PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (534497)

Clipboard (0)
None

Related Articles

1.  Formin-g muscle cytoarchitecture 
Bioarchitecture  2011;1(2):66-68.
Striated muscle cells display an extremely regular assembly of their actin cytoskeleton that contributes to the contractile elements, the myofibrils. How this assembly is initiated and how these structures are maintained is still unclear. We have recently shown that striated muscle expresses a specific isoform of the formin protein family member FHOD3, which is characterised by the presence of a CK2 phosphorylation site at the C-terminal end of the formin homology domain 2 (FH2). Phosphorylated muscle FHOD3 displays a different subcellular localisation, namely to the myofibrils, and also has increased stability compared to un-phosphorylated or non muscle FHOD3. In addition, we could show that muscle FHOD3 is involved in myofibril maintenance in cultured cardiomyocytes and that its presence dramatically enhances the reconstitution of cardiac actin filaments after depolymerisation. Since FHOD3 expression levels and in particular that of the muscle isoform are also decreased in different types of cardiomyopathy, we postulate a crucial role for this protein in the maintenance of a fully functional cardiac cytoarchitecture.
doi:10.4161/bioa.1.2.15467
PMCID: PMC3158626  PMID: 21866265
heart; development; actin filament; formin; sarcomere
2.  Two distinct phosphorylation events govern the function of muscle FHOD3 
Posttranslational modifications such as phosphorylation are universally acknowledged regulators of protein function. Recently we characterised a striated muscle-specific isoform of the formin FHOD3 that displays distinct subcellular targeting and protein half-life compared to its non-muscle counterpart, which is dependent on phosphorylation by CK2 (formerly casein kinase 2). We now show that the two isoforms of FHOD3 are already expressed in the vertebrate embryonic heart. Analysis of CK2alpha knockout mice showed that phosphorylation by CK2 is required for proper targeting of muscle FHOD3 to the myofibrils also in embryonic cardiomyocytes in situ. The localisation of muscle FHOD3 in the sarcomere varies depending on the maturation state, being either broader or restricted to the Z-disc proper in adult heart. Following myofibril disassembly such as in dedifferentiating adult rat cardiomyocytes in culture, the expression of non-muscle FHOD3 is up-regulated, which is reversed once the myofibrils are reassembled. The shift in expression levels of different isoforms is accompanied by an increased co-localisation with p62, which is involved in autophagy, and affects the half-life of FHOD3.
Phosphorylation of three amino acids in the C-terminus of FHOD3 by ROCK1 is sufficient for activation, which results in increased actin filament synthesis in cardiomyocytes and also a broader localisation pattern of FHOD3 in the myofibrils. ROCK1 can directly phosphorylate FHOD3 and FHOD3 seems to be the downstream mediator of the exaggerated actin filament formation phenotype that is induced in cardiomyocytes upon the overexpression of constitutively active ROCK1. We conclude that the expression of the muscle FHOD3 isoform is characteristic for the healthy mature heart and that two distinct phosphorylation events are crucial to regulate its activity in thin filament assembly and maintenance.
doi:10.1007/s00018-012-1154-7
PMCID: PMC3696992  PMID: 23052206
myofibril; formin; cardiac cytoarchitecture; heart development
3.  Expression and Subcellular Localization of Mammalian Formin Fhod3 in the Embryonic and Adult Heart 
PLoS ONE  2012;7(4):e34765.
The formin family proteins play pivotal roles in actin filament assembly via the FH2 domain. The mammalian formin Fhod3 is highly expressed in the heart, and its mRNA in the adult heart contains exons 11, 12, and 25, which are absent from non-muscle Fhod3 isoforms. In cultured neonatal cardiomyocytes, Fhod3 localizes to the middle of the sarcomere and appears to function in its organization, although it is suggested that Fhod3 localizes differently in the adult heart. Here we show, using immunohistochemical analysis with three different antibodies, each recognizing distinct regions of Fhod3, that Fhod3 localizes as two closely spaced bands in middle of the sarcomere in both embryonic and adult hearts. The bands are adjacent to the M-line that crosslinks thick myosin filaments at the center of a sarcomere but distant from the Z-line that forms the boundary of the sarcomere, which localization is the same as that observed in cultured cardiomyocytes. Detailed immunohistochemical and immuno-electron microscopic analyses reveal that Fhod3 localizes not at the pointed ends of thin actin filaments but to a more peripheral zone, where thin filaments overlap with thick myosin filaments. We also demonstrate that the embryonic heart of mice specifically expresses the Fhod3 mRNA isoform harboring the three alternative exons, and that the characteristic localization of Fhod3 in the sarcomere does not require a region encoded by exon 25, in contrast to an essential role of exons 11 and 12. Furthermore, the exon 25-encoded region appears to be dispensable for actin-organizing activities both in vivo and in vitro, albeit it is inserted in the catalytic FH2 domain.
doi:10.1371/journal.pone.0034765
PMCID: PMC3324543  PMID: 22509354
4.  Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis 
Biology Open  2012;1(9):889-896.
Summary
Heart development requires organized integration of actin filaments into the sarcomere, the contractile unit of myofibrils, although it remains largely unknown how actin filaments are assembled during myofibrillogenesis. Here we show that Fhod3, a member of the formin family of proteins that play pivotal roles in actin filament assembly, is essential for myofibrillogenesis at an early stage of heart development. Fhod3−/− mice appear normal up to embryonic day (E) 8.5, when the developing heart, composed of premyofibrils, initiates spontaneous contraction. However, these premyofibrils fail to mature and myocardial development does not continue, leading to embryonic lethality by E11.5. Transgenic expression of wild-type Fhod3 in the heart restores myofibril maturation and cardiomyogenesis, which allow Fhod3−/− embryos to develop further. Moreover, cardiomyopathic changes with immature myofibrils are caused in mice overexpressing a mutant Fhod3, defective in binding to actin. These findings indicate that actin dynamics, regulated by Fhod3, participate in sarcomere organization during myofibrillogenesis and thus play a crucial role in heart development.
doi:10.1242/bio.20121370
PMCID: PMC3507241  PMID: 23213483
Actin; Fhod3; Formin; Myofibrillogenesis; Sarcomere
5.  Formin Homology Domain-Containing Protein 1 (FHOD1) Regulates Smooth Muscle Cell Phenotype 
Objective
Our goal was to test whether formin homology protein 1 (FHOD1) plays a significant role in the regulation of SMC differentiation, and if so, whether Rho-kinase (ROCK)-dependent phosphorylation in the diaphanous auto-inhibitory domain is an important signaling mechanism that controls FHOD1 activity in SMC.
Methods and Results
FHOD1 is highly expressed in aortic SMCs and in tissues with a significant SMC component. Exogenous expression of constitutively active FHOD1, but not WT, strongly activated SMC-specific gene expression in 10T1/2 cells. Treatment of SMC with the RhoA activator, sphingosine-1-phosphate (S1P), increased FHOD1 phosphorylation at T1141 and this effect was completely prevented by inhibition of ROCK with Y-27632. Phosphomimetic mutations to ROCK target residues enhanced FHOD1 activity suggesting that phosphorylation interferes with FHOD1 auto-inhibition. Importantly, knock-down of FHOD1 in SMC strongly inhibited S1P-dependent increases in SMC differentiation marker gene expression and actin polymerization suggesting that FHOD1 plays a major role in RhoA-dependent signaling in SMC.
Conclusions
Our results indicate that FHOD1 is a critical regulator of SMC phenotype and is regulated by ROCK-dependent phosphorylation. Thus, further studies on the role of FHOD1 during development and the progression of cardiovascular disease will be important.
doi:10.1161/ATVBAHA.110.212993
PMCID: PMC3025477  PMID: 21106951
6.  Z-line formins promote contractile lattice growth and maintenance in striated muscles of C. elegans 
The Journal of Cell Biology  2012;198(1):87-102.
Two actin-assembling formins, CYK-1 and FHOD-1, are important for muscle cell growth and maintenance of the contractile lattice in striated muscle cells.
Muscle contraction depends on interactions between actin and myosin filaments organized into sarcomeres, but the mechanism by which actin filaments incorporate into sarcomeres remains unclear. We have found that, during larval development in Caenorhabditis elegans, two members of the actin-assembling formin family, CYK-1 and FHOD-1, are present in striated body wall muscles near or on sarcomere Z lines, where barbed ends of actin filaments are anchored. Depletion of either formin during this period stunted growth of the striated contractile lattice, whereas their simultaneous reduction profoundly diminished lattice size and number of striations per muscle cell. CYK-1 persisted at Z lines in adulthood, and its near complete depletion from adults triggered phenotypes ranging from partial loss of Z line–associated filamentous actin to collapse of the contractile lattice. These results are, to our knowledge, the first genetic evidence implicating sarcomere-associated formins in the in vivo organization of the muscle cytoskeleton.
doi:10.1083/jcb.201202053
PMCID: PMC3392944  PMID: 22753896
7.  The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin–based motility 
The Journal of Cell Biology  2013;202(7):1075-1090.
Vaccinia virus actin–based motility relies on integration of the N-WASP–ARP2/3 and Rac1–FHOD1 pathways.
Vaccinia virus dissemination relies on the N-WASP–ARP2/3 pathway, which mediates actin tail formation underneath cell-associated extracellular viruses (CEVs). Here, we uncover a previously unappreciated role for the formin FHOD1 and the small GTPase Rac1 in vaccinia actin tail formation. FHOD1 depletion decreased the number of CEVs forming actin tails and impaired the elongation rate of the formed actin tails. Recruitment of FHOD1 to actin tails relied on its GTPase binding domain in addition to its FH2 domain. In agreement with previous studies showing that FHOD1 is activated by the small GTPase Rac1, Rac1 was enriched and activated at the membrane surrounding actin tails. Rac1 depletion or expression of dominant-negative Rac1 phenocopied the effects of FHOD1 depletion and impaired the recruitment of FHOD1 to actin tails. FHOD1 overexpression rescued the actin tail formation defects observed in cells overexpressing dominant-negative Rac1. Altogether, our results indicate that, to display robust actin-based motility, vaccinia virus integrates the activity of the N-WASP–ARP2/3 and Rac1–FHOD1 pathways.
doi:10.1083/jcb.201303055
PMCID: PMC3787377  PMID: 24062339
8.  FMNL2 Drives Actin-Based Protrusion and Migration Downstream of Cdc42 
Current Biology  2012;22(11):1005-1012.
Summary
Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE [1]. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex [2]. Here we show that the Diaphanous-related formin FMNL2, also known as FRL3 or FHOD2 [3], accumulates at lamellipodia and filopodia tips. FMNL2 is cotranslationally modified by myristoylation and regulated by interaction with the Rho-guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia.
Highlights
► FMNL2 is a novel Cdc42 effector accumulating at lamellipodial and filopodial tips ► FMNL2 is regulated but not localized by N-terminal myristoylation and Cdc42 binding ► FMNL2 processively elongates actin filaments in the presence of profilin ► FMNL2 drives cell migration by increasing the efficiency of lamellipodia protrusion
doi:10.1016/j.cub.2012.03.064
PMCID: PMC3765947  PMID: 22608513
9.  FHOD1, a Formin Upregulated in Epithelial-Mesenchymal Transition, Participates in Cancer Cell Migration and Invasion 
PLoS ONE  2013;8(9):e74923.
Cancer cells can obtain their ability to invade and metastasise by undergoing epithelial-to-mesenchymal transition (EMT). Exploiting this mechanism of cellular plasticity, malignant cells can remodel their actin cytoskeleton and down-regulate proteins needed for cell-cell contacts. The mechanisms of cytoskeletal reorganisation resulting in mesenchymal morphology and increased invasive potential are poorly understood. Actin nucleating formins have been implicated as key players in EMT. Here, we analysed which formins are altered in squamous cell carcinoma related EMT. FHOD1, a poorly studied formin, appeared to be markedly upregulated upon EMT. In human tissues FHOD1 was primarily expressed in mesenchymal cells, with little expression in epithelia. However, specimens from oral squamous cell cancers demonstrated consistent FHOD1 upregulation in mesenchymally transformed cells at the invasive edge. This upregulation was confirmed in an oral squamous carcinoma model, where FHOD1 expression was markedly increased upon EMT in a PI3K signalling dependent manner. In the EMT cells FHOD1 contributed to the spindle-shaped morphology and mesenchymal F-actin organization. Furthermore, functional assays demonstrated that FHOD1 contributes to cell migration and invasion. Finally, FHOD1 depletion reduced the ability of EMT cancer cells to form invadopodia and to degrade extracellular matrix. Our results indicate that FHOD1 participates in cytoskeletal changes in EMT. In addition, we show that FHOD1 upregulation occurs during cancer cell EMT in vivo, which indicates that FHOD1 may contribute to tumour progression.
doi:10.1371/journal.pone.0074923
PMCID: PMC3784416  PMID: 24086398
10.  The role of the formin gene fhod-1 in C. elegans embryonic morphogenesis 
Worm  2013;2(3):e25040.
During the second half of embryogenesis, the ellipsoidal Caenorhabditis elegans embryo elongates into a long, thin worm. This elongation requires a highly organized cytoskeleton composed of actin microfilaments, microtubules and intermediate filaments throughout the epidermis of the embryo. This architecture allows the embryonic epidermal cells to undergo a smooth muscle-like actin/myosin-based contraction that is redundantly controlled by LET- 502/Rho kinase and MEL-11/myosin phosphatase in one pathway and FEM-2/PP2c phosphatase and PAK-1/p21-activated kinase in a parallel pathway(s). Although actin microfilaments surround the embryo, the force for contraction is generated mainly in the lateral (seam) epidermal cells whose actin microfilaments appear qualitatively different from those in their dorsal/ventral neighbors. We have identified FHOD-1, a formin family actin nucleator, which acts in the lateral epidermis. fhod-1 mutants show microfilament defects in the embryonic lateral epidermal cells and FHOD-1 protein is detected only in those cells. fhod-1 genetic interactions with let-502, mel-11, fem-2 and pak-1 indicate that fhod-1 preferentially regulates those microfilaments acting with let-502 and mel-11, and in parallel to fem-2 and pak-1. Thus, FHOD-1 may contribute to the qualitative differences in microfilaments found in the contractile lateral epidermal cells and their non-contractile dorsal and ventral neighbors. Different microfilament populations may be involved in the different contractile pathways.
doi:10.4161/worm.25040
PMCID: PMC3875645  PMID: 24778933
C. elegans; morphogenesis; actin; formin; cytoskeleton; embryo; genetics
11.  Purification, crystallization and preliminary structural characterization of the N-terminal region of the human formin-homology protein FHOD1 
The N-terminal region (1–339) of the human FHOD1 protein has been crystallized in two different crystal forms. A crystal of the (C31S,C71S) mutant diffracted to around 2.3 Å resolution.
Formins are key regulators of actin cytoskeletal dynamics that constitute a diverse protein family that is present in all eukaryotes examined. They typically consist of more than 1000 amino acids and are defined by the presence of two conserved regions, namely the formin homology 1 and 2 domains. Additional conserved domains comprise a GTPase-binding domain for activation, a C-­terminal autoregulation motif and an N-terminal recognition domain. In this study, the N-­terminal region (residues 1–339) of the human formin homology domain-containing protein 1 (FHOD1) was purified and crystallized from 20%(w/v) PEG 4000, 10%(v/v) glycerol, 0.3 M magnesium chloride and 0.1 M Tris–HCl pH 8.0. Native crystals belong to space group P1, with unit-cell parameters a = 35.4, b = 73.9, c = 78.7 Å, α = 78.2, β = 86.2, γ = 89.7°. They contain two monomers of FHOD1 in the asymmetric unit and diffract to a resolution of 2.3 Å using a synchrotron-radiation source.
doi:10.1107/S1744309107043400
PMCID: PMC2339718  PMID: 17909294
FHOD1; FH3 domain; diaphanous-related formins
12.  Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle 
The Journal of Cell Biology  2001;155(6):1043-1054.
Tropomodulin (Tmod) is an actin pointed-end capping protein that regulates actin dynamics at thin filament pointed ends in striated muscle. Although pointed-end capping by Tmod controls thin filament lengths in assembled myofibrils, its role in length specification during de novo myofibril assembly is not established. We used the Drosophila Tmod homologue, sanpodo (spdo), to investigate Tmod's function during muscle development in the indirect flight muscle. SPDO was associated with the pointed ends of elongating thin filaments throughout myofibril assembly. Transient overexpression of SPDO during myofibril assembly irreversibly arrested elongation of preexisting thin filaments. However, the lengths of thin filaments assembled after SPDO levels had declined were normal. Flies with a preponderance of abnormally short thin filaments were unable to fly. We conclude that: (a) thin filaments elongate from their pointed ends during myofibril assembly; (b) pointed ends are dynamically capped at endogenous levels of SPDO so as to allow elongation; (c) a transient increase in SPDO levels during myofibril assembly converts SPDO from a dynamic to a permanent cap; and (d) developmental regulation of pointed-end capping during myofibril assembly is crucial for specification of final thin filament lengths, myofibril structure, and muscle function.
doi:10.1083/jcb.200108026
PMCID: PMC2150893  PMID: 11739412
actin-capping protein; thin filaments; myofibril; sanpodo; tropomodulin
13.  MicroRNA-200c Represses Migration and Invasion of Breast Cancer Cells by Targeting Actin-Regulatory Proteins FHOD1 and PPM1F 
Molecular and Cellular Biology  2012;32(3):633-651.
MicroRNA-200c (miR-200c) has been shown to suppress epithelial-mesenchymal transition (EMT), which is attributed mainly to targeting of ZEB1/ZEB2, repressors of the cell-cell contact protein E-cadherin. Here we demonstrated that modulation of miR-200c in breast cancer cells regulates cell migration, cell elongation, and transforming growth factor β (TGF-β)-induced stress fiber formation by impacting the reorganization of cytoskeleton that is independent of the ZEB/E-cadherin axis. We identified FHOD1 and PPM1F, direct regulators of the actin cytoskeleton, as novel targets of miR-200c. Remarkably, expression levels of FHOD1 and PPM1F were inversely correlated with the level of miR-200c in breast cancer cell lines, breast cancer patient samples, and 58 cancer cell lines of various origins. Furthermore, individual knockdown/overexpression of these target genes phenocopied the effects of miR-200c overexpression/inhibition on cell elongation, stress fiber formation, migration, and invasion. Mechanistically, targeting of FHOD1 by miR-200c resulted in decreased expression and transcriptional activity of serum response factor (SRF), mediated by interference with the translocation of the SRF coactivator mycocardin-related transcription factor A (MRTF-A). This finally led to downregulation of the expression and phosphorylation of the SRF target myosin light chain 2 (MLC2) gene, required for stress fiber formation and contractility. Thus, miR-200c impacts on metastasis by regulating several EMT-related processes, including a novel mechanism involving the direct targeting of actin-regulatory proteins.
doi:10.1128/MCB.06212-11
PMCID: PMC3266604  PMID: 22144583
14.  Tropomodulin1 is Required in the Heart but not the Yolk Sac for Mouse Embryonic Development 
Circulation research  2008;103(11):1241-1248.
Tropomodulin1 (Tmod1) caps the pointed ends of actin filaments in sarcomeres of striated muscle myofibrils and in the erythrocyte membrane skeleton. Targeted deletion of mouse Tmod1 leads to defects in cardiac development, fragility of primitive erythroid cells, and an absence of yolk sac vasculogenesis, followed by embryonic lethality at E9.5. The Tmod1 null embryonic hearts do not undergo looping morphogenesis and the cardiomyocytes fail to assemble striated myofibrils with regulated F-actin lengths. To test whether embryonic lethality of Tmod1 nulls results from defects in cardiac myofibrillogenesis and development, or from erythroid cell fragility and subsequent defects in yolk sac vasculogenesis, we expressed Tmod1 specifically in the myocardium of the Tmod1 null mice under the control of the α-myosin heavy chain promoter, Tg(αMHC-Tmod1). In contrast to Tmod1 null embryos, which fail to undergo cardiac looping and have defective yolk sac vasculogenesis, both cardiac and yolk sac morphology of Tmod1-/-Tg(αMHC-Tmod1) embryos are normal at E9.5. Tmod1-/-Tg(αMHC-Tmod1) embryos develop into viable and fertile mice, indicating that expression of Tmod1 in the heart is sufficient to rescue the Tmod1 null embryonic defects. Thus, while loss of Tmod1 results in myriad defects and embryonic lethality, the Tmod1-/- primary defect is in the myocardium. Moreover, Tmod1 is not required in erythrocytes for viability, nor do the Tmod1-/- fragile primitive erythroid cells affect cardiac development, yolk sac vasculogenesis, or viability in the mouse.
doi:10.1161/CIRCRESAHA.108.178749
PMCID: PMC2744601  PMID: 18927466
Cardiac Development; Myofibrillogenesis; Looping Morphogenesis; Yolk Sac Vasculogenesis; Erythroid Stability
15.  Krp1 (Sarcosin) Promotes Lateral Fusion of Myofibril Assembly Intermediates in Cultured Mouse Cardiomyocytes 
Experimental cell research  2008;314(5):1177-1191.
Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch-repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly.
doi:10.1016/j.yexcr.2007.12.009
PMCID: PMC2275804  PMID: 18178185
kelch; heart; myofibrillogenesis; α-actinin; actin; myosin
16.  Autoinhibition of the formin Cappuccino in the absence of canonical autoinhibitory domains 
Molecular Biology of the Cell  2012;23(19):3801-3813.
The Fmn-family formin Cappuccino does not contain classical autoihibitory domains but is autoinhibited. The N-terminus inhibits actin nucleation and competes with elongation.
Formins are a conserved family of proteins known to enhance actin polymerization. Most formins are regulated by an intramolecular interaction. The Drosophila formin, Cappuccino (Capu), was believed to be an exception. Capu does not contain conserved autoinhibitory domains and can be regulated by a second protein, Spire. We report here that Capu is, in fact, autoinhibited. The N-terminal half of Capu (Capu-NT) potently inhibits nucleation and binding to the barbed end of elongating filaments by the C-terminal half of Capu (Capu-CT). Hydrodynamic analysis indicates that Capu-NT is a dimer, similar to the N-termini of other formins. These data, combined with those from circular dichroism, suggest, however, that it is structurally distinct from previously described formin inhibitory domains. Finally, we find that Capu-NT binds to a site within Capu-CT that overlaps with the Spire-binding site, the Capu-tail. We propose models for the interaction between Spire and Capu in light of the fact that Capu can be regulated by autoinhibition.
doi:10.1091/mbc.E12-04-0288
PMCID: PMC3459857  PMID: 22875983
17.  Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly 
Chemistry & biology  2009;16(11):1158-1168.
SUMMARY
Formins stimulate actin filament assembly for fundamental cellular processes including division, adhesion, establishing polarity and motility. A formin inhibitor would be useful because most cells express multiple formins whose functions are not known, and because metastatic tumor formation depends upon the deregulation of formin-dependent processes. We identified a general small molecule inhibitor of formin homology 2 domains (SMIFH2) by screening compounds for the ability to prevent formin-mediated actin assembly in vitro. SMIFH2 targets formins from evolutionarily diverse organisms including yeast, nematode worm and mice, with a half-maximal inhibitor concentration of ~5 to 15 μM. SMIFH2 prevents both formin nucleation and processive barbed-end elongation, and decreases formin’s affinity for the barbed end. Furthermore, low micromolar concentrations of SMIFH2 disrupt formin-dependent, but not Arp2/3 complex-dependent, actin cytoskeletal structures in fission yeast and mammalian NIH 3T3 fibroblasts.
doi:10.1016/j.chembiol.2009.10.006
PMCID: PMC2784894  PMID: 19942139
18.  Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. 
Loss of myofibril organization is a common feature of chronic dilated and progressive cardiomyopathy. To study how the heart compensates for myofibril degeneration, transgenic mice were created that undergo progressive loss of myofibrils after birth. Myofibril degeneration was induced by overexpression of tropomodulin, a component of the thin filament complex which determines and maintains sarcomeric actin filament length. The tropomodulin cDNA was placed under control of the alpha-myosin heavy chain gene promoter to overexpress tropomodulin specifically in the myocardium. Offspring with the most severe phenotype showed cardiomyopathic changes between 2 and 4 wk after birth. Hearts from these mice present characteristics consistent with dilated cardiomyopathy and a failed hypertrophic response. Histological analysis showed widespread loss of myofibril organization. Confocal microscopy of isolated cardiomyocytes revealed intense tropomodulin immunoreactivity in transgenic mice together with abnormal coincidence of tropomodulin and alpha-actinin reactivity at Z discs. Contractile function was compromised severely as determined by echocardiographic analyses and isolated Langendorff heart preparations. This novel experimentally induced cardiomyopathy will be useful for understanding dilated cardiomyopathy and the effect of thin filament-based myofibril degeneration upon cardiac structure and function.
PMCID: PMC508539  PMID: 9421465
19.  Mapping of a Myosin-binding Domain and a Regulatory Phosphorylation Site in M-Protein, a Structural Protein of the Sarcomeric M Band 
Molecular Biology of the Cell  1998;9(4):829-840.
The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.
PMCID: PMC25310  PMID: 9529381
20.  Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle 
Cytoskeleton (Hoboken, N.j.)  2010;67(11):677-692.
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate. © 2010 Wiley-Liss, Inc.
doi:10.1002/cm.20476
PMCID: PMC2963174  PMID: 20737540
myofibrils; sarcomeres; actin turnover; congenital myopathy; stabilization; depolymerization; capping
21.  Dynamic regulation of sarcomeric actin filaments in striated muscle 
Cytoskeleton (Hoboken, N.J.)  2010;67(11):677-692.
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
doi:10.1002/cm.20476
PMCID: PMC2963174  PMID: 20737540
Myofibrils; sarcomeres; actin turnover; congenital myopathy; stabilization; depolymerization; capping
22.  The formin DAD domain plays dual roles in autoinhibition and actin nucleation 
Current biology : CB  2011;21(5):384-390.
Summary
Formins are a large family of actin assembly-promoting proteins with many important biological roles [1-3]. However, it has remained unclear how formins nucleate actin polymerization. All other nucleators are known to recruit actin monomers as a central part of their mechanisms [3-5]. However, the actin-nucleating FH2 domain of formins lacks appreciable affinity for monomeric actin [6, 7]. Here, we found that yeast and mammalian formins bind actin monomers, but this activity requires their C-terminal DAD domains. Further, we observed that the DAD works in concert with the FH2 to enhance nucleation without affecting the rate of filament elongation. We dissected this mechanism in mDia1, mapped nucleation activity to conserved residues in the DAD, and demonstrated that DAD roles in nucleation and autoinhibition are separable. Further, DAD enhancement of nucleation was independent of contributions from the FH1 domain to nucleation [8]. Together, our data show that: (i) the DAD has dual functions in autoinhibition and nucleation, (ii) the FH1, FH2 and DAD form a tri-partite nucleation machine, and (iii) formins nucleate by recruiting actin monomers, and therefore are more similar to other nucleators than previously thought.
doi:10.1016/j.cub.2011.01.047
PMCID: PMC3058777  PMID: 21333540
Actin; formin; DAD domain; nucleation; diaphanous
23.  Structure of the FMNL3 FH2/actin complex provides insight into formin-mediated actin nucleation and elongation 
Nature structural & molecular biology  2013;20(1):10.1038/nsmb.2462.
Summary
Formins are actin assembly factors that act in a variety of actin-based processes. The conserved formin homology 2 (FH2) domain promotes filament nucleation and influences elongation via interaction with the barbed end. FMNL3 is a formin that induces assembly of filopodia but whose FH2 domain is a poor nucleator. The 3.4 Å structure of an FMNL3 FH2 dimer in complex with tetramethylrhodamine-actin uncovers details of formin-regulated actin elongation. We observe distinct FH2-actin binding regions; interactions in the knob and coiled-coil subdomains are necessary for actin binding while those in the lasso/post interface are important for the stepping mechanism. Biochemical and cellular experiments test the importance of individual residues for function. This structure provides details for FH2 mediated filament elongation via processive capping and supports a model in which C-terminal non-FH2 residues of FMNL3 are required to stabilize the filament nucleus.
doi:10.1038/nsmb.2462
PMCID: PMC3876896  PMID: 23222643
24.  Identification of Xin-repeat proteins as novel ligands of the SH3 domains of nebulin and nebulette and analysis of their interaction during myofibril formation and remodeling 
Molecular Biology of the Cell  2013;24(20):3215-3226.
The striated muscle–specific actin-binding proteins Xin and Xirp2 are identified as novel ligands of the SH3 domains of the thin filament ruler nebulin and nebulette. The interaction is spatially restricted to structures associated with myofibril development or remodeling, indicating a role for these proteins in myofibril assembly and repair.
The Xin actin-binding repeat–containing proteins Xin and XIRP2 are exclusively expressed in striated muscle cells, where they are believed to play an important role in development. In adult muscle, both proteins are concentrated at attachment sites of myofibrils to the membrane. In contrast, during development they are localized to immature myofibrils together with their binding partner, filamin C, indicating an involvement of both proteins in myofibril assembly. We identify the SH3 domains of nebulin and nebulette as novel ligands of proline-rich regions of Xin and XIRP2. Precise binding motifs are mapped and shown to bind both SH3 domains with micromolar affinity. Cocrystallization of the nebulette SH3 domain with the interacting XIRP2 peptide PPPTLPKPKLPKH reveals selective interactions that conform to class II SH3 domain–binding peptides. Bimolecular fluorescence complementation experiments in cultured muscle cells indicate a temporally restricted interaction of Xin-repeat proteins with nebulin/nebulette during early stages of myofibril development that is lost upon further maturation. In mature myofibrils, this interaction is limited to longitudinally oriented structures associated with myofibril development and remodeling. These data provide new insights into the role of Xin actin-binding repeat–containing proteins (together with their interaction partners) in myofibril assembly and after muscle damage.
doi:10.1091/mbc.E13-04-0202
PMCID: PMC3810769  PMID: 23985323
25.  The functionally distinct fission yeast formins have specific actin-assembly properties 
Molecular Biology of the Cell  2011;22(20):3826-3839.
The three fission yeast formins (Cdc12, For3, and Fus1) all nucleate actin assembly and remain continuously associated with the elongating actin filament barbed end, while incorporating thousands of actin monomers before dissociating. However, the specific rates for these reactions vary significantly and may therefore be functionally important.
Fission yeast expresses three formins required for distinct actin cytoskeletal processes: Cdc12 (cytokinesis), For3 (polarization), and Fus1 (mating). We propose that in addition to differential regulation, key actin-assembly properties tailor formins for a particular role. In direct comparison to the well-studied Cdc12, we report the first in vitro characterization of the actin-assembly properties of For3 and Fus1. All three share fundamental formin activities; however, particular reaction rates vary significantly. Cdc12 is an efficient nucleator (one filament per approximately 3 Cdc12 dimers) that processively elongates profilin-actin at a moderate rate of 10 subunits s−1 μM−1, but lacks filament-bundling activity. Fus1 is also an efficient nucleator, yet processively elongates profilin-actin at one-half the rate of and dissociates 10-fold more rapidly than Cdc12; it also bundles filaments. For3 nucleates filaments 100-fold less well than Fus1, but like Cdc12, processively elongates profilin-actin at a moderate rate and lacks filament-bundling activity. Additionally, both the formin homology FH1 and FH2 domains contribute to the overall rate of profilin-actin elongation. We also confirmed the physiological importance of the actin-assembly activity of the fission yeast formins. Point mutants that disrupt their ability to stimulate actin assembly in vitro do not function properly in vivo.
doi:10.1091/mbc.E11-06-0492
PMCID: PMC3192862  PMID: 21865598

Results 1-25 (534497)