PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1230123)

Clipboard (0)
None

Related Articles

1.  The type of Aβ-related neuronal degeneration differs between amyloid precursor protein (APP23) and amyloid β-peptide (APP48) transgenic mice 
Background
The deposition of the amyloid β-peptide (Aβ) in the brain is one of the hallmarks of Alzheimer’s disease (AD). It is not yet clear whether Aβ always leads to similar changes or whether it induces different features of neurodegeneration in relation to its intra- and/or extracellular localization or to its intracellular trafficking routes. To address this question, we have analyzed two transgenic mouse models: APP48 and APP23 mice. The APP48 mouse expresses Aβ1-42 with a signal sequence in neurons. These animals produce intracellular Aβ independent of amyloid precursor protein (APP) but do not develop extracellular Aβ plaques. The APP23 mouse overexpresses human APP with the Swedish mutation (KM670/671NL) in neurons and produces APP-derived extracellular Aβ plaques and intracellular Aβ aggregates.
Results
Tracing of commissural neurons in layer III of the frontocentral cortex with the DiI tracer revealed no morphological signs of dendritic degeneration in APP48 mice compared to littermate controls. In contrast, the dendritic tree of highly ramified commissural frontocentral neurons was altered in 15-month-old APP23 mice. The density of asymmetric synapses in the frontocentral cortex was reduced in 3- and 15-month-old APP23 but not in 3- and 18-month-old APP48 mice. Frontocentral neurons of 18-month-old APP48 mice showed an increased proportion of altered mitochondria in the soma compared to wild type and APP23 mice. Aβ was often seen in the membrane of neuronal mitochondria in APP48 mice at the ultrastructural level.
Conclusions
These results indicate that APP-independent intracellular Aβ accumulation in APP48 mice is not associated with dendritic and neuritic degeneration but with mitochondrial alterations whereas APP-derived extra- and intracellular Aβ pathology in APP23 mice is linked to dendrite degeneration and synapse loss independent of obvious mitochondrial alterations. Thus, Aβ aggregates in APP23 and APP48 mice induce neurodegeneration presumably by different mechanisms and APP-related production of Aβ may, thereby, play a role for the degeneration of neurites and synapses.
Electronic supplementary material
The online version of this article (doi:10.1186/2051-5960-1-77) contains supplementary material, which is available to authorized users.
doi:10.1186/2051-5960-1-77
PMCID: PMC4046770  PMID: 24252227
Intracellular amyloid β-protein; Extracellular amyloid β-protein; Mitochondria; Dendrites; Toxicity; Degeneration
2.  Calpastatin modulates APP processing in the brains of β-amyloid depositing but not wild-type mice 
Neurobiology of Aging  2011;33(6):1125.e9-1125.e18.
We report that neuronal overexpression of the endogenous inhibitor of calpains, calpastatin (CAST), in a mouse model of human Alzheimer’s disease (AD) β-amyloidosis, the APP23 mouse, reduces β-amyloid pathology and Aβ levels when comparing aged, double transgenic (tg) APP23/CAST with APP23 mice. Concurrent with Aβ plaque deposition, aged APP23/CAST mice show a decrease in the steady-state brain levels of the amyloid precursor protein (APP) and APP C-terminal fragments when compared to APP23 mice. This CAST-dependent decrease in APP metabolite levels was not observed in single tg CAST mice expressing endogenous APP or in younger, Aβ plaque predepositing APP23/CAST mice. We also determined that the CAST-mediated inhibition of calpain activity in the brain is greater in the CAST mice with β-amyloid pathology than in non-APP tg mice, as demonstrated by a decrease in calpain-mediated cytoskeleton protein cleavage. Moreover, aged APP23/CAST mice have reduced ERK1/2 activity and tau phosphorylation when compared to APP23 mice. In summary, in vivo calpain inhibition mediated by CAST transgene expression reduces Aβ pathology in APP23 mice, with our findings further suggesting that APP metabolism is modified by CAST overexpression as the mice develop β-amyloid pathology. Our results indicate that the calpain system in neurons is more responsive to CAST inhibition under conditions of β-amyloid pathology, suggesting that in the disease state neurons may be more sensitive to the therapeutic use of calpain inhibitors.
doi:10.1016/j.neurobiolaging.2011.11.023
PMCID: PMC3318946  PMID: 22206846
calpain; calpastatin; APP; Aβ; Alzheimer’s disease
3.  Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult 
Background
Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder.
Results
We show that overexpression of the Alzheimer’s-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral.
Conclusions
Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer’s disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.
doi:10.1186/1750-1326-7-28
PMCID: PMC3457908  PMID: 22709352
Alzheimer’s disease; Transgenic mouse; Motor hyperactivity; Amyloid precursor protein; APP; Amyloid-β; neurodevelopment; Tetracycline-controllable; Tet-off
4.  Mitosis-specific phosphorylation of amyloid precursor protein at Threonine 668 leads to its altered processing and association with centrosomes 
Background
Atypical expression of cell cycle regulatory proteins has been implicated in Alzheimer's disease (AD), but the molecular mechanisms by which they induce neurodegeneration are not well understood. We examined transgenic mice expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) for changes in cell cycle regulatory proteins to determine whether there is a correlation between cell cycle activation and pathology development in AD.
Results
Our studies in the AD transgenic mice show significantly higher levels of cyclin E, cyclin D1, E2F1, and P-cdc2 in the cells in the vicinity of the plaques where maximum levels of Threonine 668 (Thr668)-phosphorylated APP accumulation was observed. This suggests that the cell cycle regulatory proteins might be influencing plaque pathology by affecting APP phosphorylation. Using neuroglioma cells overexpressing APP we demonstrate that phosphorylation of APP at Thr668 is mitosis-specific. Cells undergoing mitosis show altered cellular distribution and localization of P-APP at the centrosomes. Also, Thr668 phosphorylation in mitosis correlates with increased processing of APP to generate Aβ and the C-terminal fragment of APP, which is prevented by pharmacological inhibitors of the G1/S transition.
Conclusions
The data presented here suggests that cell cycle-dependent phosphorylation of APP may affect its normal cellular function. For example, association of P-APP with the centrosome may affect spindle assembly and cell cycle progression, further contributing to the development of pathology in AD. The experiments with G1/S inhibitors suggest that cell cycle inhibition may impede the development of Alzheimer's pathology by suppressing modification of βAPP, and thus may represent a novel approach to AD treatment. Finally, the cell cycle regulated phosphorylation and processing of APP into Aβ and the C-terminal fragment suggest that these proteins may have a normal function during mitosis.
doi:10.1186/1750-1326-6-80
PMCID: PMC3284477  PMID: 22112898
Amyloid precursor protein; cell cycle; mitosis; kinases; APP phosphorylation; amyloid processing
5.  Role of X11 and ubiquilin as In Vivo Regulators of the Amyloid Precursor Protein in Drosophila 
PLoS ONE  2008;3(6):e2495.
The Amyloid Precursor Protein (APP) undergoes sequential proteolytic cleavages through the action of β- and γ-secretase, which result in the generation of toxic β-amyloid (Aβ) peptides and a C-terminal fragment consisting of the intracellular domain of APP (AICD). Mutations leading to increased APP levels or alterations in APP cleavage cause familial Alzheimer's disease (AD). Thus, identification of factors that regulate APP steady state levels and/or APP cleavage by γ-secretase is likely to provide insight into AD pathogenesis. Here, using transgenic flies that act as reporters for endogenous γ-secretase activity and/or APP levels (GAMAREP), and for the APP intracellular domain (AICDREP), we identified mutations in X11L and ubiquilin (ubqn) as genetic modifiers of APP. Human homologs of both X11L (X11/Mint) and Ubqn (UBQLN1) have been implicated in AD pathogenesis. In contrast to previous reports, we show that overexpression of X11L or human X11 does not alter γ-secretase cleavage of APP or Notch, another γ-secretase substrate. Instead, expression of either X11L or human X11 regulates APP at the level of the AICD, and this activity requires the phosphotyrosine binding (PTB) domain of X11. In contrast, Ubqn regulates the levels of APP: loss of ubqn function leads to a decrease in the steady state levels of APP, while increased ubqn expression results in an increase in APP levels. Ubqn physically binds to APP, an interaction that depends on its ubiquitin-associated (UBA) domain, suggesting that direct physical interactions may underlie Ubqn-dependent regulation of APP. Together, our studies identify X11L and Ubqn as in vivo regulators of APP. Since increased expression of X11 attenuates Aβ production and/or secretion in APP transgenic mice, but does not act on γ-secretase directly, X11 may represent an attractive therapeutic target for AD.
doi:10.1371/journal.pone.0002495
PMCID: PMC2429963  PMID: 18575606
6.  Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically 
BMC Neuroscience  2008;9:28.
Background
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects a large and growing number of elderly individuals. In addition to idiopathic disease, AD is also associated with autosomal dominant inheritance, which causes a familial form of AD (FAD). Some instances of FAD have been linked to mutations in the β-amyloid protein precursor (APP). Although there are numerous mouse AD models available, few rat AD models, which have several advantages over mice, have been generated.
Results
Fischer 344 rats expressing human APP driven by the ubiquitin-C promoter were generated via lentiviral vector infection of Fischer 344 zygotes. We generated two separate APP-transgenic rat lines, APP21 and APP31. Serum levels of human amyloid-beta (Aβ)40 were 298 pg/ml for hemizygous and 486 pg/ml for homozygous APP21 animals. Serum Aβ42 levels in APP21 homozygous rats were 135 pg/ml. Immunohistochemistry in brain showed that the human APP transgene was expressed in neurons, but not in glial cells. These findings were consistent with independent examination of enhanced green fluorescent protein (eGFP) in the brains of eGFP-transgenic rats. APP21 and APP31 rats expressed 7.5- and 3-times more APP mRNA, respectively, than did wild-type rats. Northern blots showed that the human APP transgene, driven by the ubiquitin-C promoter, is expressed significantly more in brain, kidney and lung compared to heart and liver. A similar expression pattern was also seen for the endogenous rat APP. The unexpected similarity in the tissue-specific expression patterns of endogenous rat APP and transgenic human APP mRNAs suggests regulatory elements within the cDNA sequence of APP.
Conclusion
This manuscript describes the generation of APP-transgenic inbred Fischer 344 rats. These are the first human AD model rat lines generated by lentiviral infection. The APP21 rat line expresses high levels of human APP and could be a useful model for AD. Tissue-specific expression in the two transgenic rat lines and in wild-type rats contradicts our current understanding of APP gene regulation. Determination of the elements that are responsible for tissue-specific expression of APP may enable new treatment options for AD.
doi:10.1186/1471-2202-9-28
PMCID: PMC2268936  PMID: 18302776
7.  Amyloid precursor protein-induced axonopathies are independent of amyloid-β peptides 
Human Molecular Genetics  2008;17(22):3474-3486.
Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer’s disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-β peptides (Aβ), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Aβ poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Aβ, we perturbed Aβ generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Aβ42/Aβ40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Aβ with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Aβ ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Aβ.
doi:10.1093/hmg/ddn240
PMCID: PMC2722897  PMID: 18694898
8.  Amyloid-β protein impairs Ca2+ release and contractility in skeletal muscle 
Neurobiology of aging  2008;31(12):2080-2090.
Inclusion body myositis (IBM), the most common muscle disorder in the elderly, is partly characterized by dysregulation of β-amyloid precursor protein (βAPP) expression and abnormal, intracellular accumulation of full-length βAPP and β-amyloid epitopes. The present study examined the effects of β-amyloid accumulation on force generation and Ca2+ release in skeletal muscle from transgenic mice harboring human βAPP and assessed the consequence of Aβ1-42 modulation of the ryanodine receptor Ca2+ release channels (RyRs). β-Amyloid laden muscle produced less peak force and exhibited Ca2+ transients with smaller amplitude. To determine whether modification of RyRs by β-amyloid underlie the effects observed in muscle, in vitro Ca2+ release assays and RyR reconstituted in planar lipid bilayer experiments were conducted in the presence of Aβ1-42. Application of Aβ1-42 to RyRs in bilayers resulted in an increased channel open probability and changes in gating kinetics, while addition of Aβ1-42 to the rabbit SR vesicles resulted in RyR-mediated Ca2+ release. These data may relate altered βAPP metabolism in IBM to reductions in RyR-mediated Ca2+ release and muscle contractility.
doi:10.1016/j.neurobiolaging.2008.11.003
PMCID: PMC2901770  PMID: 19108934
Inclusion body myositis; β-Amyloid; βAPP; Ryanodine receptors; Excitation-contraction coupling
9.  The Exosome Secretory Pathway Transports Amyloid Precursor Protein Carboxyl-terminal Fragments from the Cell into the Brain Extracellular Space* 
The Journal of Biological Chemistry  2012;287(51):43108-43115.
Background: Exosomes isolated in vitro contain full-length amyloid-β precursor protein (flAPP) and APP metabolites.
Results: Exosomes secreted in vivo in brains of wild-type and APP-overexpressing mice contain higher levels of APP C-terminal fragments (CTFs) relative to flAPP compared with brain tissue.
Conclusion: Brain exosomes are enriched with APP CTFs.
Significance: The exosome secretory pathway clears cellular APP CTFs, releasing the toxic fragments into the neuropil.
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain.
doi:10.1074/jbc.M112.404467
PMCID: PMC3522305  PMID: 23129776
Alzheimer Disease; Amyloid; Amyloid Precursor Protein; Endosomes; Exosomes; APP C-terminal Fragments; Amyloid-β
10.  Amyloid precursor protein (APP) regulates synaptic structure and function 
The amyloid precursor protein (APP) plays a critical role in Alzheimer’s disease (AD) pathogenesis. APP is proteolytically cleaved by β- and γ-secretases to generate the amyloid β-protein (Aβ), the core protein component of senile plaques in AD. It is also cleaved by α-secretase to release the large soluble APP (sAPP) luminal domain that has been shown to exhibit trophic properties. Increasing evidence points to the development of synaptic deficits and dendritic spine loss prior to deposition of amyloid in transgenic mouse models that overexpress APP and Aβ peptides. The consequence of loss of APP, however, is unsettled. In this study, we investigated whether APP itself plays a role in regulating synaptic structure and function using an APP knock-out (APP−/−) mouse model. We examined dendritic spines in primary cultures of hippocampal neurons and CA1 neurons of hippocampus from APP−/− mice. In the cultured neurons, there was a significant decrease (~35%) in spine density in neurons derived from APP−/− mice compared to littermate control neurons that were partially restored with sAPPα-conditioned medium. In APP−/− mice in vivo, spine numbers were also significantly reduced but by a smaller magnitude (~15%). Furthermore, apical dendritic length and dendritic arborization were markedly diminished in hippocampal neurons. These abnormalities in neuronal morphology were accompanied by reduction in long-term potentiation. Strikingly, all these changes in vivo were only seen in mice that were 12-15 months in age but not in younger animals. We propose that APP, specifically sAPP, is necessary for the maintenance of dendritic integrity in the hippocampus in an age-associated manner. Finally, these age-related changes may contribute to Alzheimer’s changes independent of Aβ-mediated synaptic toxicity.
doi:10.1016/j.mcn.2012.07.009
PMCID: PMC3538857  PMID: 22884903
Alzheimer’s disease; amyloid precursor protein; knock-out mice; extracellular domain; soluble amyloid β; synapse
11.  UV Irradiation Accelerates Amyloid Precursor Protein (APP) Processing and Disrupts APP Axonal Transport 
The Journal of Neuroscience  2014;34(9):3320-3339.
Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction.
doi:10.1523/JNEUROSCI.1503-13.2014
PMCID: PMC3935090  PMID: 24573290
amyloid precursor protein; APP axonal vesicles; axonal transport; gamma-secretase; kinesin; UV-irradiation
12.  Neurodegeneration in a Drosophila Model for the Function of TMCC2, an Amyloid Protein Precursor-Interacting and Apolipoprotein E-Binding Protein 
PLoS ONE  2013;8(2):e55810.
We previously identified TMCC2 as a protein that interacted differentially with normal versus Alzheimer's disease-risk forms of both apolipoprotein E (apoE) and the amyloid protein precursor (APP). We hypothesized that disrupted function of TMCC2 would affect neurodegeneration. To test this hypothesis, we investigated the Drosophila orthologue of TMCC2, that we have named Dementin. We showed that Dementin interacts genetically both with human APP and its Drosophila orthologue, the APP-like protein (APPL). Ectopic expression of Dementin in Drosophila rescued developmental and behavioral defects caused by expression of human APP. Both a hypomorphic lethal mutation in the dementin gene (dmtn1) and RNAi for Dementin caused the accumulation of fragments derived from APPL. We found that Dementin was required for normal development of the brain, and that glial Dementin was required for development of the Drosophila medulla neuropil. Expression of wild-type Dementin in either the neurons or glia of dmtn1 flies rescued developmental lethality. Adult dmtn1 flies rescued by expression of wild-type Dementin in glia, i.e. whose neurons expressed only dmtn1, showed pathological features resembling early onset Alzheimer's disease, accumulation of abnormal APPL metabolites, synaptic pathology, mis-localized microtubule-binding proteins, neurodegeneration, and early death.
doi:10.1371/journal.pone.0055810
PMCID: PMC3567013  PMID: 23409049
13.  Modeling Alzheimer’s Disease in Mouse without Mutant Protein Overexpression: Cooperative and Independent Effects of Aβ and Tau 
PLoS ONE  2013;8(11):e80706.
Background
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP, PSEN1 or PSEN2 can lead to early onset of familial AD (FAD). Although mutations in the tau encoding gene MAPT leads to a subtype of frontotemporal dementia and these mutations have been used to model AD tauopathy, no MAPT mutations have been found to be associated with AD.
Results
To model AD pathophysiology in mice without the gross overexpression of mutant transgenes, we created a humanized AD mouse model by crossing the APP and PSEN1 FAD knock-in mice with the htau mice which express wildtype human MAPT genomic DNA on mouse MAPT null background (APP/PS1/htau). The APP/PS1/htau mice displayed mild, age-dependent, Aβ plaques and tau hyperphosphorylation, thus successfully recapitulating the late-onset AD pathological hallmarks. Selected biochemical analyses, including p-tau western blot, γ-secretase activity assay, and Aβ ELISA, were performed to study the interaction between Aβ and p-tau. Subsequent behavioral studies revealed that the APP/PS1/htau mice showed reduced mobility in old ages and exaggerated fear response. Genetic analysis suggested that the fear phenotype is due to a synergic interaction between Aβ and p-tau, and it can be completely abolished by tau deletion.
Conclusion
The APP/PS1/htau model represents a valuable and disease-relevant late-onset pre-clinical AD animal model because it incorporates human AD genetics without mutant protein overexpression. Analysis of the mice revealed both cooperative and independent effects of Aβ and p-tau.
doi:10.1371/journal.pone.0080706
PMCID: PMC3835479  PMID: 24278307
14.  APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice 
eLife  2013;2:e00220.
ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer’s disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP−/−;LRP4ECD/ECD mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance.
DOI: http://dx.doi.org/10.7554/eLife.00220.001
eLife digest
One of the hallmarks of Alzheimer’s disease is the formation of plaques in the brain by a protein called β-amyloid. This protein is generated by the cleavage of a precursor protein, and mutations in the gene that encodes amyloid precursor protein greatly increase the risk of developing a familial, early-onset form of Alzheimer’s disease in middle age. Individuals with a particular variant of a lipoprotein called ApoE (ApoE4) are also more likely to develop Alzheimer’s disease at a younger age than the rest of the population. Due to its prevalence—approximately 20% of the world’s population are carriers of at least one allele—ApoE4 is the single-most important risk factor for the late-onset form of Alzheimer’s disease.
Amyloid precursor protein and the receptors for ApoE—in particular one called LRP4—are also essential for the development of the specialized synapse that forms between motor neurons and muscles. However, the mechanisms by which they, individually or together, contribute to the formation of these neuromuscular junctions are incompletely understood.
Now, Choi et al. have shown that amyloid precursor protein and LRP4 interact at the developing neuromuscular junction. A protein called agrin, which is produced by motor neurons and which must bind to LRP4 to induce neuromuscular junction formation, also binds directly to amyloid precursor protein. This latter interaction leads to the formation of a complex between LRP4 and amyloid precursor protein that robustly promotes the formation of the neuromuscular junction. Mutations that remove the part of LRP4 that anchors it to the cell membrane weaken this complex and thus reduce the development of neuromuscular junctions in mice, especially if the animals also lack amyloid precursor protein.
These three proteins thus seem to influence the development and maintenance of neuromuscular junctions by regulating the activity of a fourth protein, called MuSK, which is present on the surface of muscle cells. Activation of MuSK by agrin bound to LRP4 promotes the clustering of acetylcholine receptors in the membrane, which is a crucial step in the formation of the neuromuscular junction. Intriguingly, Choi et al. have now shown that amyloid precursor protein can, by interacting directly with LRP4, also activate MuSK even in the absence of agrin, albeit only to a small extent.
The work of Choi et al. suggests that the complex formed between agrin, amyloid precursor protein and LRP4 helps to focus the activation of MuSK, and thus the clustering of acetylcholine receptors, to the site of the developing neuromuscular junction. Since all four proteins are also found in the central nervous system, similar processes might well be at work during the development and maintenance of synapses in the brain. Further studies of these interactions, both at the neuromuscular junction and in the brain, should shed new light on both normal synapse formation and the synaptic dysfunction that is seen in Alzheimer’s disease.
DOI: http://dx.doi.org/10.7554/eLife.00220.002
doi:10.7554/eLife.00220
PMCID: PMC3748711  PMID: 23986861
neuromuscular synapse; neurodegeneration; nervous system development; Alzheimer's disease; LRP; ApoE; Mouse
15.  Pre- and Postsynaptic Interaction of the Amyloid Precursor Protein Promotes Peripheral and Central Synaptogenesis 
A critical role of the amyloid precursor protein (APP) in Alzheimer's disease (AD) pathogenesis has been well established. However, the physiological function of APP remains elusive and much debated. We reported earlier that the APP family of proteins is essential in mediating the developing neuromuscular synapse. In the current study, we created a conditional allele of APP and deleted APP in presynaptic motor neuron or postsynaptic muscle. Crossing these alleles onto the APP like protein 2 null background reveal that, unexpectedly, inactivating APP in either compartment results in neuromuscular synapse defects similar to the germline deletion, and that postsynaptic APP is obligatory for presynaptic targeting of the high-affinity choline transporter and synaptic transmission. Using an HEK293 and primary hippocampus mixed-culture assay, we report that expression of APP in HEK293 cells potently promotes synaptogenesis in contacting axons. This activity is dependent on neuronal APP and requires both the extracellular and intracellular domains; the latter forms a complex with Mint1 and Cask and is replaceable by the corresponding SynCAM sequences. These in vitro and in vivo studies identify APP as a novel synaptic adhesion molecule. We postulate that trans-synaptic APP interaction modulates its synaptic function, and that perturbed APP synaptic adhesion activity may contribute to synaptic dysfunction and AD pathogenesis.
doi:10.1523/JNEUROSCI.2132-09.2009
PMCID: PMC2757256  PMID: 19726636
Alzheimer's disease; APP; neuromuscular junction; conditional knockout; synaptic adhesion; mixed-culture
16.  Amyloid Precursor Protein Binding Protein-1 Modulates Cell Cycle Progression in Fetal Neural Stem Cells 
PLoS ONE  2010;5(12):e14203.
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of the amyloid precursor protein (APP) and serves as the bipartite activation enzyme for the ubiquitin-like protein, NEDD8. In the present study, we explored the physiological role of APP-BP1 in the cell cycle progression of fetal neural stem cells. Our results show that cell cycle progression of the cells is arrested at the G1 phase by depletion of APP-BP1, which results in a marked decrease in the proliferation of the cells. This action of APP-BP1 is antagonistically regulated by the interaction with APP. Consistent with the evidence that APP-BP1 function is critical for cell cycle progression, the amount of APP-BP1 varies depending upon cell cycle phase, with culminating expression at S-phase. Furthermore, our FRET experiment revealed that phosphorylation of APP at threonine 668, known to occur during the G2/M phase, is required for the interaction between APP and APP-BP1. We also found a moderate ubiquitous level of APP-BP1 mRNA in developing embryonic and early postnatal brains; however, APP-BP1 expression is reduced by P12, and only low levels of APP-BP1 were found in the adult brain. In the cerebral cortex of E16 rats, substantial expression of both APP-BP1 and APP mRNAs was observed in the ventricular zone. Collectively, these results indicate that APP-BP1 plays an important role in the cell cycle progression of fetal neural stem cells, through the interaction with APP, which is fostered by phopshorylation of threonine 668.
doi:10.1371/journal.pone.0014203
PMCID: PMC2996309  PMID: 21151996
17.  Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects 
Human Molecular Genetics  2012;21(21):4587-4601.
Alzheimer's disease (AD) is a neurodegenerative disease pathologically characterized by amyloid plaques and neurofibrillary tangles in the brain. Before these hallmark features appear, signs of axonal transport defects develop, though the initiating events are not clear. Enhanced amyloidogenic processing of amyloid precursor protein (APP) plays an integral role in AD pathogenesis, and previous work suggests that both the Aβ region and the C-terminal fragments (CTFs) of APP can cause transport defects. However, it remains unknown if APP processing affects the axonal transport of APP itself, and whether increased APP processing is sufficient to promote axonal dystrophy. We tested the hypothesis that β-secretase cleavage site mutations of APP alter APP axonal transport directly. We found that the enhanced β-secretase cleavage reduces the anterograde axonal transport of APP, while inhibited β-cleavage stimulates APP anterograde axonal transport. Transport behavior of APP after treatment with β- or γ-secretase inhibitors suggests that the amount of β-secretase cleaved CTFs (βCTFs) of APP underlies these transport differences. Consistent with these findings, βCTFs have reduced anterograde axonal transport compared with full-length, wild-type APP. Finally, a gene-targeted mouse with familial AD (FAD) Swedish mutations to APP, which enhance the β-cleavage of APP, develops axonal dystrophy in the absence of mutant protein overexpression, amyloid plaque deposition and synaptic degradation. These results suggest that the enhanced β-secretase processing of APP can directly impair the anterograde axonal transport of APP and are sufficient to lead to axonal defects in vivo.
doi:10.1093/hmg/dds297
PMCID: PMC3471392  PMID: 22843498
18.  Abca1 Deficiency Affects Alzheimer's Disease-Like Phenotype in Human ApoE4 But Not in ApoE3-Targeted Replacement Mice 
The Journal of Neuroscience  2012;32(38):13125-13136.
ATP-binding cassette transporter A1 (ABCA1) transporter regulates cholesterol efflux and is an essential mediator of high-density lipoprotein (HDL) formation. In amyloid precursor protein (APP) transgenic mice, Abca1 deficiency increased amyloid deposition in the brain paralleled by decreased levels of Apolipoprotein E (ApoE). The APOEε4 allele is the major genetic risk factor of sporadic Alzheimer's disease (AD). Here, we reveal the effect of Abca1 deficiency on phenotype in mice expressing human ApoE3 or ApoE4. We used APP/E3 and APP/E4 mice generated by crossing APP/PS1ΔE9 transgenic mice to human APOE3- and APOE4-targeted replacement mice and examined Abca1 gene dose effect on amyloid deposition and cognition. The results from two behavior tests demonstrate that lack of one copy of Abca1 significantly exacerbates memory deficits in APP/E4/Abca1−/+ but not in APP/E3/Abca1−/+ mice. The data for amyloid plaques and insoluble amyloid-β (Aβ) also show that Abca1 hemizygosity increases Aβ deposition only in APP/E4/Abca1−/+ but not in APP/E3/Abca1−/+ mice. Our in vivo microdialysis assays indicate that Abca1 deficiency significantly decreases Aβ clearance in ApoE4-expressing mice, while the effect of Abca1 on Aβ clearance in ApoE3-expressing mice was insignificant. In addition, we demonstrate that plasma HDL and Aβ42 levels in APP/E4/Abca1−/+ mice are significantly decreased, and there is a negative correlation between plasma HDL and amyloid plaques in brain, suggesting that plasma lipoproteins may be involved in Aβ clearance. Overall, our results prove that the presence of functional Abca1 significantly influences the phenotype of APP mice expressing human ApoE4 and further substantiate therapeutic approaches in AD based on ABCA1–APOE regulatory axis.
doi:10.1523/JNEUROSCI.1937-12.2012
PMCID: PMC3646580  PMID: 22993429
19.  Effects of Huanglian-Jie-Du-Tang and Its Modified Formula on the Modulation of Amyloid-β Precursor Protein Processing in Alzheimer's Disease Models 
PLoS ONE  2014;9(3):e92954.
Huanglian-Jie-Du-Tang (HLJDT) is a famous traditional Chinese herbal formula that has been widely used clinically to treat cerebral ischemia. Recently, we found that berberine, a major alkaloid compound in HLJDT, reduced amyloid-β (Aβ) accumulation in an Alzheimer’s disease (AD) mouse model. In this study, we compared the effects of HLJDT, four single component herbs of HLJDT (Rhizoma coptidis (RC), Radix scutellariae (RS), Cortex phellodendri (CP) and Fructus gardenia (FG)) and the modified formula of HLJDT (HLJDT-M, which is free of RS) on the regulatory processing of amyloid-β precursor protein (APP) in an in vitro model of AD. Here we show that treatment with HLJDT-M and its components RC, CP, and the main compound berberine on N2a mouse neuroblastoma cells stably expressing human APP with the Swedish mutation (N2a-SwedAPP) significantly decreased the levels of full-length APP, phosphorylated APP at threonine 668, C-terminal fragments of APP, soluble APP (sAPP)-α and sAPPβ-Swedish and reduced the generation of Aβ peptide in the cell lysates of N2a-SwedAPP. HLJDT-M showed more significant APP- and Aβ- reducing effects than berberine, RC or CP treatment alone. In contrast, HLJDT, its component RS and the main active compound of RS, baicalein, strongly increased the levels of all the metabolic products of APP in the cell lysates. The extract from FG, however, did not influence APP modulation. Interestingly, regular treatment of TgCRND8 APP transgenic mice with baicalein exacerbated the amyloid plaque burden, APP metabolism and Aβ production. Taken together, these data provide convincing evidence that HLJDT and baicalein treatment can increase the amyloidogenic metabolism of APP which is at least partly responsible for the baicalein-mediated Aβ plaque increase in the brains of TgCRND8 mice. On the other hand, HLJDT-M significantly decreased all the APP metabolic products including Aβ. Further study of HLJDT-M for therapeutic use in treating AD is warranted.
doi:10.1371/journal.pone.0092954
PMCID: PMC3966845  PMID: 24671102
20.  Normal cognition in transgenic BRI2-Aβ mice 
Background
Recent research in Alzheimer’s disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid pathology in the brain and show various levels of cognitive decline. In the present study, we examined the cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology observed in mutant human APP transgenic models.
Results
Using established behavioral tests that reveal deficits in APP transgenic models, BRI2-Aβ1-42 mice showed completely intact cognitive performance at ages both pre and post amyloid plaque formation. BRI2-Aβ mice producing Aβ1-40 or both peptides were also cognitively intact.
Conclusions
These data indicate that high levels of Aβ1-40 or Aβ1-42, or both produced in the absence of APP overexpression do not reproduce memory deficits observed in APP transgenic mouse models. This outcome is supportive of recent data suggesting that APP processing derivatives or the overexpression of full length APP may contribute to cognitive decline in APP transgenic mouse models. Alternatively, Aβ aggregates may impact cognition by a mechanism that is not fully recapitulated in these BRI2-Aβ mouse models.
doi:10.1186/1750-1326-8-15
PMCID: PMC3658944  PMID: 23663320
Alzheimer’s disease; Mouse models; Amyloid-β; Amyloid plaques; Cognition
21.  Nebula/DSCR1 Upregulation Delays Neurodegeneration and Protects against APP-Induced Axonal Transport Defects by Restoring Calcineurin and GSK-3β Signaling 
PLoS Genetics  2013;9(9):e1003792.
Post-mortem brains from Down syndrome (DS) and Alzheimer's disease (AD) patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1), but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP), which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD.
Author Summary
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by gradual neuronal cell loss and memory decline. Importantly, Down syndrome (DS) individuals over 40 years of age almost always develop neuropathological features of AD, although most do not develop dementia until at least two decades later. These findings suggest that DS and AD may share common genetic causes and that a neuroprotective mechanism may delay neurodegeneration and cognitive decline. It has been shown that the amyloid precursor protein (APP), which is associated with AD when duplicated and upregulated in DS, is a key gene contributing to AD pathologies and axonal transport abnormalities. Here, using fruit fly as a simple model organism, we examined the role of Down syndrome critical region 1 (DSCR1), another gene located on chromosome 21 and upregulated in both DS and AD, in modulating APP phenotypes. We find that upregulation of DSCR1 (Nebula in flies) is neuroprotective in the presence of APP upregulation. We report that nebula overexpression delays the onset of neurodegeneration and transport blockage in neuronal cells. Our results further suggest that signaling pathways downstream of DSCR1 may be potential therapeutic targets for AD.
doi:10.1371/journal.pgen.1003792
PMCID: PMC3784514  PMID: 24086147
22.  Reducing Amyloid Plaque Burden via Ex Vivo Gene Delivery of an Aβ-Degrading Protease: A Novel Therapeutic Approach to Alzheimer Disease 
PLoS Medicine  2007;4(8):e262.
Background
Understanding the mechanisms of amyloid-β protein (Aβ) production and clearance in the brain has been essential to elucidating the etiology of Alzheimer disease (AD). Chronically decreasing brain Aβ levels is an emerging therapeutic approach for AD, but no such disease-modifying agents have achieved clinical validation. Certain proteases are responsible for the catabolism of brain Aβ in vivo, and some experimental evidence suggests they could be used as therapeutic tools to reduce Aβ levels in AD. The objective of this study was to determine if enhancing the clearance of Aβ in the brain by ex vivo gene delivery of an Aβ-degrading protease can reduce amyloid plaque burden.
Methods and Findings
We generated a secreted form of the Aβ-degrading protease neprilysin, which significantly lowers the levels of naturally secreted Aβ in cell culture. We then used an ex vivo gene delivery approach utilizing primary fibroblasts to introduce this soluble protease into the brains of β-amyloid precursor protein (APP) transgenic mice with advanced plaque deposition. Brain examination after cell implantation revealed robust clearance of plaques at the site of engraftment (72% reduction, p = 0.0269), as well as significant reductions in plaque burden in both the medial and lateral hippocampus distal to the implantation site (34% reduction, p = 0.0020; and 55% reduction, p = 0.0081, respectively).
Conclusions
Ex vivo gene delivery of an Aβ-degrading protease reduces amyloid plaque burden in transgenic mice expressing human APP. These results support the use of Aβ-degrading proteases as a means to therapeutically lower Aβ levels and encourage further exploration of ex vivo gene delivery for the treatment of Alzheimer disease.
Matthew Hemming and colleagues describe the ex vivo gene delivery of an Aβ-degrading protease that reduces amyloid plaque burden in transgenic mice expressing human amyloid precursor protein.
Editors' Summary
Background.
Alzheimer disease is the most common form of dementia and is increasingly common as people age. It may affect up to half of the population in people over 85 years of age. The classic pathological features of Alzheimer disease in the brain were described 100 years ago by a German neuropathologist, Alois Alzheimer. They consist of plaques, which are made up of a protein called amyloid-β protein (shortened to Aβ); and tangles of another protein, called tau. These proteins accumulate especially in areas of the brain where memory and thought are processed and are believed to be toxic to neurons. There are a number of inherited forms of Alzheimer disease which are caused by mutations either in the protein from which Aβ is derived, called beta-amyloid precursor protein (shortened to APP) or in other proteins that act to release the Aβ protein from APP. Research on these inherited forms of Alzheimer disease has helped in the understanding of how plaques accumulate, which has subsequently led to new potential approaches to the treatment of Alzheimer disease such as lowering the production of Aβ from APP or enhancing clearance of the plaques.
Why Was This Study Done?
The researchers here wanted to investigate the use of a type of gene therapy called ex vivo (which means out of body) gene therapy, in which cells are taken from an individual, genetically altered, then put back into the individual they were taken from. This approach has already been studied in some human diseases and conditions including hemophilia, cancer, and spinal cord injury. The researchers here wanted to investigate whether they could use this approach to deliver to the brain one of the proteases that breaks down amyloid plaques.
What Did the Researchers Do and Find?
The researchers used a mouse model of Alzheimer disease in which, as the mice age, they develop plaques in the brain made of the same protein found in human Alzheimer disease. The researchers took a particular type of cell from the mice called a fibroblast, used a virus called a lentivirus to insert into the cells a protease called neprilysin that can degrade Aβ, and then injected these altered cells into the brains of the mice. They then compared results of these experiments with what happened when cells with a control (an inactive virus) were injected. They found that when the active protease was put into the brains of mice there was a substantial clearing of plaques especially in the areas close to the injection site, compared with the control mice.
What Do These Findings Mean?
These results suggest that this ex vivo gene therapy approach to Alzheimer disease is worth considering further. However, despite showing that the plaques were cleared the researchers did not show whether or not there was any effect on the behavior of the mice, i.e., whether there was any effect on the symptoms that the plaques cause. In addition, before this approach could be used in humans more work would need to be done, including showing that the lentivirus and the protease used were safe in humans, and the injection could be scaled up to the much larger human brain.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040262.
The slides from the original cases that Alois Alzheimer described are available online
Current research is discussed by the Alzheimer Research Forum
News and information for researchers, doctors, and patients, including a 24-hour help line, are available from the Alzheimer's Association
Medline Plus, the health information site for patients from the US National Library of Medicine, has a page of links on Alzheimer disease
The US National Institutes of Health National Institute of Aging has a fact sheet on Alzheimer disease, which is also available in Spanish
The UK's National Health Service online information site has information on Alzheimer disease
doi:10.1371/journal.pmed.0040262
PMCID: PMC1952204  PMID: 17760499
23.  In vivo Olfactory Model of APP-induced Neurodegeneration Reveals a Reversible Cell-autonomous Function 
Amyloid precursor protein (APP) has long been linked to the neurodegeneration of Alzheimer’s disease (AD), but the associated cell death has been difficult to capture in vivo, and the role of APP in effecting neuron loss is still unclear. Olfactory dysfunction is an early symptom of AD with amyloid pathology in the olfactory epithelium correlating well to the brain pathology of AD patients. As olfactory sensory neurons (OSNs) regenerate continuously with immature and mature OSNs co-existing in the same olfactory epithelium, we sought to utilize this unique system to study APP-induced neurodegeneration. Here we have developed an olfactory-based transgenic mouse model that overexpresses humanized-APP containing familial AD-mutations (hAPP) in either mature or immature OSNs, and found that despite the absence of extracellular plaques a striking number of apoptotic neurons were detected by 3 weeks of age. Importantly, apoptosis was restricted to the specific population overexpressing hAPP, either mature or immature OSNs, sparing those without hAPP. Interestingly, we observed that this widespread neurodegeneration could be rapidly rescued by reducing hAPP expression levels in immature neurons. Together, these data argue that overexpressing hAPP alone could induce cell-autonomous apoptosis in both mature and immature neurons, challenging the notion that amyloid plaques are necessary for neurodegeneration. Furthermore, we show that hAPP-induced neurodegeneration is reversible, suggesting that AD-related neural loss could potentially be rescued. Thus, we propose that this unique in vivo model will not only help determine the mechanisms underlying AD-related neurodegeneration but also serve as a platform to test possible treatments.
doi:10.1523/JNEUROSCI.1714-11.2011
PMCID: PMC3190161  PMID: 21957232
24.  Amyloid precursor protein modulates β-catenin degradation 
Background
The amyloid precursor protein (APP) is genetically associated with Alzheimer's disease (AD). Elucidating the function of APP should help understand AD pathogenesis and provide insights into therapeutic designs against this devastating neurodegenerative disease.
Results
We demonstrate that APP expression in primary neurons induces β-catenin phosphorylation at Ser33, Ser37, and Thr41 (S33/37/T41) residues, which is a prerequisite for β-catenin ubiquitinylation and proteasomal degradation. APP-induced phosphorylation of β-catenin resulted in the reduction of total β-catenin levels, suggesting that APP expression promotes β-catenin degradation. In contrast, treatment of neurons with APP siRNAs increased total β-catenin levels and decreased β-catenin phosphorylation at residues S33/37/T41. Further, β-catenin was dramatically increased in hippocampal CA1 pyramidal cells from APP knockout animals. Acute expression of wild type APP or of familial AD APP mutants in primary neurons downregulated β-catenin in membrane and cytosolic fractions, and did not appear to affect nuclear β-catenin or β-catenin-dependent transcription. Conversely, in APP knockout CA1 pyramidal cells, accumulation of β-catenin was associated with the upregulation of cyclin D1, a downstream target of β-catenin signaling. Together, these data establish that APP downregulates β-catenin and suggest a role for APP in sustaining neuronal function by preventing cell cycle reactivation and maintaining synaptic integrity.
Conclusion
We have provided strong evidence that APP modulates β-catenin degradation in vitro and in vivo. Future studies may investigate whether APP processing is necessary for β-catenin downregulation, and determine if excessive APP expression contributes to AD pathogenesis through abnormal β-catenin downregulation.
doi:10.1186/1742-2094-4-29
PMCID: PMC2231348  PMID: 18070361
25.  Genetic Suppression of Transgenic APP Rescues Hypersynchronous Network Activity in a Mouse Model of Alzeimer's Disease 
The Journal of Neuroscience  2014;34(11):3826-3840.
Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology.
doi:10.1523/JNEUROSCI.5171-13.2014
PMCID: PMC3951689  PMID: 24623762
amyloid precursor protein; EEG; epilepsy; seizure; sharp wave discharge; transgene suppression

Results 1-25 (1230123)