Search tips
Search criteria

Results 1-25 (1852649)

Clipboard (0)

Related Articles

1.  The Upper Midwest Health Study: gliomas and occupational exposure to chlorinated solvents 
Occupational exposure to chlorinated aliphatic solvents has been associated with an increased cancer risk, including brain cancer. However, many of these solvents remain in active, large-volume use. We evaluated glioma risk from non-farm occupational exposure (ever/never and estimated cumulative exposure) to any of the six chlorinated solvents—carbon tetrachloride, chloroform, methylene chloride, trichloroethylene, tetrachloroethylene or 1,1,1-trichloroethane—among 798 cases and 1175 population-based controls, aged 18–80 years and non-metropolitan residents of Iowa, Michigan, Minnesota and Wisconsin.
Solvent use was estimated based on occupation, industry and era, using a bibliographic database of published exposure levels and exposure determinants. Unconditional logistic regression was used to calculate ORs adjusted for frequency matching variables age group and sex, and age and education. Additional analyses were limited to 904 participants who donated blood specimens (excluding controls reporting a previous diagnosis of cancer) genotyped for glutathione-S-transferases GSTP1, GSTM3 and GSTT1. Individuals with functional GST genes might convert chlorinated solvents crossing the blood–brain barrier into cytotoxic metabolites.
Both estimated cumulative exposure (ppm-years) and ever exposure to chlorinated solvents were associated with decreased glioma risk and were statistically significant overall and for women. In analyses comparing participants with a high probability of exposure with the unexposed, no associations were statistically significant. Solvent-exposed participants with functional GST genes were not at increased risk of glioma.
We observed no associations of glioma risk and chlorinated solvent exposure. Large pooled studies are needed to explore the interaction of genetic pathways and environmental and occupational exposures in glioma aetiology.
PMCID: PMC4563805  PMID: 23104734
2.  Personal Exposure to Mixtures of Volatile Organic Compounds: Modeling and Further Analysis of the RIOPA Data 
Emission sources of volatile organic compounds (VOCs) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern.
The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain.
To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure.
VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999–2001) and the National Health and Nutrition Examination Survey (NHANES; 1999–2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods.
Specific Aim 1
To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model’s goodness of fit.
Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data.
Specific Aim 2
Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture’s components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations.
Specific Aim 3
Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs).
Specific Aim 1
Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10−4, and 13% of all participants had risk levels above 10−2.
Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance.
Specific Aim 2
Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual’s total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture.
Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10−3 for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions.
Specific Aim 3
In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs.
In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence’s AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources.
City of residence, personal activities, household characteristics, and meteorology were significant determinants.
Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. A portion of these differences are due to the nature of the convenience (RIOPA) and representative (NHANES) sampling strategies used in the two studies.
Accurate models for exposure data, which can feature extreme values, multiple modes, data below the MDL, heterogeneous interpollutant dependency structures, and other complex characteristics, are needed to estimate exposures and risks and to develop control and management guidelines and policies. Conventional and novel statistical methods were applied to data drawn from two large studies to understand the nature and significance of VOC exposures. Both extreme value distributions and mixture models were found to provide excellent fit to single VOC compounds (univariate distributions), and copulas may be the method of choice for VOC mixtures (multivariate distributions), especially for the highest exposures, which fit parametric models poorly and which may represent the greatest health risk. The identification of exposure determinants, including the influence of both certain activities (e.g., pumping gas) and environments (e.g., residences), provides information that can be used to manage and reduce exposures. The results obtained using the RIOPA data set add to our understanding of VOC exposures and further investigations using a more representative population and a wider suite of VOCs are suggested to extend and generalize results.
PMCID: PMC4577247  PMID: 25145040
3.  The Relationship between Multiple Myeloma and Occupational Exposure to Six Chlorinated Solvents 
Few studies have examined whether exposure to chlorinated solvents is associated with increased risk of multiple myeloma (MM). Using occupational exposure information, we evaluated associations between the risk of MM and exposure to six chlorinated solvents: 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), methylene chloride (DCM), perchloroethylene (PCE), carbon tetrachloride, and chloroform.
MM cases were identified through cancer registries and controls were identified in the general population. In-person interviews obtained lifetime occupational histories and additional information on jobs with likely solvent exposure. We reviewed each job and assigned exposure metrics of probability, frequency, intensity, and confidence using job-exposure matrices modified by job-specific questionnaire information. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between MM and having ever been exposed to each, and any, chlorinated solvent and also analyzed whether associations varied by duration and cumulative exposure. We also considered all occupations that were given the lowest confidence scores as unexposed and repeated all analyses.
Risk of MM was significantly elevated for subjects ever exposed to TCA (OR (95% CI): 1.8 (1.1–2.9)). Ever-exposure to TCE or DCM also entailed elevated, but not statistically significant, risks of MM; these became statistically significant when occupations that had low confidence scores were considered unexposed (TCE: 1.7 (1.0–2.7); DCM: 2.0 (1.2–3.2)). Increasing duration and cumulative exposure to TCE were associated with significantly increasing risk of MM when jobs given low confidence were considered unexposed. Increasing cumulative exposure to PCE was also associated with increasing MM risk. We observed non-significantly increased MM risks with exposure to chloroform; however, few subjects were exposed.
Evidence from this relatively large case-control study suggests that exposures to certain chlorinated solvents may be associated with increased incidence of MM; however, the study is limited by relatively low participation (52%) among controls.
PMCID: PMC3094509  PMID: 20833760
multiple myeloma; chlorinated solvents; 1,1,1-trichloroethane (TCA); trichloroethylene (TCE); methylene chloride (DCM); perchloroethylene (PCE); carbon tetrachloride; chloroform
4.  Occupational exposure to chlorinated solvents and risks of glioma and meningioma in adults 
Occupational and environmental medicine  2012;69(11):10.1136/oemed-2012-100742.
Chlorinated solvents are classified as probable or possible carcinogens. It is unknown whether exposure to these agents increases the risk of malignant or benign brain tumors. Our objective was to evaluate associations of brain tumor risk with occupational exposure to six chlorinated solvents [i.e., dichloromethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, and perchloroethylene].
489 glioma cases, 197 meningioma cases, and 799 controls were enrolled in a hospital-based case-control study conducted at three U.S. hospitals in Arizona, Massachusetts and Pennsylvania. Information about occupational history was obtained through a detailed in-person interview that included job-specific modules of questions such that the interview was tailored to each individual’s particular work history. An industrial hygienist assessed potential solvent exposure based on this information and an exhaustive review of the relevant industrial hygiene literature. Unconditional logistic regression models were used to calculate odds ratios (OR) and 95% confidence intervals (95%CI) for each solvent for ever/never, duration, cumulative, average weekly, and highest exposure.
Overall, we found no consistent evidence of an increased risk of glioma or meningioma related to occupational exposure to the six chlorinated solvents evaluated. There was some suggestion of an association between carbon tetrachloride and glioma in analyses restricted to exposed subjects, with average weekly exposure above the median associated with increased risk compared to below-median exposure (OR=7.1, 95%CI: 1.1, 45.2).
We found no consistent evidence for increased brain tumor risk related to chlorinated solvents.
PMCID: PMC3850418  PMID: 22864249
epidemiology; cancer; solvents
5.  Maternal residential proximity to chlorinated solvent emissions and birth defects in offspring: a case–control study 
Environmental Health  2014;13:96.
Some studies have noted an association between maternal occupational exposures to chlorinated solvents and birth defects in offspring, but data are lacking on the potential impact of industrial air emissions of these solvents on birth defects.
With data from the Texas Birth Defects Registry for births occurring in 1996–2008, we examined the relation between maternal residential proximity to industrial air releases of chlorinated solvents and birth defects in offspring of 60,613 case-mothers and 244,927 control-mothers. Maternal residential exposures to solvent emissions were estimated with metrics that took into account residential distances to industrial sources and annual amounts of chemicals released. Logistic regression was used to generate odds ratios and 95% confidence intervals for the associations between residential proximity to emissions of 14 chlorinated solvents and selected birth defects, including neural tube, oral cleft, limb deficiency, and congenital heart defects. All risk estimates were adjusted for year of delivery and maternal age, education, race/ethnicity, and public health region of residence.
Relative to exposure risk values of 0, neural tube defects were associated with maternal residential exposures (exposure risk values >0) to several types of chlorinated solvents, most notably carbon tetrachloride (adjusted odds ratio [aOR] 1.42, 95% confidence interval [CI] 1.09, 1.86); chloroform (aOR 1.40, 95% CI 1.04, 1.87); ethyl chloride (aOR 1.39, 95% CI 1.08, 1.79); 1,1,2-trichloroethane (aOR 1.56, 95% CI 1.11, 2.18); and 1,2,3-trichloropropane (aOR 1.49, 95% CI 1.08, 2.06). Significant associations were also noted between a few chlorinated solvents and oral cleft, limb deficiency, and congenital heart defects. We observed stronger associations between some emissions and neural tube, oral cleft, and heart defects in offspring of mothers 35 years or older, such as spina bifida with carbon tetrachloride (aOR 2.49, 95% CI 1.09, 5.72), cleft palate with 1,2-dichloroethane (aOR 1.93, 95% 1.05, 3.54), cleft lip with or without cleft palate with ethyl chloride (aOR 1.81, 95% CI 1.06, 3.07), and obstructive heart defects with trichloroethylene (aOR 1.43, 95% CI 1.08, 1.88).
These findings suggest that maternal residential proximity to industrial emissions of chlorinated solvents might be associated with selected birth defects in offspring, especially among older mothers.
PMCID: PMC4247650  PMID: 25406847
Air pollution; Chlorinated solvents; Congenital heart defects; Limb deficiency defects; Neural tube defects; Oral cleft defects
6.  Occupational exposure to solvents and risk of head and neck cancer in women: a population-based case–control study in France 
BMJ Open  2017;7(1):e012833.
Our objective was to investigate the association between head and neck cancer and occupational exposure to chlorinated, oxygenated and petroleum solvents in women.
Investigation of occupational and environmental CAuses of REspiratory cancers (ICARE), a French population-based case–control study, included 296 squamous cell carcinomas of the head and neck (HNSCC) in women and 775 female controls. Lifelong occupational history was collected. Job-exposure matrices allowed to assess exposure to 5 chlorinated solvents (carbon tetrachloride; chloroform; methylene chloride; perchloroethylene; trichloroethylene), 5 petroleum solvents (benzene; special petroleum product; gasoline; white spirits and other light aromatic mixtures; diesel, fuels and kerosene) and 5 oxygenated solvents (alcohols; ketones and esters; ethylene glycol; diethyl ether; tetrahydrofuran). OR and 95% CIs, adjusted for smoking, alcohol drinking, age and geographical area, were estimated with logistic models.
Elevated ORs were observed among women ever exposed to perchloroethylene (OR=2.97, 95% CI 1.05 to 8.45) and trichloroethylene (OR=2.15, 95% CI 1.21 to 3.81). These ORs increased with exposure duration (OR=3.75, 95% CI 0.64 to 21.9 and OR=4.44, 95% CI 1.56 to 12.6 for 10 years or more, respectively). No significantly increased risk of HNSCC was found for occupational exposure to the other chlorinated, petroleum or oxygenated solvents.
These findings suggest that exposure to perchloroethylene or trichloroethylene may increase the risk of HNSCC in women. In our study, there is no clear evidence that the other studied solvents are risk factors for HNSCC.
PMCID: PMC5223686  PMID: 28069619
head and neck; Cancer; trichloroethylene; perchloroethylene; occupational exposures; women
7.  A Case–Control Study of Occupational Exposure to Trichloroethylene and Non-Hodgkin Lymphoma 
Environmental Health Perspectives  2010;119(2):232-238.
Previous epidemiologic findings suggest an association between exposure to trichloroethylene (TCE), a chlorinated solvent primarily used for vapor degreasing of metal parts, and non-Hodgkin lymphoma (NHL).
We investigated the association between occupational TCE exposure and NHL within a population-based case–control study using detailed exposure assessment methods.
Cases (n = 1,189; 76% participation rate) and controls (n = 982; 52% participation rate) provided information on their occupational histories and, for selected occupations, on possible workplace exposure to TCE using job-specific interview modules. An industrial hygienist assessed potential TCE exposure based on this information and a review of the TCE industrial hygiene literature. We computed odds ratios (ORs) and 95% confidence intervals (CIs) relating NHL and different metrics of estimated TCE exposure, categorized using tertiles among exposed controls, with unexposed subjects as the reference group.
We observed associations with NHL for the highest tertiles of estimated average weekly exposure (23 exposed cases; OR = 2.5; 95% CI, 1.1–6.1) and cumulative exposure (24 exposed cases; OR = 2.3; 95% CI, 1.0–5.0) to TCE. Tests for trend with these metrics surpassed or approached statistical significance (p-value for trend = 0.02 and 0.08, respectively); however, we did not observe dose–response relationships across the exposure levels. Overall, neither duration nor intensity of exposure was associated with NHL, although we observed an association with the lowest tertile of exposure duration (OR = 2.1; 95% CI, 1.0–4.7).
Our findings offer additional support for an association between high levels of exposure to TCE and increased risk of NHL. However, we cannot rule out the possibility of confounding from other chlorinated solvents used for vapor degreasing and note that our exposure assessment methods have not been validated.
PMCID: PMC3040611  PMID: 21370516
cancer; non-Hodgkin lymphoma; occupational; solvents; trichloroethylene
8.  Maternal occupational exposure to organic solvents during early pregnancy and risks of neural tube defects and orofacial clefts 
Though toxicological experiments demonstrate the teratogenicity of organic solvents in animal models, epidemiologic studies have reported inconsistent results. Using data from the population-based National Birth Defects Prevention Study, we examined the relation between maternal occupational exposure to aromatic solvents, chlorinated solvents and Stoddard solvent during early pregnancy and neural tube defects (NTDs) and orofacial clefts (OFCs).
Cases of NTDs (anencephaly, spina bifida and encephalocele) and OFCs (cleft lip ± cleft palate and cleft palate alone) delivered between 1997 and 2002 were identified by birth defect surveillance registries in 8 states; non-malformed control infants were selected using birth certificates or hospital records. Maternal solvent exposure was estimated by industrial hygienist review of self-reported occupational histories in combination with a literature-derived exposure database. Odds ratios (OR) and 95% confidence intervals (CI) for the association between solvent class and each birth defect group and component phenotype were estimated using multivariable logistic regression, adjusting for maternal age, race/ethnicity, education, pre-pregnancy body mass index, folic acid supplement use and smoking.
The prevalence of exposure to any solvent among mothers of NTD cases (n=511), OFC cases (n=1163) and controls (n=2977) was 13.1%, 9.6% and 8.2%, respectively. Exposure to chlorinated solvents was associated with increased odds of NTDs (OR=1.96; CI=1.34, 2.87), especially spina bifida (OR=2.26; CI=1.44, 3.53). No solvent class was strongly associated with OFCs in these data.
Our findings suggest that maternal occupational exposure to chlorinated solvents during early pregnancy is positively associated with the prevalence of NTDs in offspring.
PMCID: PMC3719396  PMID: 22447643
congenital abnormalities; occupational exposure; solvents
9.  Systematically Extracting Metal- and Solvent-Related Occupational Information from Free-Text Responses to Lifetime Occupational History Questionnaires 
Annals of Occupational Hygiene  2014;58(5):612-624.
Lifetime occupational history (OH) questionnaires often use open-ended questions to capture detailed information about study participants’ jobs. Exposure assessors use this information, along with responses to job- and industry-specific questionnaires, to assign exposure estimates on a job-by-job basis. An alternative approach is to use information from the OH responses and the job- and industry-specific questionnaires to develop programmable decision rules for assigning exposures. As a first step in this process, we developed a systematic approach to extract the free-text OH responses and convert them into standardized variables that represented exposure scenarios.
Our study population comprised 2408 subjects, reporting 11991 jobs, from a case–control study of renal cell carcinoma. Each subject completed a lifetime OH questionnaire that included verbatim responses, for each job, to open-ended questions including job title, main tasks and activities (task), tools and equipment used (tools), and chemicals and materials handled (chemicals). Based on a review of the literature, we identified exposure scenarios (occupations, industries, tasks/tools/chemicals) expected to involve possible exposure to chlorinated solvents, trichloroethylene (TCE) in particular, lead, and cadmium. We then used a SAS macro to review the information reported by study participants to identify jobs associated with each exposure scenario; this was done using previously coded standardized occupation and industry classification codes, and a priori lists of associated key words and phrases related to possibly exposed tasks, tools, and chemicals. Exposure variables representing the occupation, industry, and task/tool/chemicals exposure scenarios were added to the work history records of the study respondents. Our identification of possibly TCE-exposed scenarios in the OH responses was compared to an expert’s independently assigned probability ratings to evaluate whether we missed identifying possibly exposed jobs.
Our process added exposure variables for 52 occupation groups, 43 industry groups, and 46 task/tool/chemical scenarios to the data set of OH responses. Across all four agents, we identified possibly exposed task/tool/chemical exposure scenarios in 44–51% of the jobs in possibly exposed occupations. Possibly exposed task/tool/chemical exposure scenarios were found in a nontrivial 9–14% of the jobs not in possibly exposed occupations, suggesting that our process identified important information that would not be captured using occupation alone. Our extraction process was sensitive: for jobs where our extraction of OH responses identified no exposure scenarios and for which the sole source of information was the OH responses, only 0.1% were assessed as possibly exposed to TCE by the expert.
Our systematic extraction of OH information found useful information in the task/chemicals/tools responses that was relatively easy to extract and that was not available from the occupational or industry information. The extracted variables can be used as inputs in the development of decision rules, especially for jobs where no additional information, such as job- and industry-specific questionnaires, is available.
PMCID: PMC4053931  PMID: 24590110
cadmium; chlorinated solvents; exposure assessment methodology; lead
10.  Retrospective cohort mortality study of workers at an aircraft maintenance facility. II. Exposures and their assessment. 
Methods are presented that were used for assessing exposures in a cohort mortality study of 15,000 employees who held 150,000 jobs at an Air Force base from 1939 to 1982. Standardisation of the word order and spelling of the job titles identified 43,000 unique job title organisation combinations. Walkthrough surveys were conducted, long term employees were interviewed, and available industrial hygiene data were collected to evaluate historic exposures. Because of difficulties linking air monitoring data and use of specific chemicals to the departments identified in the work histories, position descriptions were used to identify the tasks in each job. From knowledge of the tasks and the chemicals used in those tasks the presence or absence of 23 chemicals or groups of chemicals were designated for each job organisation combination. Also, estimates of levels of exposure were made for trichloroethylene and for mixed solvents, a category comprising several solvents including trichloroethylene, Stoddard solvent, carbon tetrachloride, JP4 gasoline, freon, alcohols, 1,1,1-trichloroethane, acetone, toluene, methyl ethyl ketone, methylene chloride, o-dichlorobenzene, perchloroethylene, chloroform, styrene, and xylene.
PMCID: PMC1035414  PMID: 1878309
11.  An Exploratory Case-Only Analysis of Gene-Hazardous Air Pollutant Interactions and the Risk of Childhood Medulloblastoma 
Pediatric blood & cancer  2012;59(4):605-610.
There is evidence that exposure to chlorinated solvents may be associated with childhood medulloblastoma and primitive neuroectodermal tumor (M/PNET) risk. Animal models suggest genes related to detoxification and DNA repair are important in the carcinogenicity of these pollutants, however, there have been no human studies assessing the modifying effects of these genotypes on the association between chlorinated solvents and childhood M/PNET risk.
We conducted a case-only study to evaluate census tract-level exposure to chlorinated solvents and the risk of childhood M/PNET in the context of detoxification and DNA repair genotypes. Cases (n = 98) were obtained from Texas Children’s Hospital and MD Anderson Cancer Center. Key genotypes (n = 22) were selected from the Illumina Human 1M Quad SNP Chip. Exposure to chlorinated solvents (methylene chloride, perchloroethylene, trichloroethylene, and vinyl chloride) was estimated from the U.S. EPA’s 1999 Assessment System for Population Exposure Nationwide (ASPEN). Logistic regression was used to estimate the case-only odds ratios and 95% confidence intervals (CIs).
There were 11 significant gene-environment interactions associated with childhood M/PNET risk. However, after correcting for multiple comparisons, only the interaction between high trichloroethylene levels and OGG1 rs293795 significantly increased the risk of childhood M/PNET risk (OR = 9.24, 95% CI: 2.24, 38.24, Q = 0.04).
This study provides an initial assessment of the interaction between ambient levels of chlorinated solvents and potentially relevant genotypes on childhood M/PNET risk. Our results are exploratory and must be validated in animal models, as well as additional human studies.
PMCID: PMC3371277  PMID: 22389292
Hazardous air pollutants; chlorinated solvents; DNA repair genes; detoxification genes; childhood medulloblastoma and primitive neuroectodermal tumor
12.  Solvent exposure and malignant lymphoma: a population-based case-control study in Germany 
To analyze the relationship between exposure to chlorinated and aromatic organic solvents and malignant lymphoma in a multi-centre, population-based case-control study.
Male and female patients with malignant lymphoma (n = 710) between 18 and 80 years of age were prospectively recruited in six study regions in Germany (Ludwigshafen/Upper Palatinate, Heidelberg/Rhine-Neckar-County, Würzburg/Lower Frankonia, Hamburg, Bielefeld/Gütersloh, and Munich). For each newly recruited lymphoma case, a gender, region and age-matched (± 1 year of birth) population control was drawn from the population registers. In a structured personal interview, we elicited a complete occupational history, including every occupational period that lasted at least one year. On the basis of job task-specific supplementary questionnaires, a trained occupational physician assessed the exposure to chlorinated hydrocarbons (trichloroethylene, tetrachloroethylene, dichloromethane, carbon tetrachloride) and aromatic hydrocarbons (benzene, toluene, xylene, styrene). Odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional logistic regression analysis, adjusted for smoking (in pack years) and alcohol consumption. To increase the statistical power, patients with specific lymphoma subentities were additionally compared with the entire control group using unconditional logistic regression analysis.
We observed a statistically significant association between high exposure to chlorinated hydrocarbons and malignant lymphoma (Odds ratio = 2.1; 95% confidence interval 1.1–4.3). In the analysis of lymphoma subentities, a pronounced risk elevation was found for follicular lymphoma and marginal zone lymphoma. When specific substances were considered, the association between trichloroethylene and malignant lymphoma was of borderline statistical significance. Aromatic hydrocarbons were not significantly associated with the lymphoma diagnosis.
In accordance with the literature, this data point to a potential etiologic role of chlorinated hydrocarbons (particularly trichloroethylene) and malignant lymphoma. Chlorinated hydrocarbons might affect specific lymphoma subentities differentially. Our study does not support a strong association between aromatic hydrocarbons (benzene, toluene, xylene, or styrene) and the diagnosis of a malignant lymphoma.
PMCID: PMC1851965  PMID: 17407545
13.  Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study 
PLoS Medicine  2012;9(4):e1001206.
A retro-prospective cohort study by Weihong Chen and colleagues provides new estimates for the risk of total and cause-specific mortality due to long-term silica dust exposure among Chinese workers.
Human exposure to silica dust is very common in both working and living environments. However, the potential long-term health effects have not been well established across different exposure situations.
Methods and Findings
We studied 74,040 workers who worked at 29 metal mines and pottery factories in China for 1 y or more between January 1, 1960, and December 31, 1974, with follow-up until December 31, 2003 (median follow-up of 33 y). We estimated the cumulative silica dust exposure (CDE) for each worker by linking work history to a job–exposure matrix. We calculated standardized mortality ratios for underlying causes of death based on Chinese national mortality rates. Hazard ratios (HRs) for selected causes of death associated with CDE were estimated using the Cox proportional hazards model. The population attributable risks were estimated based on the prevalence of workers with silica dust exposure and HRs. The number of deaths attributable to silica dust exposure among Chinese workers was then calculated using the population attributable risk and the national mortality rate. We observed 19,516 deaths during 2,306,428 person-years of follow-up. Mortality from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 per 100,000 person-years). We observed significant positive exposure–response relationships between CDE (measured in milligrams/cubic meter–years, i.e., the sum of silica dust concentrations multiplied by the years of silica exposure) and mortality from all causes (HR 1.026, 95% confidence interval 1.023–1.029), respiratory diseases (1.069, 1.064–1.074), respiratory tuberculosis (1.065, 1.059–1.071), and cardiovascular disease (1.031, 1.025–1.036). Significantly elevated standardized mortality ratios were observed for all causes (1.06, 95% confidence interval 1.01–1.11), ischemic heart disease (1.65, 1.35–1.99), and pneumoconiosis (11.01, 7.67–14.95) among workers exposed to respirable silica concentrations equal to or lower than 0.1 mg/m3. After adjustment for potential confounders, including smoking, silica dust exposure accounted for 15.2% of all deaths in this study. We estimated that 4.2% of deaths (231,104 cases) among Chinese workers were attributable to silica dust exposure. The limitations of this study included a lack of data on dietary patterns and leisure time physical activity, possible underestimation of silica dust exposure for individuals who worked at the mines/factories before 1950, and a small number of deaths (4.3%) where the cause of death was based on oral reports from relatives.
Long-term silica dust exposure was associated with substantially increased mortality among Chinese workers. The increased risk was observed not only for deaths due to respiratory diseases and lung cancer, but also for deaths due to cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Walk along most sandy beaches and you will be walking on millions of grains of crystalline silica, one of the commonest minerals on earth and a major ingredient in glass and in ceramic glazes. Silica is also used in the manufacture of building materials, in foundry castings, and for sandblasting, and respirable (breathable) crystalline silica particles are produced during quarrying and mining. Unfortunately, silica dust is not innocuous. Several serious diseases are associated with exposure to this dust, including silicosis (a chronic lung disease characterized by scarring and destruction of lung tissue), lung cancer, and pulmonary tuberculosis (a serious lung infection). Moreover, exposure to silica dust increases the risk of death (mortality). Worryingly, recent reports indicate that in the US and Europe, about 1.7 and 3.0 million people, respectively, are occupationally exposed to silica dust, figures that are dwarfed by the more than 23 million workers who are exposed in China. Occupational silica exposure, therefore, represents an important global public health concern.
Why Was This Study Done?
Although the lung-related adverse health effects of exposure to silica dust have been extensively studied, silica-related health effects may not be limited to these diseases. For example, could silica dust particles increase the risk of cardiovascular disease (diseases that affect the heart and circulation)? Other environmental particulates, such as the products of internal combustion engines, are associated with an increased risk of cardiovascular disease, but no one knows if the same is true for silica dust particles. Moreover, although it is clear that high levels of exposure to silica dust are dangerous, little is known about the adverse health effects of lower exposure levels. In this cohort study, the researchers examined the effect of long-term exposure to silica dust on the risk of all cause and cause-specific mortality in a large group (cohort) of Chinese workers.
What Did the Researchers Do and Find?
The researchers estimated the cumulative silica dust exposure for 74,040 workers at 29 metal mines and pottery factories from 1960 to 2003 from individual work histories and more than four million measurements of workplace dust concentrations, and collected health and mortality data for all the workers. Death from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 deaths per 100,000 person-years), and there was a positive exposure–response relationship between silica dust exposure and death from all causes, respiratory diseases, respiratory tuberculosis, and cardiovascular disease. For example, the hazard ratio for all cause death was 1.026 for every increase in cumulative silica dust exposure of 1 mg/m3-year; a hazard ratio is the incidence of an event in an exposed group divided by its incidence in an unexposed group. Notably, there was significantly increased mortality from all causes, ischemic heart disease, and silicosis among workers exposed to respirable silica concentrations at or below 0.1 mg/m3, the workplace exposure limit for silica dust set by the US Occupational Safety and Health Administration. For example, the standardized mortality ratio (SMR) for silicosis among people exposed to low levels of silica dust was 11.01; an SMR is the ratio of observed deaths in a cohort to expected deaths calculated from recorded deaths in the general population. Finally, the researchers used their data to estimate that, in 2008, 4.2% of deaths among industrial workers in China (231,104 deaths) were attributable to silica dust exposure.
What Do These Findings Mean?
These findings indicate that long-term silica dust exposure is associated with substantially increased mortality among Chinese workers. They confirm that there is an exposure–response relationship between silica dust exposure and a heightened risk of death from respiratory diseases and lung cancer. That is, the risk of death from these diseases increases as exposure to silica dust increases. In addition, they show a significant relationship between silica dust exposure and death from cardiovascular diseases. Importantly, these findings suggest that even levels of silica dust that are considered safe increase the risk of death. The accuracy of these findings may be affected by the accuracy of the silica dust exposure estimates and/or by confounding (other factors shared by the people exposed to silica such as diet may have affected their risk of death). Nevertheless, these findings highlight the need to tighten regulations on workplace dust control in China and elsewhere.
Additional Information
Please access these websites via the online version of this summary at
The American Lung Association provides information on silicosis
The US Centers for Disease Control and Prevention provides information on silica in the workplace, including links to relevant US National Institute for Occupational Health and Safety publications, and information on silicosis and other pneumoconioses
The US Occupational Safety and Health Administration also has detailed information on occupational exposure to crystalline silica
What does silicosis mean to you is a video provided by the US Mine Safety and Health Administration that includes personal experiences of silicosis; Dont let silica dust you is a video produced by the Association of Occupational and Environmental Clinics that identifies ways to reduce silica dust exposure in the workplace
The MedlinePlus encyclopedia has a page on silicosis (in English and Spanish)
The International Labour Organization provides information on health surveillance for those exposed to respirable crystalline silica
The World Health Organization has published a report about the health effects of crystalline silica and quartz
PMCID: PMC3328438  PMID: 22529751
14.  Insights from Epidemiology into Dichloromethane and Cancer Risk 
Dichloromethane (methylene chloride) is a widely used chlorinated solvent. We review the available epidemiology studies (five cohort studies, 13 case-control studies, including seven of hematopoietic cancers), focusing on specific cancer sites. There was little indication of an increased risk of lung cancer in the cohort studies (standardized mortality ratios ranging from 0.46 to 1.21). These cohorts are relatively small, and variable effects (e.g., point estimates ranging from 0.5 to 2.0) were seen for the rarer forms of cancers such as brain cancer and specific hematopoietic cancers. Three large population-based case-control studies of incident non-Hodgkin lymphoma in Europe and the United States observed odds ratios between 1.5 and 2.2 with dichloromethane exposure (ever exposed or highest category of exposure), with higher risk seen in specific subsets of disease. More limited indications of associations with brain cancer, breast cancer, and liver and biliary cancer were also seen in this collection of studies. Existing cohort studies, given their size and uneven exposure information, are unlikely to resolve questions of cancer risks and dichloromethane exposure. More promising approaches are population-based case-control studies of incident disease, and the combination of data from such studies, with robust exposure assessments that include detailed occupational information and exposure assignment based on industry-wide surveys or direct exposure measurements.
PMCID: PMC3166749  PMID: 21909313
dichloromethane; methylene chloride; solvents; cancer; epidemiology
15.  Systemic sclerosis and occupational risk factors: a case–control study 
Aims: A case–control study was carried out between 1998 and 2000 to investigate the relation between systemic sclerosis and occupational exposure.
Methods: Eighty cases of systemic sclerosis admitted consecutively to the Department of Internal Medicine at the University Hospital of Tours from 1998 to 2000 were included. For each case, two age, gender, and smoking habits matched controls hospitalised during the same period in the same department were selected. A committee of experts was set up retrospectively to assess occupational exposure. Exposure to silica dust and organic solvents (such as trichlorethylene and other chlorinated solvents, and benzene and other aromatic solvents) was investigated using semiquantitative estimates of exposure. An exposure score was calculated for each subject based on probability, intensity, daily frequency, and duration of exposure for each period of employment. The final cumulative exposure score was obtained, taking into account all periods of employment.
Results: Significant associations with SS were observed for crystalline silica, trichlorethylene, chlorinated solvents, toluene, aromatic solvents, ketones, white spirit, epoxy resins, and welding fumes. Risk of SS was significantly associated with a high final cumulative exposure score of occupational exposure to crystalline silica, trichlorethylene, chlorinated solvents, welding fumes, and any types of solvents.
Conclusion: Results confirm the influence of occupational risk factors in the occurrence of SS in both men and women. The link is not only with silica but also with other compounds such as solvents.
PMCID: PMC1740346  PMID: 12151611
16.  Maternal Exposure to Occupational Solvents and Childhood Leukemia 
Environmental Health Perspectives  2005;113(6):787-792.
Many organic solvents are considered probable carcinogens. We carried out a population-based case–control study including 790 incident cases of childhood acute lymphoblastic leukemia and as many healthy controls, matched on age and sex. Maternal occupational exposure to solvents before and during pregnancy was estimated using the expert method, which involves chemists coding each individual’s job for specific contaminants. Home exposure to solvents was also evaluated. The frequency of exposure to specific agents or mixtures was generally low. Results were generally similar for the period ranging from 2 years before pregnancy up to birth and for the pregnancy period alone. For the former period, the odds ratio (OR), adjusted for maternal age and sex, for any exposure to all solvents together was 1.11 [95% confidence interval (CI), 0.88–1.40]. Increased risks were observed for specific exposures, such as to 1,1,1-trichloroethane (OR = 7.55; 95% CI, 0.92–61.97), toluene (OR = 1.88; 95% CI, 1.01–3.47), and mineral spirits (OR = 1.82; 95% CI, 1.05–3.14). There were stronger indications of moderately increased risks associated with exposure to alkanes (C5–C17; OR = 1.78; 95% CI, 1.11–2.86) and mononuclear aromatic hydrocarbons (OR = 1.64; 95% CI, 1.12–2.41). Risk did not increase with increasing exposure, except for alkanes, where a significant trend (p = 0.04) was observed. Home exposure was not associated with increased risk. Using an elaborate exposure coding method, this study shows that maternal exposure to solvents in the workplace does not seem to play a major role in childhood leukemia.
PMCID: PMC1257608  PMID: 15929905
acute lymphoblastic leukemia; child; childhood leukemia; maternal occupational exposure; solvents
17.  Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease 
Environmental Health Perspectives  2006;114(12):1872-1876.
Several epidemiologic studies have suggested an association between Parkinson’s disease (PD) and exposure to heavy metals using subjective exposure measurements.
We investigated the association between objective chronic occupational lead exposure and the risk of PD.
We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual. Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure.
Risk of PD was elevated by > 2-fold [odds ratio = 2.27 (95% confidence interval, 1.13–4.55); p = 0.021] for individuals in the highest quartile for lifetime lead exposure relative to the lowest quartile, adjusting for age, sex, race, smoking history, and coffee and alcohol consumption. The associated risk of PD for the second and third quartiles were elevated but not statistically significant at the α = 0.05 level.
These results provide an objective measure of chronic Pb exposure and confirm our earlier findings that occupational exposure to Pb is a risk factor for PD.
PMCID: PMC1764163  PMID: 17185278
case control; chronic toxicity; K-X-ray fluorescence; lead exposure; neurodegeneration; occupational exposure; Parkinson’s disease
18.  Increased standardized incidence ratio of breast cancer in female electronics workers 
BMC Public Health  2007;7:102.
In 1994, a hazardous waste site, polluted by the dumping of solvents from a former electronics factory, was discovered in Taoyuan, Taiwan. This subsequently emerged as a serious case of contamination through chlorinated hydrocarbons with suspected occupational cancer. The objective of this study was to determine if there was any increased risk of breast cancer among female workers in a 23-year follow-up period.
A total of 63,982 female workers were retrospectively recruited from the database of the Bureau of Labor Insurance (BLI) covering the period 1973–1997; the data were then linked with data, up to 2001, from the National Cancer Registry at the Taiwanese Department of Health, from which standardized incidence ratios (SIRs) for different types of cancer were calculated as compared to the general population.
There were a total of 286 cases of breast cancer, and after adjustment for calendar year and age, the SIR was close to 1. When stratified by the year 1974 (the year in which the regulations on solvent use were promulgated), the SIR of the cohort of workers who were first employed prior to 1974 increased to 1.38 (95% confidence interval, 1.11–1.70). No such trend was discernible for workers employed after 1974. When 10 years of employment was considered, there was a further increase in the SIR for breast cancer, to 1.62. Those workers with breast cancer who were first employed prior to 1974 were employed at a younger age and for a longer period. Previous qualitative studies of interviews with the workers, corroborated by inspection records, showed a short-term high exposure to chlorinated alkanes and alkenes, particularly trichloroethylene before 1974. There were no similar findings on other types of cancer.
Female workers with exposure to trichloroethylene and/or mixture of solvents, first employed prior to 1974, may have an excess risk of breast cancer.
PMCID: PMC1906757  PMID: 17559641
19.  Association between maternal occupational exposure to organic solvents and congenital heart defects, National Birth Defects Prevention Study, 1997–2002 
To examine the relation between congenital heart defects (CHDs) in offspring and estimated maternal occupational exposure to chlorinated solvents, aromatic solvents, and Stoddard solvent during the period from one month before conception through the first trimester.
The study population included mothers of infants with simple, isolated CHDs and mothers of control infants who delivered from 1997 through 2002 and participated in the National Birth Defects Prevention Study. Two methods to assess occupational solvent exposure were employed: an expert consensus-based approach and a literature-based approach. Multiple logistic regression was used to calculate adjusted odds ratios (OR) and 95% confidence intervals (CI) for the association between solvent classes and CHDs.
2,951 control mothers and 2,047 CHD case mothers were included. Using the consensus-based approach, associations were observed for exposure to any solvent and any chlorinated solvent with perimembranous ventricular septal defects (OR 1.6; 95% CI 1.0 to 2.6 and OR 1.7; 95% CI 1.0 to 2.8 respectively). Using the literature-based approach, associations were observed for: any solvent exposure with aortic stenosis (OR 2.1; 95% CI 1.1 to 4.1); and Stoddard solvent exposure with d-transposition of the great arteries (OR 2.0; 95% CI 1.0 to 4.2), right ventricular outflow tract obstruction defects (OR 1.9; 95% CI 1.1 to 3.3), and pulmonary valve stenosis (OR 2.1; 95% CI 1.1 to 3.8).
We found evidence of associations between occupational exposure to solvents and several types of CHDs. These results should be interpreted in light of the potential for misclassification of exposure.
PMCID: PMC4472304  PMID: 22811060
congenital heart defects; occupational exposure; solvents
20.  Combining a Job-Exposure Matrix with Exposure Measurements to Assess Occupational Exposure to Benzene in a Population Cohort in Shanghai, China 
Annals of Occupational Hygiene  2011;56(1):80-91.
Generic job-exposure matrices (JEMs) are often used in population-based epidemiologic studies to assess occupational risk factors when only the job and industry information of each subject is available. JEM ratings are often based on professional judgment, are usually ordinal or semi-quantitative, and often do not account for changes in exposure over time. We present an empirical Bayesian framework that combines ordinal subjective JEM ratings with benzene measurements. Our aim was to better discriminate between job, industry, and time differences in exposure levels compared to using a JEM alone.
We combined 63 221 short-term area air measurements of benzene exposure (1954–2000) collected during routine health and safety inspections in Shanghai, China, with independently developed JEM intensity ratings for each job and industry using a mixed-effects model. The fixed-effects terms included the JEM intensity ratings for job and industry (both ordinal, 0–3) and a time trend that we incorporated as a b-spline. The random-effects terms included job (n = 33) and industry nested within job (n = 399). We predicted the benzene concentration in two ways: (i) a calibrated JEM estimate was calculated using the fixed-effects model parameters for calendar year and JEM intensity ratings; (ii) a job-/industry-specific estimate was calculated using the fixed-effects model parameters and the best linear unbiased predictors from the random effects for job and industry using an empirical Bayes estimation procedure. Finally, we applied the predicted benzene exposures to a prospective population-based cohort of women in Shanghai, China (n = 74 942).
Exposure levels were 13 times higher in 1965 than in 2000 and declined at a rate that varied from 4 to 15% per year from 1965 to 1985, followed by a small peak in the mid-1990s. The job-/industry-specific estimates had greater differences between exposure levels than the calibrated JEM estimates (97.5th percentile/2.5th percentile exposure level, BGR95B: 20.4 versus 3.0, respectively). The calibrated JEM and job-/industry-specific estimates were moderately correlated in any given year (Pearson correlation, rp = 0.58). We classified only those jobs and industries with a job or industry JEM exposure probability rating of 3 (>50% of workers exposed) as exposed. As a result, 14.8% of the subjects and 8.7% of the employed person-years in the study population were classified as benzene exposed. The cumulative exposure metrics based on the calibrated JEM and job-/industry-specific estimates were highly correlated (rp = 0.88).
We provide a useful framework for combining quantitative exposure data with expert-based exposure ratings in population-based studies that maximized the information from both sources. Our framework calibrated the ratings to a concentration scale between ratings and across time and provided a mechanism to estimate exposure when a job/industry group reported by a subject was not represented in the exposure database. It also allowed the job/industry groups’ exposure levels to deviate from the pooled average for their respective JEM intensity ratings.
PMCID: PMC3259038  PMID: 21976309
benzene; job-exposure matrix; mixed-effects models; retrospective exposure assessment
21.  Evaluation of exposure to contaminated drinking water and specific birth defects and childhood cancers at Marine Corps Base Camp Lejeune, North Carolina: a case–control study 
Environmental Health  2013;12:104.
Drinking water supplies at Marine Corps Base Camp Lejeune were contaminated with trichloroethylene, tetrachloroethylene, benzene, vinyl chloride and trans-1,2-dichloroethylene during 1968 through 1985.
We conducted a case control study to determine if children born during 1968–1985 to mothers with residential exposure to contaminated drinking water at Camp Lejeune during pregnancy were more likely to have childhood hematopoietic cancers, neural tube defects (NTDs), or oral clefts. For cancers, exposures during the first year of life were also evaluated. Cases and controls were identified through a survey of parents residing on base during pregnancy and confirmed by medical records. Controls were randomly sampled from surveyed participants who had a live birth without a major birth defect or childhood cancer. Groundwater contaminant fate and transport and distribution system models provided estimates of monthly levels of drinking water contaminants at mothers’ residences. Magnitude of odds ratios (ORs) was used to assess associations. Confidence intervals (CIs) were used to indicate precision of ORs. We evaluated parental characteristics and pregnancy history to assess potential confounding.
Confounding was negligible so unadjusted results were presented. For NTDs and average 1st trimester exposures, ORs for any benzene exposure and for trichloroethylene above 5 parts per billion were 4.1 (95% CI: 1.4-12.0) and 2.4 (95% CI: 0.6-9.6), respectively. For trichloroethylene, a monotonic exposure response relationship was observed. For childhood cancers and average 1st trimester exposures, ORs for any tetrachloroethylene exposure and any vinyl chloride exposure were 1.6 (95% CI: 0.5-4.8), and 1.6 (95% CI: 0.5-4.7), respectively. The study found no evidence suggesting any other associations between outcomes and exposures.
Although CIs were wide, ORs suggested associations between drinking water contaminants and NTDs. ORs suggested weaker associations with childhood hematopoietic cancers.
PMCID: PMC3880212  PMID: 24304547
Neural tube defects; Childhood cancers; Environmental epidemiology; Trichloroethylene; Water
22.  Enzymes induced by ethanol differently affect the pharmacokinetics of trichloroethylene and 1,1,1-trichloroethane. 
This study was undertaken to clarify the effect of enzymes induced by ethanol consumption on the pharmacokinetics of trichloroethylene (TRI, a highly metabolised substance) and 1,1,1-trichloroethane (1,1,1-TRI, a poorly metabolised substance). Rats maintained on a control liquid diet or a liquid diet containing ethanol (2 g/day/rat) for not less than three weeks were exposed to either TRI (50, 100, 500, and 1000 ppm) or 1,1,1-TRI (50, 100, and 500 ppm) by inhalation for six hours and the concentration of each compound in the blood and the urinary excretion of metabolites (trichloroethanol and trichloroacetic acid) were measured over several hours. Ethanol, which increased the in vitro metabolism of both compounds about fivefold, enhanced the in vivo metabolism of TRI only at high levels of exposure (marginally at 500 and considerably at 1000 ppm), whereas the metabolism of 1,1,1-TRI was enhanced at all concentrations tested. Moreover, there was a definite difference in the effect of induction of enzymes between the two solvents: the enhanced metabolism of TRI in vivo was shown by a decrease in the blood concentration of TRI as well as by an increase in the urinary excretion of its metabolites, whereas that of 1,1,1-TRI was shown by an increase in the urinary excretion of its metabolites alone. These results suggest that the induction of enzymes differentially affects the pharmacokinetics of TRI and 1,1,1-TRI in human occupational exposure: TRI metabolism may be increased only at concentrations much higher than the current occupational exposure limit (mostly 50 ppm), whereas 1,1,1-TRI metabolism may be increased at an exposure similar to occupational exposure.
PMCID: PMC1127915  PMID: 8111458
23.  Comparison of Ordinal and Nominal Classification Trees to Predict Ordinal Expert-Based Occupational Exposure Estimates in a Case–Control Study 
Annals of Occupational Hygiene  2014;59(3):324-335.
To evaluate occupational exposures in case–control studies, exposure assessors typically review each job individually to assign exposure estimates. This process lacks transparency and does not provide a mechanism for recreating the decision rules in other studies. In our previous work, nominal (unordered categorical) classification trees (CTs) generally successfully predicted expert-assessed ordinal exposure estimates (i.e. none, low, medium, high) derived from occupational questionnaire responses, but room for improvement remained. Our objective was to determine if using recently developed ordinal CTs would improve the performance of nominal trees in predicting ordinal occupational diesel exhaust exposure estimates in a case–control study.
We used one nominal and four ordinal CT methods to predict expert-assessed probability, intensity, and frequency estimates of occupational diesel exhaust exposure (each categorized as none, low, medium, or high) derived from questionnaire responses for the 14983 jobs in the New England Bladder Cancer Study. To replicate the common use of a single tree, we applied each method to a single sample of 70% of the jobs, using 15% to test and 15% to validate each method. To characterize variability in performance, we conducted a resampling analysis that repeated the sample draws 100 times. We evaluated agreement between the tree predictions and expert estimates using Somers’ d, which measures differences in terms of ordinal association between predicted and observed scores and can be interpreted similarly to a correlation coefficient.
From the resampling analysis, compared with the nominal tree, an ordinal CT method that used a quadratic misclassification function and controlled tree size based on total misclassification cost had a slightly better predictive performance that was statistically significant for the frequency metric (Somers’ d: nominal tree = 0.61; ordinal tree = 0.63) and similar performance for the probability (nominal = 0.65; ordinal = 0.66) and intensity (nominal = 0.65; ordinal = 0.65) metrics. The best ordinal CT predicted fewer cases of large disagreement with the expert assessments (i.e. no exposure predicted for a job with high exposure and vice versa) compared with the nominal tree across all of the exposure metrics. For example, the percent of jobs with expert-assigned high intensity of exposure that the model predicted as no exposure was 29% for the nominal tree and 22% for the best ordinal tree.
The overall agreements were similar across CT models; however, the use of ordinal models reduced the magnitude of the discrepancy when disagreements occurred. As the best performing model can vary by situation, researchers should consider evaluating multiple CT methods to maximize the predictive performance within their data.
PMCID: PMC4365762  PMID: 25433003
classification; diesel exhaust; occupational exposure; ordinal data; statistical learning
24.  Occupational exposure and sinonasal cancer: a systematic review and meta-analysis 
BMC Cancer  2015;15:49.
Sinonasal cancer (SNC) has been related to occupational exposures, but the relative risk associated to specific jobs and/or carcinogen exposures other than wood and leather dust is generally based on small or inadequate sample sizes and the range of observed estimates is large. This paper is aimed at investigating such relationship through a systematic review of the literature followed by a meta-analysis of studies meeting specific inclusion criteria.
Systematic search was made with PubMed, Google Scholar and Scopus engines using related keywords. Occupational exposures include wood and leather dust, formaldehyde, nickel and chromium compounds, textile industry, farming and construction. Meta-analysis of published studies after 1985 with a case-control or cohort design was performed, firstly using the fixed-effect model. Heterogeneity was assessed with the Q statistical test and quantified by the I2 index. When the heterogeneity hypothesis appeared relevant, the random-effect model was chosen. Sources of heterogeneity were explored using subgroup analyses.
Out of 63 reviewed articles, 28 (11 cohort, 17 case-control) were used in the meta-analysis. Heterogeneity among studies was observed and random-effects models were used. Exposure to wood dust results associated with SNC (RRpooled = 5.91, 95% CI: 4.31-8.11 for the case-control studies and 1.61, 95% CI: 1.10-2.37 for the cohort studies), as well as to leather dust (11.89, 95% CI: 7.69-18.36). The strongest associations are with adenocarcinomas (29.43, 95% CI: 16.46-52.61 and 35.26, 95% CI: 20.62-60.28 respectively). An increased risk of SNC for exposures to formaldehyde (1.68, 95% CI: 1.37-2.06 for the case control and 1.09, 95% CI: 0.66-1.79 for the cohort studies), textile industry (2.03, 95% CI: 1.47-2.8), construction (1.62, 95% CI: 1.11-2.36) and nickel and chromium compounds (18.0, 95% CI: 14.55-22.27) was found. Subset analyses identified several sources of heterogeneity and an exposure-response relationship was suggested for wood dust (p = 0.001).
By confirming the strength of association between occupational exposure to causal carcinogens and SNC risk, our results may provide indications to the occupational etiology of SNC (not only wood and leather dusts). Future studies could be focused on specific occupational groups to confirm causative agents and to define appropriate preventive measures.
Electronic supplementary material
The online version of this article (doi:10.1186/s12885-015-1042-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4339645  PMID: 25885319
Sinonasal cancer; Occupational exposure; Epidemiology; Meta-analysis; Systematic review
25.  Continuous Subcutaneous Insulin Infusion (CSII) Pumps for Type 1 and Type 2 Adult Diabetic Populations 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site,,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
The objective of this analysis is to review the efficacy of continuous subcutaneous insulin infusion (CSII) pumps as compared to multiple daily injections (MDI) for the type 1 and type 2 adult diabetics.
Clinical Need and Target Population
Insulin therapy is an integral component of the treatment of many individuals with diabetes. Type 1, or juvenile-onset diabetes, is a life-long disorder that commonly manifests in children and adolescents, but onset can occur at any age. It represents about 10% of the total diabetes population and involves immune-mediated destruction of insulin producing cells in the pancreas. The loss of these cells results in a decrease in insulin production, which in turn necessitates exogenous insulin therapy.
Type 2, or ‘maturity-onset’ diabetes represents about 90% of the total diabetes population and is marked by a resistance to insulin or insufficient insulin secretion. The risk of developing type 2 diabetes increases with age, obesity, and lack of physical activity. The condition tends to develop gradually and may remain undiagnosed for many years. Approximately 30% of patients with type 2 diabetes eventually require insulin therapy.
CSII Pumps
In conventional therapy programs for diabetes, insulin is injected once or twice a day in some combination of short- and long-acting insulin preparations. Some patients require intensive therapy regimes known as multiple daily injection (MDI) programs, in which insulin is injected three or more times a day. It’s a time consuming process and usually requires an injection of slow acting basal insulin in the morning or evening and frequent doses of short-acting insulin prior to eating. The most common form of slower acting insulin used is neutral protamine gagedorn (NPH), which reaches peak activity 3 to 5 hours after injection. There are some concerns surrounding the use of NPH at night-time as, if injected immediately before bed, nocturnal hypoglycemia may occur. To combat nocturnal hypoglycemia and other issues related to absorption, alternative insulins have been developed, such as the slow-acting insulin glargine. Glargine has no peak action time and instead acts consistently over a twenty-four hour period, helping reduce the frequency of hypoglycemic episodes.
Alternatively, intensive therapy regimes can be administered by continuous insulin infusion (CSII) pumps. These devices attempt to closely mimic the behaviour of the pancreas, continuously providing a basal level insulin to the body with additional boluses at meal times. Modern CSII pumps are comprised of a small battery-driven pump that is designed to administer insulin subcutaneously through the abdominal wall via butterfly needle. The insulin dose is adjusted in response to measured capillary glucose values in a fashion similar to MDI and is thus often seen as a preferred method to multiple injection therapy. There are, however, still risks associated with the use of CSII pumps. Despite the increased use of CSII pumps, there is uncertainty around their effectiveness as compared to MDI for improving glycemic control.
Part A: Type 1 Diabetic Adults (≥19 years)
An evidence-based analysis on the efficacy of CSII pumps compared to MDI was carried out on both type 1 and type 2 adult diabetic populations.
Research Questions
Are CSII pumps more effective than MDI for improving glycemic control in adults (≥19 years) with type 1 diabetes?
Are CSII pumps more effective than MDI for improving additional outcomes related to diabetes such as quality of life (QoL)?
Literature Search
Inclusion Criteria
Randomized controlled trials, systematic reviews, meta-analysis and/or health technology assessments from MEDLINE, EMBASE, CINAHL
Adults (≥ 19 years)
Type 1 diabetes
Study evaluates CSII vs. MDI
Published between January 1, 2002 – March 24, 2009
Patient currently on intensive insulin therapy
Exclusion Criteria
Studies with <20 patients
Studies <5 weeks in duration
CSII applied only at night time and not 24 hours/day
Mixed group of diabetes patients (children, adults, type 1, type 2)
Pregnancy studies
Outcomes of Interest
The primary outcomes of interest were glycosylated hemoglobin (HbA1c) levels, mean daily blood glucose, glucose variability, and frequency of hypoglycaemic events. Other outcomes of interest were insulin requirements, adverse events, and quality of life.
Search Strategy
The literature search strategy employed keywords and subject headings to capture the concepts of:
1) insulin pumps, and
2) type 1 diabetes.
The search was run on July 6, 2008 in the following databases: Ovid MEDLINE (1996 to June Week 4 2008), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2008 Week 26), OVID CINAHL (1982 to June Week 4 2008) the Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. A search update was run on March 24, 2009 and studies published prior to 2002 were also examined for inclusion into the review. Parallel search strategies were developed for the remaining databases. Search results were limited to human and English-language published between January 2002 and March 24, 2009. Abstracts were reviewed, and studies meeting the inclusion criteria outlined above were obtained. Reference lists were also checked for relevant studies.
Summary of Findings
The database search identified 519 relevant citations published between 1996 and March 24, 2009. Of the 519 abstracts reviewed, four RCTs and one abstract met the inclusion criteria outlined above. While efficacy outcomes were reported in each of the trials, a meta-analysis was not possible due to missing data around standard deviations of change values as well as missing data for the first period of the crossover arm of the trial. Meta-analysis was not possible on other outcomes (quality of life, insulin requirements, frequency of hypoglycemia) due to differences in reporting.
In studies where no baseline data was reported, the final values were used. Two studies (Hanaire-Broutin et al. 2000, Hoogma et al. 2005) reported a slight reduction in HbA1c of 0.35% and 0.22% respectively for CSII pumps in comparison to MDI. A slightly larger reduction in HbA1c of 0.84% was reported by DeVries et al.; however, this study was the only study to include patients with poor glycemic control marked by higher baseline HbA1c levels. One study (Bruttomesso et al. 2008) showed no difference between CSII pumps and MDI on Hba1c levels and was the only study using insulin glargine (consistent with results of parallel RCT in abstract by Bolli 2004). While there is statistically significant reduction in HbA1c in three of four trials, there is no evidence to suggest these results are clinically significant.
Mean Blood Glucose
Three of four studies reported a statistically significant reduction in the mean daily blood glucose for patients using CSII pump, though these results were not clinically significant. One study (DeVries et al. 2002) did not report study data on mean blood glucose but noted that the differences were not statistically significant. There is difficulty with interpreting study findings as blood glucose was measured differently across studies. Three of four studies used a glucose diary, while one study used a memory meter. In addition, frequency of self monitoring of blood glucose (SMBG) varied from four to nine times per day. Measurements used to determine differences in mean daily blood glucose between the CSII pump group and MDI group at clinic visits were collected at varying time points. Two studies use measurements from the last day prior to the final visit (Hoogma et al. 2005, DeVries et al. 2002), while one study used measurements taken during the last 30 days and another study used measurements taken during the 14 days prior to the final visit of each treatment period.
Glucose Variability
All four studies showed a statistically significant reduction in glucose variability for patients using CSII pumps compared to those using MDI, though one, Bruttomesso et al. 2008, only showed a significant reduction at the morning time point. Brutomesso et al. also used alternate measures of glucose variability and found that both the Lability index and mean amplitude of glycemic excursions (MAGE) were in concordance with the findings using the standard deviation (SD) values of mean blood glucose, but the average daily risk range (ADRR) showed no difference between the CSII pump and MDI groups.
Hypoglycemic Events
There is conflicting evidence concerning the efficacy of CSII pumps in decreasing both mild and severe hypoglycemic events. For mild hypoglycemic events, DeVries et al. observed a higher number of events per patient week in the CSII pump group than the MDI group, while Hoogma et al. observed a higher number of events per patient year in the MDI group. The remaining two studies found no differences between the two groups in the frequency of mild hypoglycemic events. For severe hypoglycemic events, Hoogma et al. found an increase in events per patient year among MDI patients, however, all of the other RCTs showed no difference between the patient groups in this aspect.
Insulin Requirements and Adverse Events
In all four studies, insulin requirements were significantly lower in patients receiving CSII pump treatment in comparison to MDI. This difference was statistically significant in all studies. Adverse events were reported in three studies. Devries et al. found no difference in ketoacidotic episodes between CSII pump and MDI users. Bruttomesso et al. reported no adverse events during the study. Hanaire-Broutin et al. found that 30 patients experienced 58 serious adverse events (SAEs) during MDI and 23 patients had 33 SAEs during treatment out of a total of 256 patients. Most events were related to severe hypoglycemia and diabetic ketoacidosis.
Quality of Life and Patient Preference
QoL was measured in three studies and patient preference was measured in one. All three studies found an improvement in QoL for CSII users compared to those using MDI, although various instruments were used among the studies and possible reporting bias was evident as non-positive outcomes were not consistently reported. Moreover, there was also conflicting results in two of the studies using the Diabetes Treatment Satisfaction Questionnaire (DTSQ). DeVries et al. reported no difference in treatment satisfaction between CSII pump users and MDI users while Brutomesso et al. reported that treatment satisfaction improved among CSII pump users.
Patient preference for CSII pumps was demonstrated in just one study (Hanaire-Broutin et al. 2000) and there are considerable limitations with interpreting this data as it was gathered through interview and 72% of patients that preferred CSII pumps were previously on CSII pump therapy prior to the study. As all studies were industry sponsored, findings on QoL and patient preference must be interpreted with caution.
Quality of Evidence
Overall, the body of evidence was downgraded from high to low due to study quality and issues with directness as identified using the GRADE quality assessment tool (see Table 1) While blinding of patient to intervention/control was not feasible in these studies, blinding of study personnel during outcome assessment and allocation concealment were generally lacking. Trials reported consistent results for the outcomes HbA1c, mean blood glucose and glucose variability, but the directness or generalizability of studies, particularly with respect to the generalizability of the diabetic population, was questionable as most trials used highly motivated populations with fairly good glycemic control. In addition, the populations in each of the studies varied with respect to prior treatment regimens, which may not be generalizable to the population eligible for pumps in Ontario. For the outcome of hypoglycaemic events the evidence was further downgraded to very low since there was conflicting evidence between studies with respect to the frequency of mild and severe hypoglycaemic events in patients using CSII pumps as compared to CSII (see Table 2). The GRADE quality of evidence for the use of CSII in adults with type 1 diabetes is therefore low to very low and any estimate of effect is, therefore, uncertain.
GRADE Quality Assessment for CSII pumps vs. MDI on HbA1c, Mean Blood Glucose, and Glucose Variability for Adults with Type 1 Diabetes
Inadequate or unknown allocation concealment (3/4 studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; No ITT analysis (2/4 studies); possible bias SMBG (all studies)
HbA1c: 3/4 studies show consistency however magnitude of effect varies greatly; Single study uses insulin glargine instead of NPH; Mean Blood Glucose: 3/4 studies show consistency however magnitude of effect varies between studies; Glucose Variability: All studies show consistency but 1 study only showed a significant effect in the morning
Generalizability in question due to varying populations: highly motivated populations, educational component of interventions/ run-in phases, insulin pen use in 2/4 studies and varying levels of baseline glycemic control and experience with intensified insulin therapy, pumps and MDI.
GRADE Quality Assessment for CSII pumps vs. MDI on Frequency of Hypoglycemic
Inadequate or unknown allocation concealment (3/4 studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; No ITT analysis (2/4 studies); possible bias SMBG (all studies)
Conflicting evidence with respect to mild and severe hypoglycemic events reported in studies
Generalizability in question due to varying populations: highly motivated populations, educational component of interventions/ run-in phases, insulin pen use in 2/4 studies and varying levels of baseline glycemic control and experience with intensified insulin therapy, pumps and MDI.
Economic Analysis
One article was included in the analysis from the economic literature scan. Four other economic evaluations were identified but did not meet our inclusion criteria. Two of these articles did not compare CSII with MDI and the other two articles used summary estimates from a mixed population with Type 1 and 2 diabetes in their economic microsimulation to estimate costs and effects over time. Included were English articles that conducted comparisons between CSII and MDI with the outcome of Quality Adjusted Life Years (QALY) in an adult population with type 1 diabetes.
From one study, a subset of the population with type 1 diabetes was identified that may be suitable and benefit from using insulin pumps. There is, however, limited data in the literature addressing the cost-effectiveness of insulin pumps versus MDI in type 1 diabetes. Longer term models are required to estimate the long term costs and effects of pumps compared to MDI in this population.
CSII pumps for the treatment of adults with type 1 diabetes
Based on low-quality evidence, CSII pumps confer a statistically significant but not clinically significant reduction in HbA1c and mean daily blood glucose as compared to MDI in adults with type 1 diabetes (>19 years).
CSII pumps also confer a statistically significant reduction in glucose variability as compared to MDI in adults with type 1 diabetes (>19 years) however the clinical significance is unknown.
There is indirect evidence that the use of newer long-acting insulins (e.g. insulin glargine) in MDI regimens result in less of a difference between MDI and CSII compared to differences between MDI and CSII in which older insulins are used.
There is conflicting evidence regarding both mild and severe hypoglycemic events in this population when using CSII pumps as compared to MDI. These findings are based on very low-quality evidence.
There is an improved quality of life for patients using CSII pumps as compared to MDI however, limitations exist with this evidence.
Significant limitations of the literature exist specifically:
All studies sponsored by insulin pump manufacturers
All studies used crossover design
Prior treatment regimens varied
Types of insulins used in study varied (NPH vs. glargine)
Generalizability of studies in question as populations were highly motivated and half of studies used insulin pens as the mode of delivery for MDI
One short-term study concluded that pumps are cost-effective, although this was based on limited data and longer term models are required to estimate the long-term costs and effects of pumps compared to MDI in adults with type 1 diabetes.
Part B: Type 2 Diabetic Adults
Research Questions
Are CSII pumps more effective than MDI for improving glycemic control in adults (≥19 years) with type 2 diabetes?
Are CSII pumps more effective than MDI for improving other outcomes related to diabetes such as quality of life?
Literature Search
Inclusion Criteria
Randomized controlled trials, systematic reviews, meta-analysis and/or health technology assessments from MEDLINE, Excerpta Medica Database (EMBASE), Cumulative Index to Nursing & Allied Health Literature (CINAHL)
Any person with type 2 diabetes requiring insulin treatment intensive
Published between January 1, 2000 – August 2008
Exclusion Criteria
Studies with <10 patients
Studies <5 weeks in duration
CSII applied only at night time and not 24 hours/day
Mixed group of diabetes patients (children, adults, type 1, type 2)
Pregnancy studies
Outcomes of Interest
The primary outcome of interest was a reduction in glycosylated hemoglobin (HbA1c) levels. Other outcomes of interest were mean blood glucose level, glucose variability, insulin requirements, frequency of hypoglycemic events, adverse events, and quality of life.
Search Strategy
A comprehensive literature search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, The Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published between January 1, 2000 and August 15, 2008. Studies meeting the inclusion criteria were selected from the search results. Data on the study characteristics, patient characteristics, primary and secondary treatment outcomes, and adverse events were abstracted. Reference lists of selected articles were also checked for relevant studies. The quality of the evidence was assessed as high, moderate, low, or very low according to the GRADE methodology.
Summary of Findings
The database search identified 286 relevant citations published between 1996 and August 2008. Of the 286 abstracts reviewed, four RCTs met the inclusion criteria outlined above. Upon examination, two studies were subsequently excluded from the meta-analysis due to small sample size and missing data (Berthe et al.), as well as outlier status and high drop out rate (Wainstein et al) which is consistent with previously reported meta-analyses on this topic (Jeitler et al 2008, and Fatourechi M et al. 2009).
The primary outcome in this analysis was reduction in HbA1c. Both studies demonstrated that both CSII pumps and MDI reduce HbA1c, but neither treatment modality was found to be superior to the other. The results of a random effects model meta-analysis showed a mean difference in HbA1c of -0.14 (-0.40, 0.13) between the two groups, which was found not to be statistically or clinically significant. There was no statistical heterogeneity observed between the two studies (I2=0%).
Forrest plot of two parallel, RCTs comparing CSII to MDI in type 2 diabetes
Secondary Outcomes
Mean Blood Glucose and Glucose Variability
Mean blood glucose was only used as an efficacy outcome in one study (Raskin et al. 2003). The authors found that the only time point in which there were consistently lower blood glucose values for the CSII group compared to the MDI group was 90 minutes after breakfast. Glucose variability was not examined in either study and the authors reported no difference in weight gain between the CSII pump group and MDI groups at the end of study. Conflicting results were reported regarding injection site reactions between the two studies. Herman et al. reported no difference in the number of subjects experiencing site problems between the two groups, while Raskin et al. reported that there were no injection site reactions in the MDI group but 15 such episodes among 8 participants in the CSII pump group.
Frequency of Hypoglycemic Events and Insulin Requirements
All studies reported that there were no differences in the number of mild hypoglycemic events in patients on CSII pumps versus MDI. Herman et al. also reported no differences in the number of severe hypoglycemic events in patients using CSII pumps compared to those on MDI. Raskin et al. reported that there were no severe hypoglycemic events in either group throughout the study duration. Insulin requirements were only examined in Herman et al., who found that daily insulin requirements were equal between the CSII pump and MDI treatment groups.
Quality of Life
QoL was measured by Herman et al. using the Diabetes Quality of Life Clinical Trial Questionnaire (DQOLCTQ). There were no differences reported between CSII users and MDI users for treatment satisfaction, diabetes impact, and worry-related scores. Patient satisfaction was measured in Raskin et al. using a patient satisfaction questionnaire, whose results indicated that patients in the CSII pump group had significantly greater improvement in overall treatment satisfaction at the end of the study compared to the MDI group. Although patient preference was also reported, it was only examined in the CSII pump group, thus results indicating a greater preference for CSII pumps in this groups (as compared to prior injectable insulin regimens) are biased and must be interpreted with caution.
Quality of Evidence
Overall, the body of evidence was downgraded from high to low according to study quality and issues with directness as identified using the GRADE quality assessment tool (see Table 3). While blinding of patient to intervention/control is not feasible in these studies, blinding of study personnel during outcome assessment and allocation concealment were generally lacking. ITT was not clearly explained in one study and heterogeneity between study populations was evident from participants’ treatment regimens prior to study initiation. Although trials reported consistent results for HbA1c outcomes, the directness or generalizability of studies, particularly with respect to the generalizability of the diabetic population, was questionable as trials required patients to adhere to an intense SMBG regimen. This suggests that patients were highly motivated. In addition, since prior treatment regimens varied between participants (no requirement for patients to be on MDI), study findings may not be generalizable to the population eligible for a pump in Ontario. The GRADE quality of evidence for the use of CSII in adults with type 2 diabetes is, therefore, low and any estimate of effect is uncertain.
GRADE Quality Assessment for CSII pumps vs. MDI on HbA1c Adults with Type 2 Diabetes
Inadequate or unknown allocation concealment (all studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; ITT not well explained in 1 of 2 studies
Indirect due to lack of generalizability of findings since participants varied with respect to prior treatment regimens and intensive SMBG suggests highly motivated populations used in trials.
Economic Analysis
An economic analysis of CSII pumps was carried out using the Ontario Diabetes Economic Model (ODEM) and has been previously described in the report entitled “Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario”, part of the diabetes strategy evidence series. Based on the analysis, CSII pumps are not cost-effective for adults with type 2 diabetes, either for the age 65+ sub-group or for all patients in general. Details of the analysis can be found in the full report.
CSII pumps for the treatment of adults with type 2 diabetes
There is low quality evidence demonstrating that the efficacy of CSII pumps is not superior to MDI for adult type 2 diabetics.
There were no differences in the number of mild and severe hypoglycemic events in patients on CSII pumps versus MDI.
There are conflicting findings with respect to an improved quality of life for patients using CSII pumps as compared to MDI.
Significant limitations of the literature exist specifically:
All studies sponsored by insulin pump manufacturers
Prior treatment regimens varied
Types of insulins used in study varied (NPH vs. glargine)
Generalizability of studies in question as populations may not reflect eligible patient population in Ontario (participants not necessarily on MDI prior to study initiation, pen used in one study and frequency of SMBG required during study was high suggesting highly motivated participants)
Based on ODEM, insulin pumps are not cost-effective for adults with type 2 diabetes either for the age 65+ sub-group or for all patients in general.
PMCID: PMC3377523  PMID: 23074525

Results 1-25 (1852649)