PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1495531)

Clipboard (0)
None

Related Articles

1.  A Novel Kinase Inhibitor of FADD Phosphorylation Chemosensitizes through the Inhibition of NF-κB 
Molecular cancer therapeutics  2011;10(10):1807-1817.
FADD (Fas-associated protein with death domain) is a cytosolic adapter protein essential for mediating death receptor-induced apoptosis. It has also been implicated in a number of non-apoptotic activities including embryogenesis, cell-cycle progression, cell proliferation, and tumorigenesis. Our recent studies have demonstrated that high levels of phosphorylated FADD in tumor cells correlates with increased activation of the anti-apoptotic transcription factor NF-κB and is a biomarker for aggressive disease and poor clinical outcome. These findings suggest that inhibition of FADD phosphorylation is a viable target for cancer therapy. A high throughput screen using a cell-based assay for monitoring FADD-kinase activity identified NSC 47147 as a small molecule inhibitor of FADD phosphorylation. The compound was evaluated in live cells and mouse tumors for its efficacy as an inhibitor of FADD-kinase activity through the inhibition of CK1α. NSC 47147 was shown to decrease levels of phosphorylated FADD and NF-κB activity such that combination therapy lead to greater induction of apoptosis and enhanced tumor control as compared to either agent alone. The studies described here demonstrate the utility of bioluminescent cell based assays for the identification of active compounds and the validation of drug target interaction in a living subject. In addition, the presented results provide proof of principle studies as to the validity of targeting FADD-kinase activity as a novel cancer therapy strategy.
doi:10.1158/1535-7163.MCT-11-0362
PMCID: PMC3191281  PMID: 21859840
FADD; phosphorylation; non-invasive molecular imaging; NF-κB; chemotherapy
2.  Increased Expression of Phosphorylated FADD in Anaplastic Large Cell and Other T-Cell Lymphomas 
Biomarker Insights  2014;9:77-84.
FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
doi:10.4137/BMI.S16553
PMCID: PMC4159367  PMID: 25232277
FADD; pFADD; lymphoma; autoantigen; ALCL; PTCL
3.  Functional complementation between FADD and RIP1 in embryos and lymphocytes 
Nature  2011;471(7338):373-376.
Summary
FADD is a common adaptor shared by several death-receptors (DRs) for signaling apoptosis through recruitment and activation of caspase 81-3. DRs are essential for immune homeostasis, but dispensable during embryogenesis. Surprisingly, FADD−/− mice die in utero4-5 and conditional deletion of FADD leads to impaired lymphocyte proliferation6-7. How FADD regulates embryogenesis and lymphocyte responses has been a long standing enigma. FADD could directly bind to RIP1, a serine/threonine kinase which mediates both necrosis and NF-κB activation. Here we show that FADD−/− embryos contain elevated levels of RIP1 and exhibit massive necrosis. To investigate potential in vivo functional interaction between RIP1 and FADD, null alleles of RIP1 were crossed into FADD−/− mice. Strikingly, RIP1 deficiency allowed normal embryogenesis of FADD−/− mice. Conversely, the developmental defect of RIP1−/− lymphocytes was partially corrected by FADD deletion. Furthermore, RIP1 deficiency fully restored normal proliferation in FADD−/− T cells but not in FADD−/− B cells. FADD−/−RIP1−/− double knockout (DKO) T cells are resistant to death induced by Fas or TNFα and display reduced NF-κB activity. Therefore, our data demonstrate an unexpected cell type-specific interplay between FADD and RIP1, which is critical for the regulation of apoptosis and necrosis during embryogenesis and lymphocyte function.
doi:10.1038/nature09878
PMCID: PMC3072026  PMID: 21368761
4.  FADD Negatively Regulates Lipopolysaccharide Signaling by Impairing Interleukin-1 Receptor-Associated Kinase 1-MyD88 Interaction▿  
Molecular and Cellular Biology  2007;27(21):7394-7404.
Lipopolysaccharide (LPS) engages Toll-like receptor 4 (TLR4) on various cells to initiate inflammatory and angiogenic pathways. FADD is an adaptor protein involved in death receptor-mediated apoptosis. Here we report a role for FADD in regulation of TLR4 signals in endothelial cells. FADD specifically attenuates LPS-induced activation of c-Jun NH2-terminal kinase and phosphatidylinositol 3′-kinase in a death domain-dependent manner. In contrast, FADD-null cells show hyperactivation of these kinases. Examining physical associations of endogenous proteins, we show that FADD interacts with interleukin-1 receptor-associated kinase 1 (IRAK1) and MyD88. LPS stimulation increases IRAK1-FADD interaction and recruitment of the IRAK1-FADD complex to activated MyD88. IRAK1 is required for FADD-MyD88 interaction, as FADD does not associate with MyD88 in IRAK1-null cells. By shuttling FADD to MyD88, IRAK1 provides a mechanism for controlled and limited activation of the TLR4 signaling pathway. Functionally, enforced FADD expression inhibited LPS- but not vascular endothelial growth factor-induced endothelial cell sprouting, while FADD deficiency led to enhanced production of proinflammatory cytokines induced by stimulation of TLR4 and TLR2, but not TLR3. Reconstitution of FADD reversed the enhanced production of proinflammatory cytokines. Thus, FADD is a physiological negative regulator of IRAK1/MyD88-dependent responses in innate immune signaling.
doi:10.1128/MCB.00600-07
PMCID: PMC2169044  PMID: 17785432
5.  Apoptotic potential of Fas-associated death domain on regulation of cell death regulatory protein cFLIP and death receptor mediated apoptosis in HEK 293T cells 
Fas-associated death domain (FADD) is a common adaptor molecule which plays an important role in transduction of death receptor mediated apoptosis. The FADD provides DED motif for binding to both procaspase-8 and cFLIP molecules which executes death receptor mediated apoptosis. Dysregulated expression of FADD and cFLIP may contribute to inhibition of apoptosis and promote cell survival in cancer. Moreover elevated intracellular level of cFLIP competitively excludes the binding of procaspase-8 to the death effector domain (DED) of FADD at the DISC to block the activation of death receptor signaling required for apoptosis. Increasing evidence shows that defects in FADD protein expression are associated with progression of malignancies and resistance to apoptosis. Therefore, improved expression and function of FADD may provide new paradigms for regulation of cell proliferation and survival in cancer. In the present study, we have examined the potential of FADD in induction of apoptosis by overexpression of FADD in HEK 293T cells and validated further its consequences on the expression of pro and anti-apoptotic proteins besides initiation of death receptor mediated signaling. We have found deficient expression of FADD and elevated expression of cFLIPL in HEK 293T cells. Our results demonstrate that over expression of FADD attenuates the expression of anti-apoptotic protein cFLIP and activates the cascade of extrinsic caspases to execution of apoptosis in HEK 293T cells.
doi:10.1007/s12079-012-0166-2
PMCID: PMC3421020  PMID: 22791313
Apoptosis; Fas associated death domain (FADD); cFLIP; Death receptor mediated apoptosis
6.  The Fas-Associated Death Domain Protein (FADD) is Required in Apoptosis and TLR-induced Proliferative Responses in B Cells1 
The Fas-associated death domain protein FADD/Mort1 is a signaling adaptor protein which mediates the activation of caspase 8 during death receptor-induced apoptosis. Disruption of FADD in germ cells results in death receptor-independent embryonic lethality in mice. Previous studies indicated that in addition to its function in apoptosis, FADD is also required in peripheral T cell homeostasis and TCR-induced proliferative responses. In this report, we generated B cell-specific FADD-deficient mice and showed that deletion of FADD at the pro-B cell stage had minor effects on B cell development in the bone marrow, and resulted in increased splenic and lymph node B cell numbers and decreased peritoneal B1 cell numbers. As in T cells, a FADD deficiency inhibited Fas-induced apoptosis in B cells. However, B cell proliferative responses induced by stimulation of the BCR and CD40 using anti-IgM or anti-CD40 antibodies were unaffected by the absence of FADD. Further analyses revealed that FADD-deficient B cells were defective in proliferative responses induced by treatments with dsRNA and LPS which stimulate TLR3 and TLR4 respectively. Therefore, in addition to its apoptotic function, FADD also plays a role in TLR3- and TLR4-induced proliferative responses in B cells.
PMCID: PMC3110081  PMID: 16709845
FADD knockout mice; B cells; apoptosis; TLR; proliferation
7.  Effect of Cocaine on Fas-Associated Protein with Death Domain in the Rat Brain: Individual Differences in a Model of Differential Vulnerability to Drug Abuse 
This study was designed to (1) assess the effects of cocaine on Fas-associated protein with death domain (FADD) system and its role in the activation of apoptotic vs nonapoptotic events and (2) ascertain whether animals selectively bred for their differential propensity to drug-seeking show differences in FADD levels or response to cocaine. Acute cocaine, through D2 dopamine receptors, induced a dose–response increase in FADD protein in the cortex, with opposite effects over pFADD (Ser191/194), and no induction of apoptotic cell death (poly-(ADP-ribose) polymerase cleavage). FADD was increased by cocaine in cytosol (~142%), membranes (~23%) and nucleus (~54%). The modulation of the FADD system showed tolerance of the acute effect over time, as well as a compensatory response on withdrawal that mirrored the acute effect—ie a transient FADD decrease on day 3 of withdrawal, both at mRNA and protein levels. In a second experiment, possible FADD differences were investigated in rats selectively bred for differential responsiveness to novelty, propensity for drug-seeking and cocaine sensitization. High responders (HR), who were more prone to drug abuse, exhibited higher FADD and lower pFADD levels than low-responder (LR) rats. However, HR and LR rats showed similar rates of cocaine-induced apoptosis, and exhibited a parallel impact of cocaine over FADD within each phenotype. Thus, FADD is a signaling protein modulated by cocaine, regulating apoptosis/proliferative mechanisms in relation to its FADD/pFADD content. Interestingly, animals selectively bred for differential propensity to substance abuse show basal differences in the expression of this protein, suggesting FADD may also be a molecular correlate for the HR/LR phenotype.
doi:10.1038/npp.2008.88
PMCID: PMC2656579  PMID: 18580876
cocaine; FADD; apoptosis; proliferation; HR/LR phenotype; rat brain
8.  Conditional FADD:GFP Knockout Mice Reveal FADD is Dispensable in Thymic Development but Essential in Peripheral T Cell Homeostasis1 
FADD/Mort1 is required for signaling induced by death-receptors such as Fas. In earlier studies, FADD-deficient mice died in utero and a FADD deficiency in embryonic stem cells inhibited T cell production in viable FADD-/-→RAG-1-/- chimeras. To analyze the temporal requirement of FADD in the development and function in the T lineage, it is necessary to establish viable mutant mice producing detectable FADD-deficient T cells. We generated mice that express a functional FADD:GFP fusion gene reconstituting normal embryogenesis and lymphopoiesis in the absence of the endogenous FADD. Efficient T cell-specific deletion of FADD:GFP was achieved, as indicated by the presence of a high percentage of GFP-negative thymocytes and peripheral T cells in mice expressing Lck-Cre or CD4-Cre. Sorted GFP-negative thymocytes and peripheral T cells contained undetectable levels of FADD and were resistant to apoptosis induced by Fas, TNF, and TCR restimulation. These T cell-specific FADD-deficient mice contain normal thymocyte numbers, but fewer peripheral T cells. Purified peripheral FADD-deficient T cells failed to undergo extensive homeostatic expansion after adoptive transfer into lymphocyte-deficient hosts, and responded poorly to proliferation induced by ex vivo TCR stimulation. Furthermore, deletion of FADD in pre-activated mature T cells using retrovirus-Cre resulted in no proliferation. These results demonstrate that FADD plays a dispensable role during thymocyte development, but is essential in maintaining peripheral T cell homeostasis and regulating both apoptotic and proliferation signals.
PMCID: PMC3110086  PMID: 16116191
Transgenic/knockout mice; T cells; apoptosis; cell proliferation; homeostasis
9.  Structural Insight for the Roles of Fas Death Domain Binding to FADD and Oligomerization Degree of the Fas - FADD complex in the Death Inducing Signaling Complex Formation: A Computational Study 
Proteins  2012;81(3):377-385.
Fas binding to Fas-associated death domain (FADD) activates FADD-caspase-8 binding to form death-inducing signaling complex (DISC) that triggers apoptosis. The Fas-Fas association exists primary as dimer in the Fas-FADD complex and the Fas-FADD tetramer complexes have the tendency to form higher order oligomer. The importance of the oligomerized Fas-FADD complex in DISC formation has been confirmed. This study sought to provide structural insight for the roles of Fas death domain (Fas DD) binding to FADD and the oligomerization of Fas DD-FADD complex in activating FADD-procaspase-8 binding. Results show Fas DD binding to FADD stabilized the FADD conformation, including the increased stability of the critical residues in FADD death effector domain (FADD DED) for FADD-procaspase-8 binding. Fas DD binding to FADD resulted in the decreased degree of both correlated and anti-correlated motion of the residues in FADD and caused the reversed correlated motion between FADD DED and FADD death domain (FADD DD). The exposure of procaspase-8 binding residues in FADD that allows FADD to interact with procaspase-8 was observed with Fas DD binding to FADD. We also observed different degrees of conformational and motion changes of FADD in the Fas DD-FADD complex with different degrees of oligomerization. The increased conformational stability and the decreased degree of correlated motion of the residues in FADD in Fas DD-FADD tetramer complex were observed compared to those in Fas DD-FADD dimer complex. This study provides structural evidence for the roles of Fas DD binding to FADD and the oligomerization degree of Fas DD-FADD complex in DISC formation to signal apoptosis.
doi:10.1002/prot.24193
PMCID: PMC3556372  PMID: 23042204
Fas-FADD binding; DISC; oligomeric Fas-FADD complex; molecular dynamics; conformational and dynamical motion analysis
10.  Prognostic impact of Fas-associated death domain, a key component in death receptor signaling, is dependent on the presence of lymph node metastasis in head and neck squamous cell carcinoma 
Cancer Biology & Therapy  2013;14(4):365-369.
FAS-associated death domain (FADD) is a key adaptor protein that bridges a death receptor (e.g., death receptor 5; DR5) to caspase-8 to form the death-inducing signaling complex during apoptosis. The expression and prognostic impact of FADD in head and neck squamous cell carcinoma (HNSCC) have not been well studied. This study focuses on detecting FADD expression and analyzing its prognostic impact in primary and metastatic HNSCCs. We found a significant increase in FADD expression in primary tumors with lymph node metastasis (LNM) in comparison with primary tumors with no LNM. This increase was significantly less in the matched LNM tissues. Both univariate and multivariable analyses indicated that lower FADD expression was significantly associated with better disease-free survival and overall survival in HNSCC patients with LNM although FADD expression did not significantly affect survival of HNSCC patients without LNM . When combined with DR5 or caspase-8 expression, patients with LNM expressing both low FADD and DR5 or both low FADD and caspase-8 had significantly better prognosis than those expressing both high FADD and DR5 or both high FADD and caspase-8. However, the expression of both low FADD and caspase-8 was significantly linked to worse overall survival compared with both high FADD and caspase-8 expression in HNSCC patients without LNM. Hence, we suggest that FADD alone or together with DR5 and caspase-8 participates in metastatic process of HNSCC.
doi:10.4161/cbt.23636
PMCID: PMC3667877  PMID: 23358467
FADD; caspase-8; death receptor 5; head and neck cancer; immunohistochemistry
11.  The Interaction between Human Papillomavirus Type 16 and FADD Is Mediated by a Novel E6 Binding Domain▿  
Journal of Virology  2008;82(19):9600-9614.
High-risk strains of human papillomavirus, such as types 16 and 18, have been etiologically linked to cervical cancer. Most cervical cancer tissues are positive for both the E6 and E7 oncoproteins, since it is their cooperation that results in successful transformation and immortalization of infected cells. We have reported that E6 binds to tumor necrosis factor receptor 1 and to Fas-associated death domain (FADD) and, in doing so, prevents E6-expressing cells from responding to apoptotic stimuli. The binding site of E6 to FADD localizes to the first 23 amino acids of FADD and has now been further characterized by the use of deletion and site-directed mutants of FADD in pull-down and functional assays. The results from these experiments revealed that mutations of serine 16, serine 18, and leucine 20 obstruct FADD binding to E6, suggesting that these residues are part of the E6 binding domain on FADD. Because FADD does not contain the two previously identified E6 binding motifs, the LxxφLsh motif, and the PDZ motif, a novel binding domain for E6 has been identified on FADD. Furthermore, peptides that correspond to this region can block E6/FADD binding in vitro and can resensitize E6-expressing cells to apoptotic stimuli in vivo. These results demonstrate the existence of a novel E6 binding domain.
doi:10.1128/JVI.00538-08
PMCID: PMC2546984  PMID: 18632871
12.  Expression, Purification and Characterization of C-FADD 
FADD is an important proapoptotic adaptor in death receptor-induced apoptosis. Recently, FADD has been found to participate in a variety of non-apoptotic processes, such as development, cell cycle progression and survival. Its non-apoptotic activities were regulated by the phosphorylated status of the serine residue located at the C-terminal region, a domain distinct from the proapoptotic function related DED and DD domains. However, due to the difficulties in expression and crystallization of natural FADD, by far the molecular structures of all FADD variants did not contain the C-terminal region. To elucidate the structure-function relationship of C-terminal region, we need to obtain an FADD variant that containing C-terminal region. In this study, mouse FADD (80-205) containing DD domain and C-terminal region, designated as C-FADD, was expressed in E. coli with His-tag at the N-terminus and purified by Ni2+ affinity chromatography. The purified protein existed as a homogenous monomer in glutaraldehyde cross-linking analysis and exhibited a typical α-helix spectrum in CD (circular dichroism) assay. In vitro His-tag pull-down assay demonstrated that the purified C-FADD possessed the CK Iα-binding activity which was important for its non-apoptotic function.
doi:10.1038/cmi.2009.39
PMCID: PMC4002721  PMID: 19728931
C-FADD; expression; purification; monomer
13.  FADD deficiency impairs early hematopoiesis in the bone marrow1 
Signal transduction mediated by FADD represents a paradigm of co-regulation of apoptosis and cellular proliferation. During apoptotic signaling induced by death receptors including Fas, FADD is required for the recruitment and activation of caspase 8. In addition, a death receptor-independent function of FADD is essential for embryogenesis. In previous studies, FADD deficiency in embryonic stem cells resulted in a complete lack of B cells and dramatically reduced T cell numbers, as shown by Rag1−/− blastocyst complementation assays. However, T-specific FADD-deficient mice contained normal numbers of thymocytes and slightly reduced peripheral T cell numbers, whereas B cell-specific deletion of FADD led to increased peripheral B cell numbers. It remains undetermined what impact a FADD deficiency has on hematopoietic stem cells and progenitors. The current study analyzed the effect of simultaneous deletion of FADD in multiple cell types including bone marrow cells by using the IFN-inducible Mx1-cre transgene. The resulting FADD mutant mice did not develop lymphoproliferation diseases, unlike Fas-deficient mice. Instead, a time-dependent depletion of peripheral FADD-deficient lymphocytes was observed. In the bone marrow, a lack of FADD led to a dramatic decrease in the hematopoietic stem cells and progenitor-enriched population. Furthermore, FADD-deficient bone marrow cells were defective in their ability to generate lymphoid, myeloid and erythroid cells. Thus, the results revealed a temporal requirement for FADD. Whereas dispensable during lymphopoiesis post lineage commitment, FADD plays a critical role in early hematopoietic stages in the bone marrow.
doi:10.4049/jimmunol.1000648
PMCID: PMC3119601  PMID: 21115735
Apoptosis; proliferation; HSC; progenitors; FADD
14.  p38-mediated Regulation of an Fas-associated Death Domain Protein-independent Pathway Leading to Caspase-8 Activation during TGFβ-induced Apoptosis in Human Burkitt Lymphoma B Cells BL41 
Molecular Biology of the Cell  2001;12(10):3139-3151.
On binding to its receptor, transforming growth factor β (TGFβ) induces apoptosis in a variety of cells, including human B lymphocytes. We have previously reported that TGFβ-mediated apoptosis is caspase-dependent and associated with activation of caspase-3. We show here that caspase-8 inhibitors strongly decrease TGFβ-mediated apoptosis in BL41 Burkitt's lymphoma cells. These inhibitors act upstream of the mitochondria because they inhibited the loss of mitochondrial membrane potential observed in TGFβ-treated cells. TGFβ induced caspase-8 activation in these cells as shown by the cleavage of specific substrates, including Bid, and the appearance of cleaved fragments of caspase-8. Our data show that TGFβ induces an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and caspase-9 and -3 activation. Caspase-8 activation was Fas-associated death domain protein (FADD)-independent because cells expressing a dominant negative mutant of FADD were still sensitive to TGFβ-induced caspase-8 activation and apoptosis. This FADD-independent pathway of caspase-8 activation is regulated by p38. Indeed, TGFβ-induced activation of p38 and two different inhibitors specific for this mitogen-activated protein kinase pathway (SB203580 and PD169316) prevented TGFβ-mediated caspase-8 activation as well as the loss of mitochondrial membrane potential and apoptosis. Overall, our data show that p38 activation by TGFβ induced an apoptotic pathway via FADD-independent activation of caspase-8.
PMCID: PMC60162  PMID: 11598198
15.  FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade 
Wang, S | Xia, P | Shi, L | Fan, Z
Cell Death and Differentiation  2011;19(4):605-615.
Granzyme M (GzmM), an orphan Gzm, is constitutively and abundantly expressed in innate effector natural killer cells. We previously demonstrated that GzmM induces caspase (casp)-dependent apoptosis and cytochrome c release from mitochondria. We also resolved the crystal structure for GzmM and generated its specific inhibitor. However, how GzmM causes casp activation has not been defined. Here we found that casp-8 is an initiator caspase in GzmM-induced casp cascade, which causes other casp activation and Bid cleavage. GzmM does not directly cleave procaspase-3 and Bid, whose processing is casp dependent. Casp-8 knockdown or deficient cells attenuate or abolish GzmM-induced proteolysis of procaspase-3 and Bid. Extrinsic death receptor pathway adaptor Fas-associated protein with death domain (FADD) contributes to GzmM-induced casp-8 activation. GzmM specifically cleaves FADD after Met 196 to generate truncated FADD (tFADD) that enhances its self-association for oligomerization. The oligomerized tFADD facilitates procaspase-8 recruitment to promote its auto-processing leading to casp activation cascade. FADD-deficient cells abrogate GzmM-induced activation of casp-8 and apoptosis as well as significantly inhibit lymphokine-activated killer cell-mediated cytotoxicity. FADD processing by GzmM can potentiate killing efficacy against tumor cells and intracellular pathogens.
doi:10.1038/cdd.2011.130
PMCID: PMC3307975  PMID: 21979465
granzyme M; casp-8; FADD; proteolysis; casp cascade
16.  Mitogen-activated Protein Kinase Kinase Antagonized Fas-associated Death Domain Protein–mediated Apoptosis by Induced FLICE-inhibitory Protein Expression  
The Journal of Experimental Medicine  1998;188(10):1795-1802.
Fas and Fas-associated death domain (FADD) play a critical role in the homeostasis of different cell types. The regulation of Fas and FADD-mediated cell death is pivotal to many physiological functions. The activation of T lymphocytes by concanavalin A (Con A) inhibited Fas-mediated cell death. We identified that among the several activation signals downstream of Con A stimulation, mitogen-activated protein (MAP) kinase kinase (MKK) was the major kinase pathway that antagonized Fas-triggered cell death. MKK1 suppressed FADD- but not caspase-3– induced apoptosis, indicating that antagonism occurred early along the Fas-initiated apoptotic cascade. We further demonstrated that activation of MKK1 led to expression of FLIP, a specific inhibitor of FADD. MKK1 inhibition of FADD-induced cell death was abrogated if induction of FLIP was prevented, indicating that FLIP mediates MKK1 suppression of FADD-mediated apoptosis. Our results illustrate a general mechanism by which activation of MAP kinase attenuates apoptotic signals initiated by death receptors in normal and transformed cells.
PMCID: PMC2212400  PMID: 9815257
mitogen-activated protein kinase kinase; Fas-associated death domain protein; Fas; FLIP; apoptosis
17.  E1B 19K Inhibits Fas-mediated Apoptosis through FADD-dependent Sequestration of FLICE  
The Journal of Cell Biology  1998;141(5):1255-1266.
E1B 19K, the adenovirus Bcl-2 homologue, is a potent inhibitor of apoptosis induced by various stimuli including Fas and tumor necrosis factor-α. Fas and TNFR-1 belong to a family of cytokine-activated receptors that share key components in their signaling pathways, Fas-associating protein with death domain (FADD) and FADD-like interleukin-1β–converting enzyme (FLICE), to induce an apoptotic response. We demonstrate here that E1B 19K and Bcl-xL are able to inhibit apoptosis induced by FADD, but not FLICE. Surprisingly, apoptosis was abrogated by E1B 19K and Bcl-xL when FADD and FLICE were coexpressed. Immunofluorescence studies demonstrated that FADD expression produced large insoluble death effector filaments that may represent oligomerized FADD. E1B 19K expression disrupted FADD filament formation causing FADD and FLICE to relocalize to membrane and cytoskeletal structures where E1B 19K is normally localized. E1B 19K, however, does not detectably bind to FADD, nor does it inhibit FADD and FLICE from being recruited to the death-inducing signaling complex (DISC) when Fas is stimulated. Thus, E1B 19K may inhibit Fas-mediated cell death downstream of FADD recruitment of FLICE but upstream of FLICE activation by disrupting FADD oligomerization and sequestering an essential component of the DISC.
PMCID: PMC2137191  PMID: 9606216
18.  FADD protein release mirrors the development and aggressiveness of human non-small cell lung cancer 
British Journal of Cancer  2012;106(12):1989-1996.
Background:
The need to unfold the underlying mechanisms of lung cancer aggressiveness, the deadliest cancer in the world, is of prime importance. Because Fas-associated death domain protein (FADD) is the key adaptor molecule transmitting the apoptotic signal delivered by death receptors, we studied the presence and correlation of intra- and extracellular FADD protein with development and aggressiveness of non-small cell lung cancer (NSCLC).
Methods:
Fifty NSCLC patients were enrolled in this prospective study. Intracellular FADD was detected in patients' tissue by immunohistochemistry. Tumours and distant non-tumoural lung biopsies were cultured through trans-well membrane in order to analyse extracellular FADD. Correlation between different clinical/histological parameters with level/localisation of FADD protein has been investigated.
Results:
Fas-associated death domain protein could be specifically downregulated in tumoural cells and FADD loss correlated with the presence of extracellular FADD. Indeed, human NSCLC released FADD protein, and tumoural samples released significantly more FADD than non-tumoural (NT) tissue (P=0.000003). The release of FADD by both tumoural and NT tissue increased significantly with the cancer stage, and was correlated with both early and late steps of the metastasis process.
Conclusion:
The release of FADD by human NSCLC could be a new marker of poor prognosis as it correlates positively with both tumour progression and aggressiveness.
doi:10.1038/bjc.2012.196
PMCID: PMC3388563  PMID: 22669160
non-small cell lung cancer; biomarker; FADD; prognosis; release
19.  The Fas-associated death domain protein suppresses activation of NF-κB by LPS and IL-1β 
Activation of NF-κB by bacterial LPS promotes the upregulation of proinflammatory cytokines that contribute to the pathogenesis of Gram-negative septic shock. LPS activation of NF-κB is dependent upon the interaction of two death domain–containing (DD-containing) proteins, MyD88 and IL-1 receptor–associated kinase IRAK. Another DD-containing protein, Fas-associated death domain (FADD), also binds MyD88 through respective DD-DD interactions. Although FADD has been classically described as a proapoptotic signaling molecule, several reports have implicated a role for FADD in mediating NF-κB activation. In the present report, we investigated whether FADD could mediate LPS activation of NF-κB. Overexpression of FADD blocked LPS-induced NF-κB activation, whereas absence of FADD enhanced activation of NF-κB by LPS. Further, LPS-induced expression of two NF-κB–dependent gene products, IL-6 and KC, was enhanced in FADD–/– mouse embryo fibroblasts (MEFs) compared with wild-type. This increase in NF-κB activity correlated with enhanced IκB degradation. FADD–/– MEFs were also resistant to NF-κB activation induced by IL-1β. Finally, reconstitution of full-length FADD in the FADD–/– MEFs completely reversed the enhanced activation of NF-κB elicited by either LPS or IL-1β. Together, these data indicate that FADD negatively regulates LPS- and IL-1β–induced NF-κB activation and that this regulation occurs upstream of IκB degradation.
doi:10.1172/JCI14774
PMCID: PMC150862  PMID: 11828002
20.  Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states 
Pharmacology & Therapeutics  2014;143(3):265-274.
Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases.
doi:10.1016/j.pharmthera.2014.03.006
PMCID: PMC4127788  PMID: 24657708
PEA-15; ERK1/2; Proliferation; Apoptosis; Cancer; Type 2 diabetes; CaMKII, calcium/calmodulin-dependent protein kinase II; DED, death effector domain; DISC, death initiation signalling complex; ERK1/2, extracellular signal-regulated kinases 1/2; FADD, Fas-associated death domain protein; GLUT, glucose transporter; HNF-4α, hepatocyte nuclear factor 4alpha; IL, interleukin; MAP, mitogen-activated protein; PEA-15, phosphoprotein enriched in astrocytes-15; PCOS, polycystic ovary syndrome; PDGF, platelet-derived growth factor; PKC, protein kinase C; PLD1, phospholipase D1; NSCLC, non-small cell lung cancer; RSK, ribosomal s6 kinase; TGF-β1, transforming growth factor-β1; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand; VSM, vascular smooth muscle
21.  The role of death effector domain (DED)-containing proteins in acute oxidative cell injury in hepatocytes 
Free radical biology & medicine  2012;52(9):1911-1917.
Apoptosis is a mechanism that regulates hepatic tissue homeostasis and contributes to both acute and chronic injury in liver disease. The apoptotic signaling cascade involves activation of the death-inducing signaling complex (DISC) and subsequent recruitment of proteins containing death-effector domains (DED) which regulate downstream effector molecules. Prominent among these are the Fas-associated death domain (FADD) and the cellular caspase 8 (FLICE)-like inhibitory protein (cFLIP) and alterations of these proteins can lead to severe disruption of physiological processes including acute liver failure or hepatocellular carcinoma. Their role in cell signaling events independent of the DISC remains undetermined. Oxidative stress can cause cell injury from direct effects on molecules or by activating intracellular signaling pathways including the mitogen activated protein kinases (MAPK). In this context, prolonged activation of the cJun N-terminal kinase (JNK)/AP-1/cJun signaling pathway promotes hepatocellular apoptosis, while activation of the extracellular signal regulated kinase (Erk) exerts protection. We investigated the role of FADD and cFLIP in acute oxidant stress induced by the superoxide generator menadione in hepatocytes. Menadione resulted in dose-dependent predominantly necrotic cell death. Hepatocytes expressing a truncated, dominant-negative FADD protein were partially protected, while cFLIP-deficient hepatocytes displayed increased cell death from menadione. In parallel, Erk phosphorylation was enhanced in hepatocytes expressing dnFADD and decreased in cFLIP-deficient hepatocytes. Hepatocyte injury was accompanied by increased release of proapoptotic factors and increased JNK/cJun activation. Thus, FADD and cFLIP contribute to the regulation of cell death from acute oxidant stress in hepatocytes involving MAPK signaling. This implies that DED-containing proteins are involved in the regulation of cellular survival beyond their role in cell death receptor-ligand mediated apoptosis.
doi:10.1016/j.freeradbiomed.2012.02.049
PMCID: PMC3341470  PMID: 22406316
FADD; cFLIP; oxidant stress; MAPK; apoptosis; hepatocyte
22.  Inhibition of Fas-Associated Death Domain-Containing Protein (FADD) Protects against Myocardial Ischemia/Reperfusion Injury in a Heart Failure Mouse Model 
PLoS ONE  2013;8(9):e73537.
Aim
As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure.
Methods
Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed.
Results
FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20±3.90% in NLC to 26.83±4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3.
Conclusion
Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.
doi:10.1371/journal.pone.0073537
PMCID: PMC3772851  PMID: 24058479
23.  Protein Kinase Cε inhibits ultraviolet radiation-induced expression of FADD, an adaptor protein, linked to both Fas and TNFR1-mediated apoptosis1 
PKCε overexpression in FVB/N transgenic mice sensitized skin to ultraviolet radiation (UVR)-induced development of squamous cell carcinomas (SCC) (Wheeler et al., 2004; Wheeler et al., 2005) and suppressed formation of sunburn cells, which are DNA-damaged keratinocytes undergoing apoptosis (Wheeler et al., 2004). Here, we elucidated the mechanisms associated with inhibition of UVR-induced appearance of sunburn cells in PKCε transgenic mice. We found that the inhibition of UVR-induced sunburn cell formation in PKCε transgenic mice may be the result of the inhibition of the expression of Fas, Fas ligand (Fas-L) and the mammalian death adaptor protein termed Fas-associated with death domain (FADD). The adaptor protein FADD is the key component of the death inducing signaling complex of both Fas and tumor necrosis factor receptor 1 (TNF-R1). A decreased expression of epidermal FADD was observed after a single UVR exposure. However, a complete loss of FADD expression was found after four (Monday, Wednesday, Friday and Monday) repeated UVR exposures. FADD transmits apoptotic signals from death receptors to the downstream initiator caspase-8 and connects to the mitochondrial intrinsic apoptotic signal transduction pathway by the cleavage of Bid, a Bcl-2 family member. PKCε-mediated loss of FADD expression inhibited UVR signals to the activation of both extrinsic and intrinsic apoptotic pathways.
doi:10.1038/jid.2008.458
PMCID: PMC2854013  PMID: 19194472
UVB; PKC; Transgenic mice; Photocarcinogenesis; Apoptosis; FADD
24.  Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils# 
Abnormally long-lived eosinophils (Eos) are the major inflammatory component of allergic responses in the lungs of active asthmatics. Eos recruited to the airways after allergen exposure produce and respond to IL-5 and GM-CSF, enhancing their survival. Pro-survival signaling activates Pin1, a cis-trans peptidyl isomerase (PPIase) that binds to Bax and prevents it activation. How long-lived Eos, despite the continued presence of GM-CSF or IL-5, eventually undergo apoptosis to end allergic inflammation remains unclear. Here we show that Pin1 location, activity and protein interactions are jointly influenced by Fas and pro-survival cytokine IL-5. Fas signaling strongly induced the phosphorylation of FADD at Ser194 and Pin1 at Ser16 as well as their nuclear accumulation. Phospho-mimic Ser194Glu FADD mutants accelerated Eos apoptosis compared to WT or Ser194Ala mutants. Downstream of FADD phosphorylation, Caspase 8, 9 and 3 cleavage as well as Eos apoptosis induced by Fas were reduced by constitutively active Pin1 and enhanced by Pin1 inhibition. Pin1 was activated by IL-5 while simultaneous IL-5 and anti-Fas treatment modestly reduced PPIase activity but induced Pin1 to associate with FADD after its phosphorylation at Ser194. Mechanistically, Pin1 mediated isomerization facilitated the subsequent dephosphorylation of Ser194 FADD and maintenance of cytoplasmic location. In vivo activated bronchoalvelolar (BAL) Eos obtained after allergen challenge showed elevated survival and Pin1 activity that could be reversed by anti-Fas. Therefore, our data suggest that Pin1 is a critical link between FADD mediated cell death and IL-5 mediated pro-survival signaling.
doi:10.4049/jimmunol.1202646
PMCID: PMC3652414  PMID: 23606538
IL-5; Pin1; FADD; Apoptosis; Asthma; eosinophils
25.  Survival function of the FADD-CASPASE-8-cFLIPL complex 
Cell reports  2012;1(5):401-407.
Summary
Mice deficient in caspase-8, FADD, or cFLIP, present defects in yolk sac vascularization and embryonic lethality at E10.5. Ablation of RIPK3, a kinase that promotes a form of necrotic cell death, has recently been shown to rescue embryonic lethality in caspase-8 deficient animals. Here we show that while FADD, RIPK3 double knockouts develop normally, the lethal effects of cFLIP deletion are not rescued by RIPK3 deficiency. Remarkably, embryos lacking FADD, cFLIP, and RIPK3 develop normally. Distinct regions of apoptosis were observed in E9.5 FLIP, RIPK3 double knockout embryos, but not in caspase-8−/− or FADD−/− embryos. In vitro studies using death receptor stimulation show that the FADD-caspase-8-cFLIPL complex blocks RIPK3-dependent necrosis, while cFLIPL blocks RIPK3-independent apoptosis promoted by the FADD-caspase-8 complex. Together, these results suggest the cross-regulation of two distinct processes in development and death-receptor signaling: RIPK3-dependent signaling (including necrosis) controlled by the enzymatic activity of the FADD-caspase-8-cFLIPL complex, and cFLIPL control of RIPK3-independent apoptosis by FADD-caspase-8.
doi:10.1016/j.celrep.2012.03.010
PMCID: PMC3366463  PMID: 22675671

Results 1-25 (1495531)