Search tips
Search criteria

Results 1-25 (1209575)

Clipboard (0)

Related Articles

1.  Effects of Acute Pramipexole on Preference for Gambling-like Schedules of Reinforcement in Rats 
Psychopharmacology  2010;213(1):11-18.
Pramipexole and other direct dopamine agonist medications have been implicated in the development of impulsive behavior such as pathological gambling among those taking the drug to control symptoms of Parkinson’s disease or restless leg syndrome. Few laboratory studies examining pramipexole’s effects on gambling-like behavior have been conducted.
The present study used a rodent model approximating some aspects of human gambling to examine within-subject effects of acute pramipexole (0.03, 0.1, 0.18, & 0.3 mg/kg) on rat’s choices to earn food reinforcement by completing variable-ratio (i.e., gambling-like) or fixed-ratio response requirements.
In a condition in which the variable-ratio alternative was rarely selected, all but the lowest dose of pramipexole significantly increased choice of the variable-ratio alternative (an average of 15% above saline).. The same doses did not affect choice significantly in a control condition designed to evaluate the involvement of nonspecific drug effects. Pramipexole increased latencies to initiate trials (+ 9.12 s) and to begin response runs on forced-choice trials (variable-ratio: + 0.21 s; fixed-ratio: + 0.88 s), but did not affect measures of response perseveration (conditional probabilities of “staying”).
The findings are consistent with clinical reports linking pramipexole to the expression of increased gambling in humans. Results are discussed in the context of neurobehavioral evidence suggesting that dopamine agonists increase sensitivity to reward delay and disrupt appropriate feedback from negative outcomes.
PMCID: PMC3747984  PMID: 20814781
pramipexole; dopamine agonist; gambling; impulsive behavior; Parkinson’s disease; rat
2.  Dopaminergic Influences on Emotional Decision Making in Euthymic Bipolar Patients 
Neuropsychopharmacology  2013;39(2):274-282.
We recently reported that the D2/D3 agonist pramipexole may have pro-cognitive effects in euthymic patients with bipolar disorder (BPD); however, the emergence of impulse-control disorders has been documented in Parkinson's disease (PD) after pramipexole treatment. Performance on reward-based tasks is altered in healthy subjects after a single dose of pramipexole, but its potential to induce abnormalities in BPD patients is unknown. We assessed reward-dependent decision making in euthymic BPD patients pre- and post 8 weeks of treatment with pramipexole or placebo by using the Iowa Gambling Task (IGT). The IGT requires subjects to choose among four card decks (two risky and two conservative) and is designed to promote learning to make advantageous (conservative) choices over time. Thirty-four BPD patients completed both assessments (18 placebo and 16 pramipexole). Baseline performance did not differ by treatment group (F=0.63; p=0.64); however, at week 8, BPD patients on pramipexole demonstrated a significantly greater tendency to make increasingly high-risk, high-reward choices across the five blocks, whereas the placebo group's pattern was similar to that reported in healthy individuals (treatment × time × block interaction, p<0.05). Analyses of choice strategy using the expectancy valence model revealed that after 8 weeks on pramipexole, BPD patients attended more readily to feedback related to gains than to losses, which could explain the impaired learning. There were no significant changes in mood symptoms over the 8 weeks, and no increased propensity toward manic-like behaviors were reported. Our results suggest that the enhancement of dopaminergic activity influences risk-associated decision-making performance in euthymic BPD. The clinical implications remain unknown.
PMCID: PMC3870768  PMID: 23884342
Behavioral Science; bipolar disorder; decision-making; Dopamine; gambling; Mood/Anxiety/Stress Disorders; Neuropharmacology; pramipexole; bipolar disorder; dopamine; pramipexole; decision-making
3.  Dopamine-Agonists and Impulsivity in Parkinson’s Disease: Impulsive Choices vs. Impulsive Actions 
Human brain mapping  2013;35(6):2499-2506.
The control of impulse behavior is a multidimensional concept subdivided into separate subcomponents, which are thought to represent different underlying mechanisms due to either disinhibitory processes or poor decision-making. In patients with Parkinson’s disease (PD), dopamine-agonist (DA) therapy has been associated with increased impulsive behavior. However, the relationship among these different components in the disease and the role of DA is not well understood. In this imaging study, we investigated in PD patients the effects of DA medication on patterns of brain activation during tasks testing impulsive choices and actions. Following overnight withdrawal of antiparkinsonian medication, PD patients were studied with a H2 (15)O PET before and after administration of DA (1 mg of pramipexole), while they were performing the delay discounting task (DDT) and the GoNoGo Task (GNG). We observed that pramipexole augmented impulsivity during DDT, depending on reward magnitude and activated the medial prefrontal cortex and posterior cingulate cortex and deactivated ventral striatum. In contrast, the effect of pramipexole during the GNG task was not significant on behavioral performance and involved different areas (i.e., lateral prefrontal cortex). A voxel-based correlation analysis revealed a significant negative correlation between the discounting value (k) and the activation of medial prefrontal cortex and posterior cingulate suggesting that more impulsive patients had less activation in those cortical areas. Here we report how these different subcomponents of inhibition/impulsivity are differentially sensitive to DA treatment with pramipexole influencing mainly the neural network underlying impulsive choices but not impulsive action.
PMCID: PMC4452224  PMID: 24038587 CAMSID: cams4599
Parkinson’s disease; impulsivity; dopamine agonists
4.  Dopamine D3 receptor-preferring agonist enhances the subjective effects of cocaine in humans 
Psychiatry research  2015;230(1):44-49.
Pramipexole is a D3 dopamine receptor-preferring agonist indicated for the treatment of Parkinson disease. Studies associate pramipexole with pathological gambling and impulse control disorders suggesting a role for D3 receptors in reinforcement processes. Clinical studies showed pramipexole decreased cocaine craving and reversed central deficits in individuals with cocaine use disorder. Preclinical studies have shown acute administration of pramipexole increases cocaine’s reinforcing effects whereas other reports suggest chronic pramipexole produces tolerance to cocaine. In a randomized, double-blind, placebo-controlled study we examined the impact of pramipexole treatment on the subjective effects produced by cocaine in volunteers with cocaine use disorder. Volunteers received pramipexole titrated up to 3.0 mg/d or placebo over 15 days. Participants then received intravenous cocaine (0, 20 and 40 mg) on day 15. Cardiovascular and subjective effects were obtained with visual analog scales at time points across the session. Pramipexole alone increased peak heart rate following saline and diastolic blood pressure following cocaine. Pramipexole produced upwards of two-fold increases in positive subjective effects ratings following cocaine. These results indicate that chronic D3 receptor activation increases the subjective effects of cocaine in humans. Caution should be used when prescribing pramipexole to patients that may also use cocaine.
PMCID: PMC4584195  PMID: 26239766
Drug reinforcement; Stimulants; Substance use disorder; Cocaine use disorder; Drug reward; Peak effects
5.  Delay Discounting and Gambling 
Behavioural processes  2011;87(1):43-49.
Delay discounting describes the decline in the value of a reinforcer as the delay to that reinforcer increases. A review of the available studies revealed that steep delay discounting is positively correlated with problem or pathological gambling. One hypothesis regarding this correlation derives from the discounting equation proposed by Mazur (1989). According to the equation, steeper discounting renders the difference between fixed-delayed rewards and gambling-like variable-delayed rewards larger; with the latter being more valuable. The present study was designed to test this prediction by first assessing rats’ impulsive choices across four delays to a larger-later reinforcer. A second condition quantified strength of preference for mixed- over fixed-delays, with the duration of the latter adjusted between sessions to achieve indifference. Strength of preference for the mixed-delay alternative is given by the fixed delay at indifference (lower fixed-delay values reflect stronger preferences). Percent impulsive choice was not correlated with the value of the fixed delay at indifference and, therefore, the prediction of the hyperbolic model of gambling was not supported. A follow-up assessment revealed a significant decrease in impulsive choice after the second condition. This shift in impulsive choice could underlie the failure to observe the predicted correlation between impulsive choice and degree of preference for mixed- over fixed delays.
PMCID: PMC3081402  PMID: 21352902
Delay discounting; impulsivity; delay; gambling; rat
6.  Comparison of pramipexole with and without domperidone co-administration on alertness, autonomic, and endocrine functions in healthy volunteers 
What is already known about this subjectIt is known that the dopamine receptor agonist pramipexole, used for the treatment of Parkinson's disease, often causes nausea that can be treated in patients by the co-administration of an antiemetic, for example domperidone.In experimental studies of pramipexole it may be necessary to administer domperidone alongside pramipexole to alleviate nausea, and as such it is necessary to know how the co-administration of domperidone may alter the observed effects of pramipexole.What this study addsResults from our study indicate that the co-administration of pramipexole and domperidone may reduce the likelihood of observing an effect that is present when pramipexole is administered alone.Although domperidone is mainly a peripherally acting drug, it appears that a high enough concentration of the drug crosses the blood–brain barrier to partially antagonize some of the autonomic actions of pramipexole.Therefore, this report provides a cautionary note to the use of domperidone alongside pramipexole where the results of interest are those from pramipexole alone.
To investigate the effects of the D2-receptor agonist pramipexole with and without the co-administration of the peripherally acting D2-receptor antagonist domperidone on measures of alertness, autonomic and endocrine function.
Sixteen male volunteers participated in four weekly sessions of pramipexole 0.5 mg, domperidone 40 mg, their combination, and placebo administered according to a balanced, double-blind design. Alertness (visual analogue scales (VAS), critical flicker fusion frequency, pupillographic sleepiness test), autonomic (pupil diameter, light and darkness reflexes, blood pressure, heart rate, salivation, temperature) and endocrine (prolactin, thyroid-stimulating hormone (TSH), growth hormone (GH)) functions were assessed. Data were analyzed with anova with multiple comparisons.
The pre-post treatment changes in VAS alertness were reduced by pramipexole with and without domperidone (mean difference from placebo (95% confidence interval), mm): pramipexole −15.75 (−23.38, −8.13), combination −11.84 (−20.77, −2.91). Treatment condition significantly affected pupil diameter measured in different ways (resting pupil diameter (F3,45 = 8.39, P < 0.001), initial diameter of the light reflex response (F3,42 = 3.78, P < 0.05), and light (F3,45 = 5.21, P < 0.005) and dark (F3,45 = 3.36, P < 0.05) diameters of the darkness reflex response). Pramipexole without domperidone consistently increased pupil diameter on all measures (P < 0.05), whereas with domperidone only the increase in resting and dark diameters reached significance. Pramipexole reduced light reflex amplitude and increased latency, whereas the combination affected latency only. Concentrations of prolactin and TSH were increased by domperidone. Pramipexole reduced prolactin and increased GH concentrations.
The attenuation of the central pupillary effects of pramipexole by domperidone indicates that domperidone had access to some central D2-receptors.
PMCID: PMC2203276  PMID: 17578485
alertness; darkness reflex; domperidone; light reflex; pramipexole; pupil
7.  Environmental Rearing Effects on Impulsivity and Reward Sensitivity 
Behavioral neuroscience  2013;127(5):712-724.
Previous research has indicated that rearing in an enriched environment may promote self-control in an impulsive choice task. To further assess the effects of rearing environment on impulsivity, 2 experiments examined locomotor activity, impulsive action, impulsive choice, and different aspects of reward sensitivity and discrimination. In Experiment 1, rats reared in isolated or enriched conditions were tested on an impulsive choice procedure with a smaller-sooner versus a larger-later reward, revealing that the isolated rats valued the smaller-sooner reward more than the enriched rats. A subsequent reward challenge was presented in which the delay to the 2 rewards was the same but the magnitude difference remained. The enriched rats did not choose the larger reward as often as the isolated rats, reflecting poorer reward discrimination. Impulsive action was assessed using a differential-reinforcement-of-low-rate task, which revealed deficits in the enriched rats. In Experiment 2, rats reared in isolated, standard, or enriched conditions were tested on reward contrast and reward magnitude sensitivity procedures. The rats were presented with 2 levers that delivered different magnitudes of food on variable interval 30-s schedules. Across all tests, the enriched and social rats displayed more generalized responding to the small-reward lever, but a similar response to the large-reward lever, compared with the isolated rats. This confirmed the results of Experiment 1, indicating poorer reward discrimination in the enriched condition compared with the isolated condition. The results suggest that enrichment may moderate reward generalization/discrimination processes through alterations in incentive motivational processes.
PMCID: PMC3906647  PMID: 24128360
environmental enrichment; isolation rearing; impulsive choice; impulsive action; reward processing
8.  Effects of Acute Pramipexole on Male Rats’ Preference for Gambling-like Rewards II 
Pramipexole (PPX) is a dopamine agonist medication that has been implicated in the development of pathological gambling and other impulse control disorders. Johnson, Madden, Brewer, Pinkston, and Fowler (2011) reported that PPX increased male rats’ preference for gambling-like rewards (those arranged according to a variable-ratio schedule) over predictable rewards (those obtained from a fixed-ratio schedule). The present experiment explored the possibility that Johnson et al. underestimated the effects of PPX on gambling-like choices by constraining their rats’ daily income. In the present experiment conducted in a closed economy, PPX produced a dose-related increase in choice of the gambling-like alternative. In a control condition, PPX did not disrupt choice, suggesting the increased preference for gambling-like rewards was not due to nonspecific drug effects. Our findings are qualitatively consistent with those of Johnson et al., although the dose-related effect and larger effect size in the current study suggest that the effect of PPX on gambling-like choices is more pronounced when income was not constrained. This finding is consistent with clinical reports suggesting PPX is related to the development of problem gambling in humans.
PMCID: PMC3482126  PMID: 22288460
pramipexole; dopamine agonist; gambling; Parkinson’s disease; rat
9.  Individual differences in impulsive and risky choice: Effects of environmental rearing conditions 
Behavioural brain research  2014;269:115-127.
The present experiment investigated early-rearing environment modulation of individual differences in impulsive and risky choice. Rats were reared in an isolated condition (IC; n = 12), in which they lived alone without novel stimuli, or an enriched condition (EC; n = 12), in which they lived among conspecifics with novel stimuli. The impulsive choice task involved choices between smaller-sooner (SS) versus larger-later (LL) rewards. The risky choice task involved choices between certain-smaller (C-S) versus uncertain-larger (U-L) rewards. Following choice testing, incentive motivation to work for food was measured using a progressive ratio task and correlated with choice behavior. HPLC analyses were conducted to determine how monoamine concentrations within the prefrontal cortex (PFC) and nucleus accumbens (NAC) related to behavior in different tasks. IC rats were more impulsive than EC rats, but they did not differ in risky choice behavior. However, choice behavior across tasks was significantly correlated (i.e., the more impulsive rats were also riskier). There were no group differences in monoamine levels, but noradrenergic and serotonergic concentrations were significantly correlated with impulsive and risky choice. Furthermore, serotonin and norepinephrine concentrations in the NAC significantly correlated with incentive motivation and the timing of the reward delays within the choice tasks. These results suggest a role for domain general processes in impulsive and risky choice and indicate the importance of the NAC and/or PFC in timing, reward processing, and choice behavior.
PMCID: PMC4069030  PMID: 24769268
impulsive choice; risky choice; differential rearing; individual difference; monoamine concentration; rat
10.  Extended access to amphetamine self-administration increases impulsive choice in a delay discounting task in rats 
Psychopharmacology  2009;207(3):391-400.
d-Amphetamine (AMPH) is a widely prescribed ADHD medication, but little is known about its effects on impulsive choice with escalated use.
The current study examined the effects of short and long access to AMPH self-administration on impulsive choice in a delay discounting task in which rats chose between a small immediate reward (1 sucrose pellet immediately) and a larger delayed reward (3 sucrose pellets after an adjusting delay).
Following choice stability in delay discounting, all rats received 15 1-hour sessions of AMPH self-administration (0.1 or 0.03 mg/kg/infusion); self-administration sessions began 45 min after each delay discounting session. Rats were then either maintained on the short access (ShA) self-administration session or were switched to a long access (LgA) 6-hour session for 21 days, followed by a 7-day withdrawal phase in which only the delay discounting task continued.
LgA rats in the 0.03 mg/kg/infusion dose group escalated in total number of infusions across sessions, although rats in the 0.1 mg/kg/infusion dose group did not. LgA groups at both unit doses showed decreased mean adjusted delays across sessions compared to the ShA groups, indicating that long access to AMPH increases impulsive choice. During the AMPH withdrawal phase, LgA groups returned back to baseline mean adjusted delays, indicating that the effect on impulsive choice was reversible.
These results show that extended AMPH self-administration produces a transient loss of inhibitory control, which may play a role in the escalating pattern of drug intake that characterizes the addiction process.
PMCID: PMC3164508  PMID: 19784636
Delay Discounting; d-Amphetamine; Escalation; Impulsivity
11.  Pramipexole Increases Go Timeouts but Not No-go Errors in Healthy Volunteers 
Parkinson’s disease (PD) is characterized by motor symptoms, such as resting tremor, bradykinesia and rigidity, but also features non-motor complications. PD patients taking dopaminergic therapy, such as levodopa but especially dopamine agonists (DAs), evidence an increase in impulse control disorders (ICDs), suggesting a link between dopaminergic therapy and impulsive pursuit of pleasurable activities. However, impulsivity is a multifaceted construct. Motor impulsivity refers to the inability to overcome automatic responses or cancel pre-potent responses. Previous research has suggested that PD patients, on dopaminergic medications, have decreased motor impulsivity. Whether effects on impulsivity are main effects of dopaminergic therapies or are specific to PD is unclear. Using a Go No-go task, we investigated the effect of a single dose of the DA pramipexole on motor impulsivity in healthy participants. The Go No-go task consisted of Go trials, for which keystroke responses were made as quickly as possible, and lesser frequency No-go trials, on which motor responses were to be inhibited. We hypothesized that pramipexole would decrease motor impulsivity. This would manifest as: (a) fewer No-go errors (i.e., fewer responses on trials in which a response ought to have been inhibited); and (b) more timed-out Go trials (i.e., more trials on which the deadline elapsed before a decision to make a keystroke occurred). Healthy volunteers were treated with either 0.5 mg of pramipexole or a standard placebo (randomly determined). During the 2-h wait period, they completed demographic, cognitive, physiological and affective measures. The pramipexole group had significantly more Go timeouts (p < 0.05) compared to the placebo group though they did not differ in percent of No-go errors. In contrast to its effect on pursuit of pleasurable activities, pramipexole did not increase motor impulsivity. In fact, in line with findings in PD and addiction, dopaminergic therapy might increase motor impulse control. In these patient groups, by enhancing function of the dorsal striatum (DS) of the basal ganglia in contrast to its effect on impulsive pursuit of pleasurable activities. These findings have implications for use and effects of pramipexole in PD as well as in other conditions (e.g., restless leg, dystonia, depression, addiction-related problems).
PMCID: PMC5067488  PMID: 27803657
pramipexole; motor impulsivity; Go No-go task; healthy subjects; basal ganglia; striatum
12.  Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for cross-species translational research 
Translational Psychiatry  2013;3(8):e297-.
Mood disorders, such as major depressive disorder, are characterized by abnormal reward responsiveness. The Response Bias Probabilistic Reward Task (hereafter referred to as probabilistic reward task (PRT)) quantifies reward responsiveness in human subjects, and an equivalent animal assessment is needed to facilitate preclinical translational research. Thus, the goals of the present studies were to develop, validate and characterize a rat analog of the PRT. Adult male Wistar and Long–Evans rats were trained in operant testing chambers to discriminate between two tone stimuli that varied in duration (0.5 and 2 s). During a subsequent test session consisting of 100 trials, the two tones were made ambiguous (0.9 and 1.6 s) and correct identification of one tone was reinforced with a food pellet three times more frequently than the other tone. In subsequent experiments, Wistar rats were administered either a low dose of the dopamine D2/D3 receptor agonist pramipexole (0.1 mg kg−1, subcutaneous) or the psychostimulant amphetamine (0.5 mg kg−1, intraperitoneal) before the test session. Similar to human subjects, both rat strains developed a response bias toward the more frequently reinforced stimulus, reflecting robust reward responsiveness. Mirroring prior findings in humans, a low dose of pramipexole blunted response bias. Moreover, in rats, amphetamine potentiated response bias. These results indicate that in rats, reward responsiveness can be quantified and bidirectionally modulated by pharmacological manipulations that alter striatal dopamine transmission. Thus, this new procedure in rats, which is conceptually and procedurally analogous to the one used in humans, provides a reverse translational platform to investigate abnormal reward responsiveness across species.
PMCID: PMC3756297  PMID: 23982629
anhedonia; animal model; depression; dopamine; rat; reward
13.  Impulsive choice and environmental enrichment: Effects of d-amphetamine and methylphenidate 
Behavioural brain research  2008;193(1):48-54.
Individual differences in impulsive choice and rearing in differential environments are factors that predict vulnerability to drug abuse. The present study determined if rearing influences impulsive choice, and if d-amphetamine or methylphenidate alters impulsive choice in differentially-reared rats. Male Sprague-Dawley rats were raised from 21 days of age in either an enriched condition (EC) or an isolated condition (IC) and were tested as young adults on an adjusting delay task. In this task, two levers were available and a response on one lever yielded one 45 mg food pellet immediately, whereas a response on the other yielded three pellets after an adjusting delay. The delay was initially set at 6 sec, and it decreased or increased by 1 sec following responses on the immediate or delayed levers, respectively. A mean adjusted delay (MAD) was calculated upon completion of each daily session, and it served as the quantitative measure of impulsivity. Once MADs stabilized, rats were injected with saline, d-amphetamine (0.5, 1.0, or 2.0 mg/kg, s.c.), or methylphenidate (2.5, 5.0, or 10.0 mg/kg, s.c.) 15 min prior to adjusting delay sessions. EC rats had higher baseline MADs (were less impulsive) than IC rats. Additionally, administration of d-amphetamine, but not methylphenidate, dose-dependently increased impulsive choice (decreased MADs) in EC rats. In IC rats, d-amphetamine and methylphenidate dose-dependently decreased impulsivity (increased MADs). These results indicate that rearing environment influences impulsive choice and moderates the effect of psychostimulants on impulsive choice. Specifically, psychostimulants may decrease environment-dependent impulsive choice in individuals with high levels of impulsivity (e.g., those with ADHD), whereas they may increase impulsive choice in individuals with low levels of impulsivity.
PMCID: PMC2681296  PMID: 18534693
amphetamine; delay discounting; environmental enrichment; individual differences; impulsive choice; methylphenidate
14.  Measurement of impulsive choice in rats: Same and alternate form test-retest reliability and temporal tracking 
Impulsive choice is typically measured by presenting smaller-sooner (SS) versus larger-later (LL) rewards, with biases towards the SS indicating impulsivity. The current study tested rats on different impulsive choice procedures with LL delay manipulations to assess same-form and alternate-form test-retest reliability. In the systematic-GE procedure (Green & Estle, 2003), the LL delay increased after several sessions of training; in the systematic-ER procedure (Evenden & Ryan, 1996), the delay increased within each session; and in the adjusting-M procedure (Mazur, 1987), the delay changed after each block of trials within a session based on each rat’s choices in the previous block. In addition to measuring choice behavior, we also assessed temporal tracking of the LL delays using the median times of responding during LL trials. The two systematic procedures yielded similar results in both choice and temporal tracking measures following extensive training, whereas the adjusting procedure resulted in relatively more impulsive choices and poorer temporal tracking. Overall, the three procedures produced acceptable same form test-retest reliability over time, but the adjusting procedure did not show significant alternate form test-retest reliability with the other two procedures. The results suggest that systematic procedures may supply better measurements of impulsive choice in rats.
PMCID: PMC4875579  PMID: 25490901
impulsive choice; delay discounting; individual differences; temporal tracking; rats
15.  Single Dose of a Dopamine Agonist Impairs Reinforcement Learning in Humans: Behavioral Evidence from a Laboratory-based Measure of Reward Responsiveness 
Psychopharmacology  2007;196(2):221-232.
The dopaminergic system, particularly D2-like dopamine receptors, has been strongly implicated in reward processing. Animal studies have emphasized the role of phasic dopamine (DA) signaling in reward-related learning, but these processes remain largely unexplored in humans.
To evaluate the effect of a single, low dose of a D2/D3 agonist—pramipexole—on reinforcement learning in healthy adults. Based on prior evidence indicating that low doses of DA agonists decrease phasic DA release through autoreceptor stimulation, we hypothesized that 0.5 mg of pramipexole would impair reward learning due to presynaptic mechanisms.
Using a double-blind design, a single 0.5 mg dose of pramipexole or placebo was administered to 32 healthy volunteers, who performed a probabilistic reward task involving a differential reinforcement schedule as well as various control tasks.
As hypothesized, response bias toward the more frequently rewarded stimulus was impaired in the pramipexole group, even after adjusting for transient adverse effects. In addition, the pramipexole group showed reaction time and motor speed slowing and increased negative affect; however, when adverse physical side effects were considered, group differences in motor speed and negative affect disappeared.
These findings show that a single low dose of pramipexole impaired the acquisition of reward-related behavior in healthy participants, and they are consistent with prior evidence suggesting that phasic DA signaling is required to reinforce actions leading to reward. The potential implications of the present findings to psychiatric conditions, including depression and impulse control disorders related to addiction, are discussed.
PMCID: PMC2268635  PMID: 17909750
Dopamine; D2 agonists; Reward Processing; Depression; Mesolimbic System; Addiction
16.  Building blocks of self-control: increased tolerance for delay with bundled rewards. 
Impulsive choice can be defined as temporary preference for a smaller-sooner reward (SS) over a larger-later reward (LL). Hyperbolic discounting implies that impulsive choices will occur less when organisms choose between a series of SSs versus LLs all at once than when they choose between single SS versus LL pairs. Eight rats were exposed to two conditions of an intertemporal choice paradigm using sucrose solution as reward. In both conditions, the LL was 150 microl delayed by 3 s, while the SS was an immediate reward that ranged from 25-150 microl across sessions. Preference for the LL was greater when the chosen reward was automatically delivered three times in succession (bundled) than when it was chosen singly and delivered after each choice. For each of the 8 rats, the estimated SS amount that produced indifference was higher in the bundled condition than in the single condition. Because bundling in humans may be based on the perception that one's current choice is predictive of future choices, the data presented here may demonstrate an important building block of self-control.
PMCID: PMC1284920  PMID: 12696740
17.  Effects of Selective Dopaminergic Compounds on a Delay Discounting Task 
Behavioural pharmacology  2011;22(4):300-311.
Impulsivity is widely regarded as a multidimensional trait that encompasses two or more distinct patterns of behavior, and dopaminergic systems are implicated in the expression of impulsive behavior in both humans and animals. Impulsive choice, or the tendency to choose rewards associated with relatively little or no delay, has been extensively studied in humans and animals using delay discounting tasks. Here, delay discounting procedures were used to assess the effects of receptor-selective dopaminergic agonists, antagonists, and dopamine transporter ligands on choices of immediate versus delayed sucrose pellets. The effects of d-amphetamine, GBR 12909, apomorphine, SKF 81297, sumanirole, pramipexole, ABT-724, SCH 23390, L-741,626, PG01037, and L-745,870 were assessed in 24 Sprague Dawley rats. The only drugs to affect impulsive choice selectively without altering undelayed choice were the D1-like antagonist SCH 23390 (0.01 mg/kg) and the D4 partial agonist ABT-724 (3.2 mg/kg), which both increased impulsive choice. The shared effects of these compounds may be explained by their localization within the prefrontal cortex on different groups of neurons. None of the selective agonists and antagonists tested reduced impulsive choice, so further research is needed to determine if direct dopaminergic agonists or antagonists may be therapeutically useful in the treatment of impulse-control disorders.
PMCID: PMC3135665  PMID: 21694584
Delay discounting; inter-temporal choice; impulsive choice; impulsivity; self control; dopamine; SCH 23390; ABT-724; rat
Psychopharmacology  2011;219(1):123-135.
Dopamine D2-like agonists maintain responding when substituted for cocaine in laboratory animals. However, these effects appear to be mediated by an interaction with stimuli that were previously paired with cocaine reinforcement (CS).
To evaluate the extent to which the pramipexole-maintained and -induced responding are influenced by cocaine-paired stimuli.
Rats were trained to nosepoke for cocaine under fixed ratio 1 (FR1) or progressive ratio (PR) schedules of reinforcement. In FR1-trained rats, pramipexole was substituted for cocaine with injections either paired with CSs, or delivered in their absence. The capacity of experimenter-administered pramipexole to induce FR1 and PR responding for CS presentation was evaluated. The effects of altering stimulus conditions, as well as pretreatments with D2- (L-741,626) and D3-preferring (PG01037) antagonists on pramipexole-induced PR responding were also evaluated.
When substituted for cocaine, pramipexole maintained responding at high rates when injections were paired with CSs, but low rates when CSs were omitted. Similarly, experimenter-administered pramipexole induced dose-dependent increases in FR1 or PR responding, with high rates of responding observed when the CS was presented, and low rates of responding when CS presentation was omitted. D2 and D3 antagonists differentially affected pramipexole-induced PR responding, with L-741,626 and PG01037 producing rightward, and downward shifts in the dose-response curve for CS-maintained responding, respectively.
These data indicate that pramipexole is capable of enhancing the reinforcing effectiveness of conditioned stimuli, and raise the possibility that similar mechanisms are responsible for the increased occurrence of impulse control disorders in patients being treated with pramipexole.
PMCID: PMC3800033  PMID: 21701814
19.  Effects of acute and repeated nicotine administration on delay discounting in Lewis and Fischer 344 rats 
Behavioural pharmacology  2010;21(8):754-764.
Biological differences may underlie individual differences in impulsive behavior, such as choice for a smaller, more immediate reinforcer over a larger, more delayed reinforcer. Repeated exposure to drugs of abuse may have differing effects on such behavior. To evaluate acute and repeated effects of nicotine on impulsive choice, two strains of rats that have been shown to differ in impulsive choice were tested in a delay-discounting paradigm. Eight Lewis and eight Fischer 344 rats were allowed to choose between one food pellet delivered immediately and three food pellets delivered after a delay. The delay systematically increased in blocks of trials within each session, and the delay value at which choice for the two alternatives was equal (i.e., the indifference point) was interpolated. Effects of nicotine (0.1 – 1.0 mg/kg, s.c.) on percent choice and indifference points were determined during the acute-testing phase and during the re-determination of effects of each dose following at least 30 sessions of repeated 1.0 mg/kg nicotine exposure. Lewis rats had shorter indifference points (i.e., made fewer larger reinforcer choices) than the Fischer 344 rats. Acute nicotine administration increased mean larger-reinforcer choices at the 0.3 mg/kg dose in the Lewis rats and at the 1.0 mg/kg dose in the Fischer 344 rats. After repeated exposure to nicotine, indifference points returned to near baseline (pre-drug) levels for both strains. Strain differences were observed in rates of delay discounting and nicotine may decrease impulsive choice acutely, but this effect does not appear to be long-lasting.
PMCID: PMC3046322  PMID: 20944502
choice; delay discounting; Fischer 344; impulsivity; Lewis; nicotine; rat; self-control; temporal discounting
20.  Pramipexole in patients with early Parkinson's disease (PROUD): a randomised delayed-start trial 
Lancet Neurology  2013;12(8):747-755.
In models of dopaminergic neuronal loss, the dopamine agonist pramipexole has exhibited neuroprotective properties. The Pramipexole On Underlying Disease (PROUD) study was designed to identify whether early versus delayed pramipexole initiation has clinical and neuroimaging benefits in patients with Parkinson's disease (PD).
Between May 24, 2006, and April 22, 2009, at 98 centres, we recruited patients with PD diagnosed within 2 years and aged 30–79 years. We randomly assigned eligible patients (ratio 1:1), by a centralised, computerised randomisation schedule, to receive double-blind either placebo or pramipexole (1·5 mg a day) and followed them up for 15 months. At 9 months, or as early as 6 months if considered necessary, placebo recipients were assigned to pramipexole. In a neuroimaging substudy, striatal dopamine-transporter binding was assessed by SPECT. All patients, investigators, and independent raters were masked to study treatment. The primary endpoint was the 15-month change from baseline in total score on the unified Parkinson's disease rating scale (UPDRS). This trial is registered with, number NCT00321854.
Of 535 patients, 261 were randomly assigned to receive pramipexole and 274 to receive placebo. At 15 months (n=411), adjusted mean change in UPDRS total score showed no significant difference between early and delayed pramipexole (−0·4 points, 95% CI −2·2 to 1·4, p=0·65). 62 patients in the early pramipexole group and 61 patients in the delayed pramipexole group were included in the neuroimaging substudy, for which the adjusted mean 15-month change in striatal 123I-FP-CIT binding was −15·1% (SE 2·1) for early and −14·6% (2·0) for delayed pramipexole (difference −0·5 percentage points, 95% CI −5·4 to 4·4, p=0·84). Overall, 180 (81%) of patients given early pramipexole and 179 (84%) patients given delayed pramipexole reported adverse events (most frequently nausea), and 22 (10%) patients in the early pramipexole group and 17 (8%) in the delayed pramipexole group had serious events, two of which (hallucinations and orthostatic hypotension) were deemed related to study drug.
By clinical and neuroimaging measures, pramipexole showed little evidence differentiating 15-month usage from usage delayed for 6–9 months. The results do not support the hypothesis that pramipexole has disease-modifying effects.
Boehringer Ingelheim GmbH.
PMCID: PMC3714436  PMID: 23726851
21.  Strain Differences in Delay Discounting between Lewis and Fischer 344 Rats at Baseline and Following Acute and Chronic Administration of d-Amphetamine 
Stimulant drugs have been shown either to increase or decrease rates of delay discounting (impulsive choice). These mixed findings may result from genetic, neurochemical, or environmental factors. Lewis (LEW) and Fischer 344 (F344) rats have neurochemical and behavioral differences that may be relevant to delay discounting and were used to examine effects of acute and chronic administration of d-amphetamine (d-AMP) on impulsive choice using a within-session delay-discounting procedure. Male LEW (n=8) and F344 (n=8) rats chose between one food pellet delivered immediately and three food pellets delivered after an increasing delay. Saline and d-AMP (0.1, 0.3, 1.0, and 1.7 mg/kg) were tested acutely and during chronic d-AMP exposure. Choice for the larger reinforcer decreased as the delay to its presentation increased for both strains at baseline. LEW rats made more impulsive choices than F344 rats as indicated by shorter indifference points, and this is consistent with previous research. Acute administration of d-AMP dose dependently increased larger-reinforcer choice and area under the curve (AUC) for LEW, but not F344 rats. During chronic exposure to d-AMP, larger-reinforcer choice and AUC increased relative to acute administration for F344 rats responding in shorter delay series, but not for F344 rats responding in longer delay series or for LEW rats. Differential effects of acute and chronic administration of d-AMP on impulsive choice in LEW and F344 rats may be a result of various factors, including genetic, neurochemical, and environmental variables. Future research should attempt to tease apart the relative contribution of each of these factors on impulsive choice.
PMCID: PMC3310270  PMID: 22342664
d-Amphetamine; Delay discounting; Fischer 344; Impulsivity; Lewis; Rat; Self-control
22.  Pramipexole-Induced Disruption of Behavioral Processes Fundamental to Intertemporal Choice 
Evaluating the effects of presession drug administration on intertemporal choice in nonhumans is a useful approach for identifying compounds that promote impulsive behavior in clinical populations, such as those prescribed the dopamine agonist pramipexole (PPX). Based on the results of previous studies, it is unclear whether PPX increases rats’ impulsive choice or attenuates aspects of stimulus control. The present study was designed to experimentally isolate behavioral processes fundamental to intertemporal choice and challenge them pharmacologically with PPX administration. In Experiment 1, the hypothesis that PPX increases impulsive choice as a result of enhanced sensitivity to reinforcer delays was tested and disconfirmed. That is, acute PPX diminished delay sensitivity in a manner consistent with disruption of stimulus control whereas repeated PPX had no effect on delay sensitivity. Experiments 2 and 3 elaborated upon this finding by examining the effects of repeated PPX on rats’ discrimination of response–reinforcer contingencies and reinforcer amounts, respectively. Accuracy of both discriminations was reduced by PPX. Collectively these results provide no support for past studies that have suggested PPX increases impulsive choice. Instead, PPX impairs stimulus control over choice behavior. The behavioral approach adopted herein could be profitably integrated with genetic and other biobehavioral models to advance our understanding of impulsive behavior associated with drug administration.
PMCID: PMC4161207  PMID: 23436721
impulsive choice; pramipexole; stimulus control; lever press; rat
23.  Dopamine Agonists Diminish Value Sensitivity of the Orbitofrontal Cortex: A Trigger for Pathological Gambling in Parkinson’s Disease? 
The neurobehavioral underpinnings of pathological gambling are not well understood. Insight might be gained by understanding pharmacological effects on the reward system in patients with Parkinson’s disease (PD). Treatment with dopamine agonists (DAs) has been associated with pathological gambling in PD patients. However, how DAs are involved in the development of this form of addiction is unknown. We tested the hypothesis that tonic stimulation of dopamine receptors specifically desensitizes the dopaminergic reward system by preventing decreases in dopaminergic transmission that occurs with negative feedback. Using functional magnetic resonance imaging, we studied PD patients during three sessions of a probabilistic reward task in random order: off medication, after levodopa (LD) treatment, and after an equivalent dose of DA (pramipexole). For each trial, a reward prediction error value was computed using outcome, stake, and probability. Pramipexole specifically changed activity of the orbitofrontal cortex (OFC) in two ways that were both associated with increased risk taking in an out-of-magnet task. Outcome-induced activations were generally higher with pramipexole compared with LD or off medication. In addition, only pramipexole greatly diminished trial-by-trial correlation with reward prediction error values. Further analysis yielded that this resulted mainly from impaired deactivation in trials with negative errors in reward prediction. We propose that DAs prevent pauses in dopamine transmission and thereby impair the negative reinforcing effect of losing. Our findings raise the question of whether pathological gambling may in part stem from an impaired capacity of the OFC to guide behavior when facing negative consequences.
PMCID: PMC2972251  PMID: 19741594 CAMSID: cams1534
fMRI; impulse control disorder; dopamine agonist; reward; addiction; reinforcement
24.  Mechanisms of impulsive choice: II. Time-based interventions to improve self-control 
Behavioural processes  2014;112:29-42.
Impulsive choice behavior has been proposed as a primary risk factor for other maladaptive behaviors (e.g., gambling, substance abuse). Recent research has suggested that timing processes may play a key role in impulsive choice behavior, and could provide an avenue for altering impulsive choice. Accordingly, the current experiments assessed a set of time-based behavioral interventions to increase self-control while simultaneously assessing effects on timing processes within the impulsive choice task. Three experiments assessed temporal interventions using a differential reinforcement of low rates task (Experiment 1) and exposure to either a variable or fixed interval schedule (Experiments 2–3). The efficacy of the interventions was assessed in Sprague-Dawley (Experiments 1–2) and Lewis (Experiment 3) rat strains. Impulsive choice behavior was assessed by measuring preferences of a smaller-sooner (SS) versus a larger-later (LL) reward, while timing of the SS and LL durations was measured during peak trials within the impulsive choice procedure. The rats showed an increased preference for the LL following all three time-based interventions and also displayed increased temporal precision. These results add to the increasing evidence that supports a possible role for temporal processing in impulsive choice behavior and supply novel behavioral interventions to decrease impulsive behavior.
PMCID: PMC4314470  PMID: 25444771
choice; delay discounting; impulsivity; rat; self-control; timing
Many drugs of abuse produce changes in impulsive choice, that is, choice for a smaller–sooner reinforcer over a larger–later reinforcer. Because the alternatives differ in both delay and amount, it is not clear whether these drug effects are due to the differences in reinforcer delay or amount. To isolate the effects of delay, we used a titrating delay procedure. In phase 1, 9 rats made discrete choices between variable delays (1 or 19 s, equal probability of each) and a delay to a single food pellet. The computer titrated the delay to a single food pellet until the rats were indifferent between the two options. This indifference delay was used as the starting value for the titrating delay for all future sessions. We next evaluated the acute effects of nicotine (subcutaneous 1.0, 0.3, 0.1, and 0.03 mg/kg) on choice. If nicotine increases delay discounting, it should have increased preference for the variable delay. Instead, nicotine had very little effect on choice. In a second phase, the titrated delay alternative produced three food pellets instead of one, which was again produced by the variable delay (1 s or 19 s) alternative. Under this procedure, nicotine increased preference for the one pellet alternative. Nicotine-induced changes in impulsive choice are therefore likely due to differences in reinforcer amount rather than differences in reinforcer delay. In addition, it may be necessary to include an amount sensitivity parameter in any mathematical model of choice when the alternatives differ in reinforcer amount.
PMCID: PMC2648523  PMID: 19794835
risk; impulsive choice; reinforer delay; reinforcer amount; nicotine; lever press; rats

Results 1-25 (1209575)