID: PMC3769806  PMID: 23722024
Papillomavirus; HPV; Diversity; Entropy; L1
14.  Association of human papillomavirus type 16 long control region mutation and cervical cancer 
Virology Journal  2013;10:30.
Background
The variation of human papillomavirus (HPV) genes or HPV variants demonstrates different risks of cervical cancer. Mutation in the long control region (LCR) at YY1-motifs is one of the mechanisms for enhancing viral oncogene expression during the course of cancer cell progression. In Thai women, cervical cancers are almost always associated with HPV16 variant sub-lineage Asian (HPV16As); however, the mechanism involved remains elusive. The aim of this study was to understand further the oncogenic potential of HPV16As.
Methods
A total of 82 HPV16-positive specimens from Thai women were selected from formalin-fixed paraffin-embedded cervical tissues, and the full length E6 gene of each specimen was amplified and sequenced. LCRs of the HPV16As-positive cases were amplified and sequenced to analyze their polymorphisms. Transcriptional activities of the HPV16As LCRs were then compared with sub-lineage European (EUR), sub-lineage Asian-American 1 (AA1) and HPV16 prototype by insertion of the LCRs into the pGL3-Basic vector.
Results
The HPV16 DNA sequences were classified as HPV16 prototype (18.3%), Asian (As, 61%), Asian American-1 (AA1, 8.5%), European (EUR, 7.3%), Asian African-2 (AFR2, 3.7%) and Java-135C (J135C, 1.2%). The prevalence of HPV16As was 30% in low-grade squamous intraepithelial lesion (LSIL), while that in high-grade squamous intraepithelial lesion (HSIL) and squamous cell cervical carcinoma (SCC) were 63.9% and 66.7%, respectively, which demonstrates a significant association of HPV16As with the disease severity. LCR polymorphisms from 43 HPV16As positive cases were analyzed by PCR-sequencing. Thirty-eight nucleotide variation positions spanned nucleotide positions 7157–82. Ten new mutations found in the HPV16As LCRs were located predominantly at the enhancer and proximal to the 3’-end of the early promoter. The LCRs of the common HPV16As, EUR and AA1 showed 5, 13 and 23-fold higher activity than the HPV16 prototype LCR, while those of the new nucleotide variations of As showed 19 (As-sv1) and 30 (As-sv14) -fold higher activity than the HPV16 prototype.
Conclusions
HPV16As DNA sequence variation, especially at the proximal to early promoter in the LCR, enhances transcriptional activity. This could be one of the possible mechanisms for HPV16As-associated cervical cancer development.
doi:10.1186/1743-422X-10-30
PMCID: PMC3599568  PMID: 23343096
HPV16; Sub-lineage Asian; Cervical cancer; Long control region
15.  Degradation of p53 by Human Alphapapillomavirus E6 Proteins Shows a Stronger Correlation with Phylogeny than Oncogenicity 
PLoS ONE  2010;5(9):e12816.
Background
Human Papillomavirus (HPV) E6 induced p53 degradation is thought to be an essential activity by which high-risk human Alphapapillomaviruses (alpha-HPVs) contribute to cervical cancer development. However, most of our understanding is derived from the comparison of HPV16 and HPV11. These two viruses are relatively distinct viruses, making the extrapolation of these results difficult. In the present study, we expand the tested strains (types) to include members of all known HPV species groups within the Alphapapillomavirus genus.
Principal Findings
We report the biochemical activity of E6 proteins from 27 HPV types representing all alpha-HPV species groups to degrade p53 in human cells. Expression of E6 from all HPV types epidemiologically classified as group 1 carcinogens significantly reduced p53 levels. However, several types not associated with cancer (e.g., HPV53, HPV70 and HPV71) were equally active in degrading p53. HPV types within species groups alpha 5, 6, 7, 9 and 11 share a most recent common ancestor (MRCA) and all contain E6 ORFs that degrade p53. A unique exception, HPV71 E6 ORF that degraded p53 was outside this clade and is one of the most prevalent HPV types infecting the cervix in a population-based study of 10,000 women. Alignment of E6 ORFs identified an amino acid site that was highly correlated with the biochemical ability to degrade p53. Alteration of this amino acid in HPV71 E6 abrogated its ability to degrade p53, while alteration of this site in HPV71-related HPV90 and HPV106 E6s enhanced their capacity to degrade p53.
Conclusions
These data suggest that the alpha-HPV E6 proteins' ability to degrade p53 is an evolved phenotype inherited from a most recent common ancestor of the high-risk species that does not always segregate with carcinogenicity. In addition, we identified an amino-acid residue strongly correlated with viral p53 degrading potential.
doi:10.1371/journal.pone.0012816
PMCID: PMC2941455  PMID: 20862247
16.  Upstream Regulatory Region Alterations Found in Human Papillomavirus Type 16 (HPV-16) Isolates from Cervical Carcinomas Increase Transcription, ori Function, and HPV Immortalization Capacity in Culture▿  
Journal of Virology  2009;83(15):7457-7466.
Human papillomavirus (HPV) DNAs isolated from cervical and head and neck carcinomas frequently contain nucleotide sequence alterations in the viral upstream regulatory region (URR). Our study has addressed the role such sequence changes may play in the efficiency of establishing HPV persistence and altered keratinocyte growth. Genomic mapping of integrated HPV type 16 (HPV-16) genomes from 32 cervical cancers revealed that the viral E6 and E7 oncogenes, as well as the L1 region/URR, were intact in all of them. The URR sequences from integrated and unintegrated viral DNA were found to harbor distinct sets of nucleotide substitutions. A subset of the altered URRs increased the potential of HPV-16 to establish persistent, cell growth-altering viral-genome replication in the cell. This aggressive phenotype in culture was not solely due to increased viral early gene transcription, but also to augmented initial amplification of the viral genome. As revealed in a novel ori-dependent HPV-16 plasmid amplification assay, the altered motifs that led to increased viral transcription from the intact genome also greatly augmented HPV-16 ori function. The nucleotide sequence changes correlate with those previously described in the distinct geographical North American type 1 and Asian-American variants that are associated with more aggressive disease in epidemiologic studies and encompass, but are not limited to, alterations in previously characterized sites for the negative regulatory protein YY1. Our results thus provide evidence that nucleotide alterations in HPV regulatory sequences could serve as potential prognostic markers of HPV-associated carcinogenesis.
doi:10.1128/JVI.00285-09
PMCID: PMC2708609  PMID: 19458011
17.  Prevalence of human papillomavirus infection in women in Benin, West Africa 
Virology Journal  2011;8:514.
Background
Cervical cancer ranks as the first most frequent cancer among women in Benin. The major cause of cervical cancer now recognized is persistent infection of Human Papillomavirus (HPV). In Benin there is a lack of screening programs for prevention of cervical cancer and little information exists regarding HPV genotype distribution.
Methods
Cervical cells from 725 women were examined for the presence of viral DNA by means of a polymerase chain reaction (PCR) multiplex-based assay with the amplification of a fragment of L1 region and of E6/E7 region of the HPV genome, and of abnormal cytology by Papanicolaou method. The association between HPV status and Pap test reports was evaluated. Socio-demographic and reproductive characteristics were also related.
Results
A total of 18 different HPV types were identified, with a prevalence of 33.2% overall, and 52% and 26.7% among women with and without cervical lesions, respectively. Multiple HPV infections were observed in 40.2% of HPV-infected women. In the HPV-testing group, the odds ratio for the detection of abnormal cytology was 2.98 (95% CI, 1.83-4.84) for HPV positive in comparison to HPV negative women. High risk types were involved in 88% of infections, most notably HPV-59, HPV-35, HPV-16, HPV-18, HPV-58 and HPV-45. In multiple infections of women with cytological abnormalities HPV-45 predominated.
Conclusions
This study provides the first estimates of the prevalence of HPV and type-specific distribution among women from Benin and demonstrates that the epidemiology of HPV infection in Benin is different from that of other world regions. Specific area vaccinations may be needed to prevent cervical cancer and the other HPV-related diseases.
doi:10.1186/1743-422X-8-514
PMCID: PMC3231975  PMID: 22074103
human papillomavirus; cervical cancer; Benin; Pap test; prevention
18.  Diversifying Selection in Human Papillomavirus Type 16 Lineages Based on Complete Genome Analyses 
Journal of Virology  2005;79(11):7014-7023.
Human papillomavirus type 16 (HPV16) is the primary etiological agent of cervical cancer, the second most common cancer in women worldwide. Complete genomes of 12 isolates representing the major lineages of HPV16 were cloned and sequenced from cervicovaginal cells. The sequence variations within the open reading frames (ORFs) and noncoding regions were identified and compared with the HPV16R reference sequence (50). This whole-genome approach gives us unprecedented precision in detailing sequence-level changes that are under selection on a whole-viral-genome scale. Of 7,908 base pair nucleotide positions, 313 (4.0%) were variable. Within the 2,452 amino acids (aa) comprising 8 ORFs, 243 (9.9%) amino acid positions were variable. In order to investigate the molecular evolution of HPV16 variants, maximum likelihood models of codon substitution were used to identify lineages and amino acid sites under selective pressure. Five codon sites in the E5 (aa 48, 65) and E6 (aa 10, 14, 83) ORFs were demonstrated to be under diversifying selective pressure. The E5 ORF had the overall highest nonsynonymous/synonymous substitution rate (ω) ratio (M3 = 0.7965). The E2 gene had the next-highest ω ratio (M3 = 0.5611); however, no specific codons were under positive selection. These data indicate that the E6 and E5 ORFs are evolving under positive Darwinian selection and have done so in a relatively short time period. Whether response to selective pressure upon the E5 and E6 ORFs contributes to the biological success of HPV16, its specific biological niche, and/or its oncogenic potential remains to be established.
doi:10.1128/JVI.79.11.7014-7023.2005
PMCID: PMC1112126  PMID: 15890941
19.  Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 
Journal of Virology  2005;79(21):13630-13640.
Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is called HPV species 9 and is formed by HPV-16, the most common and best-studied type, together with HPV-31, -33, -35, -52, -58, and -67. Previous worldwide comparisons of HPV-16 samples showed about 2% nucleotide diversity between isolates, which were subsequently termed variants. The distribution of divergent variants has been found to correlate frequently with the geographic origin and the ethnicity of the infected patients and led to the concept of unique African, European, Asian, and Native American HPV-16 variants. In the current study, we address the question of whether geography and ethnicity also correlate with sequence variations found for HPV-31, -35, -52, and -58. This was done by sequencing the long control region in samples derived from Europe, Asia, and Africa, and from immigrant populations in North and South America. We observed maximal divergence between any two variants within each of these four HPV types ranging from 1.8 to 3.6% based on nucleotide exchanges and, occasionally, on insertions and deletions. Similar to the case with HPV-16, these mutations are not random but indicate a relationship between the variants in form of phylogenetic trees. An interesting example is presented by a 16-bp insert in select variants of HPV-35, which appears to have given rise to additional variants by nucleotide exchanges within the insert. All trees showed distinct phylogenetic topologies, ranging from dichotomic branching in the case of HPV-31 to star phylogenies of the other three types. No clear similarities between these types or between these types and HPV-16 exist. While variant branches in some types were specific for Europe, Africa, or East Asia, none of the four trees reflected human evolution and spread to the extent illustrated by HPV-16. One possible explanation is that the rare HPV types that we studied spread and thereby diversified more slowly than the more abundant HPV-16 and may have established much of today's variant diversity already before the worldwide spread of humans 100,000 years ago. Most variants had prototypic amino acid sequences within the E6 oncoprotein and a segment of the L1 capsid protein. Some had one, two, or three amino acid substitutions in these regions, which might indicate biological and pathogenic diversity between the variants of each HPV type.
doi:10.1128/JVI.79.21.13630-13640.2005
PMCID: PMC1262609  PMID: 16227283
20.  Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genomes sampled throughout the world. 
Journal of Clinical Microbiology  1995;33(7):1746-1754.
We examined the genomic diversity of human papillomavirus type 6 (HPV-6) and HPV-11 isolates from different parts of the world by comparing the nucleotide sequences of part of the long control region of three reference clones and 62 HPV-6 and 40 HPV-11 isolates from Africa, Europe, Asia, and North and South America. The genomic sequence of the HPV-6b reference type had to be amended by inclusion of a 94-bp segment, which is also present with minor differences in HPV-6a. Aside from two small inserts typical of all variants related to HPV-6a and three inserts found in HPV-11 variants, no major alterations to the size of the long control regions of these viruses were observed. This corrects the previous impression that these two HPV types are highly polymorphic. Altogether, 19 HPV-6 and 10 HPV-11 variant genomes could be distinguished, and most of the differences were due to point substitutions. The variants of either type were continuously connected in phylogenetic trees rather than clustered separately into subtype groups. Thirteen mutations, namely, the two HPV-6a inserts and 11 substitutions in HPV-6 or HPV-11 variants, reduced the dissimilarity between the types, but they bridged only a small fraction of the genetic distance between the two types. Genomes more obviously intermediate between HPV-6 and HPV-11 were not found and probably do not exist any more.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID: PMC228262  PMID: 7665641
21.  Mucosal and Cutaneous Human Papillomaviruses Detected in Raw Sewages 
PLoS ONE  2013;8(1):e52391.
Epitheliotropic viruses can find their way into sewage. The aim of the present study was to investigate the occurrence, distribution, and genetic diversity of Human Papillomaviruses (HPVs) in urban wastewaters. Sewage samples were collected from treatment plants distributed throughout Italy. The DNA extracted from these samples was analyzed by PCR using five PV-specific sets of primers targeting the L1 (GP5/GP6, MY09/MY11, FAP59/64, SKF/SKR) and E1 regions (PM-A/PM-B), according to the protocols previously validated for the detection of mucosal and cutaneous HPV genotypes. PCR products underwent sequencing analysis and the sequences were aligned to reference genomes from the Papillomavirus Episteme database. Phylogenetic analysis was then performed to assess the genetic relationships among the different sequences and between the sequences of the samples and those of the prototype strains. A broad spectrum of sequences related to mucosal and cutaneous HPV types was detected in 81% of the sewage samples analyzed. Surprisingly, sequences related to the anogenital HPV6 and 11 were detected in 19% of the samples, and sequences related to the “high risk” oncogenic HPV16 were identified in two samples. Sequences related to HPV9, HPV20, HPV25, HPV76, HPV80, HPV104, HPV110, HPV111, HPV120 and HPV145 beta Papillomaviruses were detected in 76% of the samples. In addition, similarity searches and phylogenetic analysis of some sequences suggest that they could belong to putative new genotypes of the beta genus. In this study, for the first time, the presence of HPV viruses strongly related to human cancer is reported in sewage samples. Our data increases the knowledge of HPV genomic diversity and suggests that virological analysis of urban sewage can provide key information useful in supporting epidemiological studies.
doi:10.1371/journal.pone.0052391
PMCID: PMC3544852  PMID: 23341898
22.  Human papillomavirus 33 worldwide genetic variation and associated risk of cervical cancer 
Virology  2013;448:356-362.
Human papillomavirus (HPV) 33, a member of the HPV16-related alpha-9 species group, is found in approximately 5% of cervical cancers worldwide. The current study aimed to characterize the genetic diversity of HPV33 and to explore the association of HPV33 variants with the risk for cervical cancer. Taking advantage of the International Agency for Research on Cancer biobank, we sequenced the entire E6 and E7 open reading frames of 213 HPV33-positive cervical samples from 30 countries. We identified 28 HPV33 variants that formed 5 phylogenetic groups: the previously identified A1, A2, and B (sub) lineages and the novel A3 and C (sub)lineages. The A1 sublineage was strongly over-represented in cervical cases compared to controls in both Africa and Europe. In conclusion, we provide a classification system for HPV33 variants based on the sequence of E6 and E7 and suggest that the association of HPV33 with cervical cancer may differ by variant (sub)lineage.
doi:10.1016/j.virol.2013.10.033
PMCID: PMC3984975  PMID: 24314666
HPV; Variants; Cervical cancer; Phylogeny
23.  Human Papillomavirus 16 Non-European Variants Are Preferentially Associated with High-Grade Cervical Lesions 
PLoS ONE  2014;9(7):e100746.
HPV16 accounts for 50–70% of cervical cancer cases worldwide. Characterization of HPV16 variants previously indicated that they differ in risks for viral persistence, progression to cervical precancer and malignant cancer. The aim of this study was to examine the association of severity of disease with HPV16 variants identified in specimens (n = 281) obtained from a Cervical Pathology and Colposcopy outpatient clinic in the University Hospital of Espírito Santo State, Southeastern Brazil, from April 2010 to November 2011. All cytologic and histologic diagnoses were determined prior to definitive treatment. The DNA was isolated using QIAamp DNA Mini Kit and HPV was detected by amplification with PGMY09/11 primers and positive samples were genotyped by RFLP analyses and reverse line blot. The genomes of the HPV16 positive samples were sequenced, from which variant lineages were determined. Chi2 statistics was performed to test the association of HPV16 variants between case and control groups. The prevalence of HR-HPV types in
doi:10.1371/journal.pone.0100746
PMCID: PMC4077691  PMID: 24983739
Head and Neck Pathology  2012;7(2):135-148.
Herein we test the following hypotheses: (1) High-risk Human Papillomavirus (HR-HPV) may be involved in the etiology of mucoepidermoid carcinoma (MEC), and (2) The detection rate of HR-HPV in MEC has been increasing over time. Ninety-eight archival MEC specimens from three institutions spanning three decades were studied for HPV16/18 E6/E7 transcripts. RNA was extracted from formalin-fixed paraffin embedded specimens and HPV16/18 E6/E7 expression assessed by nested reverse transcription polymerase chain reaction (RT-PCR). A subset of MEC were also studied for MECT1-MAML2 fusion transcripts by nested RT-PCR and amplicon sequencing. The HPV expression data was validated by immunofluorescence (IF) with monoclonal HPV16/18 E6 antibody, PCR with the GP5+/6+ consensus primers, and sequencing of RT-PCR amplicons. HPV genome was localized by in-situ hybridization with the Ventana Inform HPVIII Family 16 probe. P16INK4a overexpression and aberrant p53 expression were assessed by immunohistochemistry. HPV16 E6/E7 transcripts were demonstrated in (29/98) 30 % of MEC by RT-PCR. HPV18 E6/E7 transcripts were demonstrated in 13/98 (13 %) of MEC by RT-PCR. Seven of 98 tumors (7 %) demonstrated both HPV16/18. No significant association was found between HPV status and gender, age, and tumor site. All 13 HPV18+ MEC were diagnosed between 2001 and 2010, whereas 45 MEC diagnosed from 1977 to 2000 were negative for HPV18 (p = 0.002). By contrast, there was no significant difference with respect to HPV16 detection and date of diagnosis. All MEC that were positive for E6 protein were also HPV16/18 positive by RT-PCR. Sequencing a subset of RT-PCR amplicons confirmed HPV type- and region-specific sequences. PCR using GP5+/6+ consensus primers demonstrated HPV status concordance in 9 of 10 cases. DNA degradation was present in the last case; the RT-PCR amplicons were sequenced from this case which confirmed the presence of HPV type- and region-specific sequences. Strong (+4/+4) and diffuse (>50 %) nuclear and cytoplasmic p16 expression was seen in 64 % of MEC in the glandular regions, and 18 % of MEC in the solid, squamoid regions. No correlation was seen between p16 expression and HPV status. Twenty-nine MEC (22 HPV+ and 7 HPV-negative) were selected for further evaluation for p53 expression. Strong aberrant nuclear p53 expression was present in only 2/22 HPV + MEC (9 %, both Grade 3); no HPV-negative MEC demonstrated aberrant p53 expression. MECT1-MAML2 fusion transcripts were demonstrated in 23/37 (62 %) MEC. No significant association was found between the presence of the MECT1-MAML2 fusion transcripts and tumor grade, HPV status, gender, era of diagnosis (2000 and earlier vs. 2001–2010) or tumor site. We demonstrate for the first time that transcriptionally active HPV16/18 is common to MEC. These findings were validated by demonstrating concordant results by separate PCR with consensus primers, and/or confirming the presence of HPV type- and region-specific sequences in the RT-PCR amplicons. We also visualized E6 viral oncoprotein and HPV genome within tumor cells. HR-HPV is thus potentially implicated in the pathogenesis of MEC. The frequency of HPV18 detection is significantly increased in MEC diagnosed after 2001, whereas we found no differences in the HPV16 detection rates per era of diagnosis.
doi:10.1007/s12105-012-0411-2
PMCID: PMC3642267  PMID: 23233027
Mucoepidermoid carcinoma; Human Papillomavirus; HPV16/18; E6
BMC Cancer  2012;12:36.
Background
The development of cervical cancer and its high-grade precursor lesions (Cervical Intraepithelial Neoplasia grade 2/3 [CIN2/3]) result from a persistent infection with high-risk human papillomavirus (hrHPV) types and the accumulation of (epi)genetic host cell aberrations. Epidemiological studies have demonstrated variable CIN2/3 and cancer risks between different hrHPV types. Recent genomic profiling studies revealed substantial heterogeneity in the chromosomal aberrations detected in morphologically indistinguishable CIN2/3 suggestive of varying cancer risk. The current study aimed to investigate whether CIN2/3 with different hrHPV types vary with respect to their chromosomal profiles, both in terms of the number of aberrations and chromosomal loci affected.
Methods
Chromosomal profiles were determined of 43 p16INK4a-immunopositive CIN2/3 of women with long-term hrHPV infection (≥ 5 years). Sixteen lesions harboured HPV16, 3 HPV18, 14 HPV31, 1 HPV33, 4 HPV45, 1 HPV51, 2 HPV52 and 2 HPV58.
Results
Unsupervised hierarchical clustering analysis of the chromosomal profiles revealed two major clusters, characterised by either few or multiple chromosomal aberrations, respectively. A majority of 87.5% of lesions with HPV16 were in the cluster with relatively few aberrations, whereas no such unbalanced distribution was seen for lesions harbouring other hrHPV types. Analysis of the two most prevalent types (HPV16 and HPV31) in this data set revealed a three-fold increase in the number of losses in lesions with HPV31 compared to HPV16-positive lesions. In particular, losses at chromosomes 2q, 4p, 4q, 6p, 6q, 8q & 17p and gain at 1p & 1q were significantly more frequent in HPV31-positive lesions (FDR < 0.2).
Conclusions
Chromosomal aberrations in CIN2/3 are at least in part related to the hrHPV type present. The relatively low number of chromosomal aberrations observed in HPV16-positive CIN2/3 suggests that the development of these lesions is less dependent on genetic insult than those caused by other types like HPV31.
doi:10.1186/1471-2407-12-36
PMCID: PMC3305644  PMID: 22273477
Array CGH; Cervical cancer; Chromosomal aberrations; High-grade cervical intraepithelial neoplasia; HPV

Results 1-25 (826940)