Search tips
Search criteria

Results 1-25 (1321247)

Clipboard (0)

Related Articles

1.  A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo 
Developmental biology  2009;329(2):410-421.
The current gene regulatory network (GRN) for the sea urchin embryo pertains to pregastrular specification functions in the endomesodermal territories. Here we extend gene regulatory network analysis to the adjacent oral and aboral ectoderm territories over the same period. A large fraction of the regulatory genes predicted by the sea urchin genome project and shown in ancillary studies to be expressed in either oral or aboral ectoderm by 24h are included, though universally expressed and pan-ectodermal regulatory genes are in general not. The loci of expression of these genes have been determined by whole mount in situ hybridization. We have carried out a global perturbation analysis in which expression of each gene was interrupted by introduction of morpholino antisense oligonucleotide, and the effects on all other genes were measured quantitatively, both by QPCR and by a new instrumental technology (NanoString Technologies nCounter Analysis System). At its current stage the network model, built in BioTapestry, includes 22 genes encoding transcription factors, 4 genes encoding known signaling ligands, and 3 genes that are yet unknown but are predicted to perform specific roles. Evidence emerged from the analysis pointing to distinctive subcircuit features observed earlier in other parts of the GRN, including a double negative transcriptional regulatory gate, and dynamic state lockdowns by feedback interactions. While much of the regulatory apparatus is downstream of Nodal signaling, as expected from previous observations, there are also cohorts of independently activated oral and aboral ectoderm regulatory genes, and we predict yet unidentified signaling interactions between oral and aboral territories.
PMCID: PMC2677136  PMID: 19268450
Sea urchin embryo ectoderm; Regulatory genes; Embryonic specification
2.  Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors 
EvoDevo  2013;4:33.
In sea urchin larvae the circumesophageal fibers form a prominent muscle system of mesodermal origin. Although the morphology and later development of this muscle system has been well-described, little is known about the molecular signature of these cells or their precise origin in the early embryo. As an invertebrate deuterostome that is more closely related to the vertebrates than other commonly used model systems in myogenesis, the sea urchin fills an important phylogenetic gap and provides a unique perspective on the evolution of muscle cell development.
Here, we present a comprehensive description of the development of the sea urchin larval circumesophageal muscle lineage beginning with its mesodermal origin using high-resolution localization of the expression of several myogenic transcriptional regulators and differentiation genes. A few myoblasts are bilaterally distributed at the oral vegetal side of the tip of the archenteron and first appear at the late gastrula stage. The expression of the differentiation genes Myosin Heavy Chain, Tropomyosin I and II, as well as the regulatory genes MyoD2, FoxF, FoxC, FoxL1, Myocardin, Twist, and Tbx6 uniquely identify these cells. Interestingly, evolutionarily conserved myogenic factors such as Mef2, MyoR and Six1/2 are not expressed in sea urchin myoblasts but are found in other mesodermal domains of the tip of the archenteron. The regulatory states of these domains were characterized in detail. Moreover, using a combinatorial analysis of gene expression we followed the development of the FoxF/FoxC positive cells from the onset of expression to the end of gastrulation. Our data allowed us to build a complete map of the Non-Skeletogenic Mesoderm at the very early gastrula stage, in which specific molecular signatures identify the precursors of different cell types. Among them, a small group of cells within the FoxY domain, which also express FoxC and SoxE, have been identified as plausible myoblast precursors. Together, these data support a very early gastrula stage segregation of the myogenic lineage.
From this analysis, we are able to precisely define the regulatory and differentiation signatures of the circumesophageal muscle in the sea urchin embryo. Our findings have important implications in understanding the evolution of development of the muscle cell lineage at the molecular level. The data presented here suggest a high level of conservation of the myogenic specification mechanisms across wide phylogenetic distances, but also reveal clear cases of gene cooption.
PMCID: PMC4175510  PMID: 24295205
Mesoderm; Muscle; Myogenic regulatory factor; Regulatory state; Myosin heavy chain; Forkhead; MyoD; Cooption
3.  Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus 
Developmental biology  2013;385(2):160-167.
Development depends on the precise control of gene expression in time and space. A critical step towards understanding the global gene regulatory networks underlying development is to obtain comprehensive information on gene expression. In this study, we measured expression profiles for the entire expressed gene set during sea urchin embryonic development. We confirmed the reliability of these profiles by comparison with NanoString measurements for a subset of genes and with literature values. The data show that ~16,500 genes have been activated by the end of embryogenesis, and for half of them the transcript abundance changes more than 10-fold during development. From this genome scale expression survey, we show that complex patterns of expression by many genes underlie embryonic development, particularly during the early stages before gastrulation. An intuitive web application for data query and visualization is presented to facilitate use of this large dataset.
PMCID: PMC3898891  PMID: 24291147
sea urchin; developmental transcriptome; RNA sequencing
4.  Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo 
eLife  null;3:e04664.
Dorsal/ventral (DV) patterning of the sea urchin embryo relies on a ventrally-localized organizer expressing Nodal, a pivotal regulator of the DV gene regulatory network. However, the inceptive mechanisms imposing the symmetry-breaking are incompletely understood. In Paracentrotus lividus, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, spatially facing and preceding the onset of nodal transcription. We report that Hbox12 misexpression provokes DV abnormalities, attenuating nodal and nodal-dependent transcription. Reciprocally, impairing hbox12 function disrupts DV polarity by allowing ectopic expression of nodal. Clonal loss-of-function, inflicted by blastomere transplantation or gene-transfer assays, highlights that DV polarization requires Hbox12 action in dorsal cells. Remarkably, the localized knock-down of nodal restores DV polarity of embryos lacking hbox12 function. Finally, we show that hbox12 is a dorsal-specific negative modulator of the p38-MAPK activity, which is required for nodal expression. Altogether, our results suggest that Hbox12 function is essential for proper positioning of the DV organizer.
eLife digest
Embryos begin as a collection of identical cells. As the embryo develops further, the cells in different regions must take on different structures and roles in order to form the complex tissues and organs seen in the fully developed organism. Therefore, a key task in early development is to inform cells where they are in a developing embryo. Signaling proteins released by special groups of organizing cells are responsible for providing the information about where a cell is located. Networks of genes controlled by these proteins then inform embryonic cells of where they are and what they should, or should not, become.
One such signaling protein is called Nodal, and is needed to perform a number of tasks in the developing embryo, including helping to form the basic tissues of the organism. Many animals depend on Nodal to develop correctly—from mice and humans, to zebrafish and sea urchins.
During sea urchin development, Nodal establishes where the mouth of a larva forms, setting up what is called the dorsal/ventral axis of the embryo; this separates the front and back of the embryo. To do so, the Nodal protein is mostly produced at the front of the embryo. Although much is already known about the network of genes that the Nodal protein controls, the genes and proteins that ensure that the initial source of Nodal is present at the right time and place are largely unknown.
Another protein called Hbox12 was also thought to be important for setting up the dorsal/ventral axis. Now, Cavalieri and Spinelli reveal that Hbox12 regulates Nodal during the development of a sea urchin embryo. In the early developing sea urchin, the gene that produces Hbox12 is activated in the region of the embryo that will become its back, directly opposite where Nodal is present. This activation normally occurs just before the gene that produces Nodal is turned on. If the hbox12 gene function is impaired, the Nodal protein is produced in both the front and the back sections of the embryo. Conversely, if Hbox12 is introduced into regions where Nodal is present, the amount of Nodal decreases. Furthermore, disrupting Hbox12 prevents any signs of the dorsal/ventral axis forming.
Cavalieri and Spinelli propose that Hbox12 inhibits the production of Nodal by briefly inactivating another protein that is required to activate the nodal gene. By doing so, Hbox12 sets up the dorsal/ventral axis by restricting Nodal to the cells that will make up the front half of the embryo.
Most complex organisms have asymmetric bodies, and failure to establish these body asymmetries can result in disease and other disorders in humans. Deciphering how the dorsal/ventral asymmetry in the sea urchin embryo is established should improve our understanding of how the mechanisms that form body shapes have evolved.
PMCID: PMC4273433  PMID: 25457050
dorsal/ventral polarity; symmetry breaking; homeodomain repressor; nodal; p38 MAPK; sea urchin embryo; other
5.  Ancestral Regulatory Circuits Governing Ectoderm Patterning Downstream of Nodal and BMP2/4 Revealed by Gene Regulatory Network Analysis in an Echinoderm 
PLoS Genetics  2010;6(12):e1001259.
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic (“ciliary band”) region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of “ciliary band” genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Author Summary
Echinoderms (sea urchins, starfish, etc.) are marine invertebrates that share a close ancestry with vertebrates. Their embryos offer many advantages for the analysis of transcriptional circuits that control developmental programs. During early development of the common sea urchin Paracentrotus lividus, a signaling center located within the ventral ectoderm sends two key signals, Nodal and BMP2/4, that control patterning of the embryo along the whole dorsal-ventral axis. How this signaling center works is not understood. We have conducted a large-scale functional analysis of the genes responsible for patterning of the ectoderm along the dorsal-ventral axis. We identified direct targets of Nodal and BMP2/4 and identified several key regulators that mediate the effects of these factors and drive essential and probably ancient regulatory circuits that together constitute a transcriptional program controlling morphogenesis of the embryo. In addition, we uncovered a striking parallel between the mouse embryo and the sea urchin embryo by showing that in both models a neurogenic ectoderm is the default state of ectoderm differentiation in the absence of Nodal and BMP signaling. Our results support the idea that inhibition of Nodal and BMP signaling was probably an ancient mechanism to specify neural cells in the ancestor of vertebrates.
PMCID: PMC3009687  PMID: 21203442
6.  Integration of Canonical and Noncanonical Wnt Signaling Pathways Patterns the Neuroectoderm Along the Anterior–Posterior Axis of Sea Urchin Embryos 
PLoS Biology  2013;11(1):e1001467.
Three different Wnt signaling pathways function to restrict the anterior neuroectoderm state to the anterior end of the sea urchin embryo, a mechanism of anterior fate restriction that could be conserved among deuterostomes.
Patterning the neuroectoderm along the anterior–posterior (AP) axis is a critical event in the early development of deuterostome embryos. However, the mechanisms that regulate the specification and patterning of the neuroectoderm are incompletely understood. Remarkably, the anterior neuroectoderm (ANE) of the deuterostome sea urchin embryo expresses many of the same transcription factors and secreted modulators of Wnt signaling, as does the early vertebrate ANE (forebrain/eye field). Moreover, as is the case in vertebrate embryos, confining the ANE to the anterior end of the embryo requires a Wnt/β-catenin-dependent signaling mechanism. Here we use morpholino- or dominant negative-mediated interference to demonstrate that the early sea urchin embryo integrates information not only from Wnt/β-catenin but also from Wnt/Fzl5/8-JNK and Fzl1/2/7-PKC pathways to provide precise spatiotemporal control of neuroectoderm patterning along its AP axis. Together, through the Wnt1 and Wnt8 ligands, they orchestrate a progressive posterior-to-anterior wave of re-specification that restricts the initial, ubiquitous, maternally specified, ANE regulatory state to the most anterior blastomeres. There, the Wnt receptor antagonist, Dkk1, protects this state through a negative feedback mechanism. Because these different Wnt pathways converge on the same cell fate specification process, our data suggest they may function as integrated components of an interactive Wnt signaling network. Our findings provide strong support for the idea that the sea urchin ANE regulatory state and the mechanisms that position and define its borders represent an ancient regulatory patterning system that was present in the common echinoderm/vertebrate ancestor.
Author Summary
The initial regulatory state of most cells in many deuterostome embryos, including those of vertebrates and sea urchins, supports anterior neural fate specification. It is important to restrict this neurogenic potential to the anterior end of the embryo during early embryogenesis, but the molecular mechanisms by which this re-specification of posterior fate occurs are incompletely understood in any embryo. The sea urchin embryo is ideally suited to study this process because, in contrast to vertebrates, anterior–posterior neuroectoderm patterning occurs independently of dorsal-ventral axis patterning and takes place before the complex cell movements of gastrulation. In this study, we show that a linked, three-step process involving at least three different Wnt signaling pathways provides precise spatiotemporal restriction of the anterior neuroectoderm regulatory state to the anterior end of the sea urchin embryo. Because these three pathways impinge on the same developmental process, they could be functioning as an integrated Wnt signaling network. Moreover, striking parallels among gene expression patterns and functional studies suggest that this mechanism of anterior fate restriction could be highly conserved among deuterostomes.
PMCID: PMC3545869  PMID: 23335859
7.  mRNA transcript quantification in archival samples using multiplexed, color-coded probes 
BMC Biotechnology  2011;11:46.
A recently developed probe-based technology, the NanoString nCounter™ gene expression system, has been shown to allow accurate mRNA transcript quantification using low amounts of total RNA. We assessed the ability of this technology for mRNA expression quantification in archived formalin-fixed, paraffin-embedded (FFPE) oral carcinoma samples.
We measured the mRNA transcript abundance of 20 genes (COL3A1, COL4A1, COL5A1, COL5A2, CTHRC1, CXCL1, CXCL13, MMP1, P4HA2, PDPN, PLOD2, POSTN, SDHA, SERPINE1, SERPINE2, SERPINH1, THBS2, TNC, GAPDH, RPS18) in 38 samples (19 paired fresh-frozen and FFPE oral carcinoma tissues, archived from 1997-2008) by both NanoString and SYBR Green I fluorescent dye-based quantitative real-time PCR (RQ-PCR). We compared gene expression data obtained by NanoString vs. RQ-PCR in both fresh-frozen and FFPE samples. Fresh-frozen samples showed a good overall Pearson correlation of 0.78, and FFPE samples showed a lower overall correlation coefficient of 0.59, which is likely due to sample quality. We found a higher correlation coefficient between fresh-frozen and FFPE samples analyzed by NanoString (r = 0.90) compared to fresh-frozen and FFPE samples analyzed by RQ-PCR (r = 0.50). In addition, NanoString data showed a higher mean correlation (r = 0.94) between individual fresh-frozen and FFPE sample pairs compared to RQ-PCR (r = 0.53).
Based on our results, we conclude that both technologies are useful for gene expression quantification in fresh-frozen or FFPE tissues; however, the probe-based NanoString method achieved superior gene expression quantification results when compared to RQ-PCR in archived FFPE samples. We believe that this newly developed technique is optimal for large-scale validation studies using total RNA isolated from archived, FFPE samples.
PMCID: PMC3103428  PMID: 21549012
8.  Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii 
EvoDevo  2012;3:19.
The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii.
Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms.
Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs) of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared ‘genetic toolkit’ central to the echinoderm gastrula, a key stage in embryonic development, though there are also differences that reflect changes in developmental processes.
The brittle star expresses genes representing all functional classes at the gastrula stage. Brittle stars and sea urchins have comparable numbers of each class of genes and share many of the genes expressed at gastrulation. Examination of the brittle star genes in which sea urchin orthologs are utilized in germ layer specification reveals a relatively higher level of conservation of key regulatory components compared to the overall transcriptome. We also identify genes that were either lost or whose temporal expression has diverged from that of sea urchins.
PMCID: PMC3492025  PMID: 22938175
Brittle star; Gene regulatory networks; Evolution; Transcriptome
9.  Gene Regulatory Network Interactions in Sea Urchin Endomesoderm Induction 
PLoS Biology  2009;7(2):e1000029.
A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm–gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell–GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFβ cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification.
Author Summary
In recent years, “gene regulatory networks” (GRNs) have provided integrated views of gene interactions that control biological processes. One of the earliest networks to be activated in the developing zygotes is the one controlling endomesoderm development. In the sea urchin, this network includes several subnetworks that function in adjacent tiers of cells that form the endoderm and mesoderm of the developing embryo. Although classic embryological manipulations have shown that the precursors of the embryonic skeleton induce endomesoderm fate in adjacent cells, the GRNs regulating this interaction are not understood. To investigate these networks, we ectopically activated a GRN that operates in skeletogenic precursors and characterized the responding GRN in neighboring cells, which adopt an endomesoderm fate. By testing the responsiveness of every core factor in the responding GRN, which allowed us to identify a subset that executes the response to the induction, we demonstrated that the signaling molecule, ActivinB, is an essential component of this induction and that its function is physiologically relevant: it is required during normal embryonic development to activate the same GRN that responds to signals from skeletogenic precursors. Furthermore, the network response to ActivinB signaling reveals greater complexity in an additional uncharacterized inductive signal emitted by skeletogenic precursors. Our results thus highlight how interacting GRNs can be used to understand a fundamental signaling process.
A classic embryonic induction in sea urchins is described in terms of interacting gene regulatory networks and a signal transduction system that connects them.
PMCID: PMC2634790  PMID: 19192949
10.  Barcoded DNA-Tag Reporters for Multiplex Cis-Regulatory Analysis 
PLoS ONE  2012;7(4):e35934.
Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of “barcoded" DNA-tag reporters, “Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs). The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics.
PMCID: PMC3339872  PMID: 22563420
11.  Differential stimulation of sea urchin early and late H2B histone gene expression by a gastrula nuclear extract after injection into Xenopus laevis oocytes. 
Molecular and Cellular Biology  1988;8(3):1236-1246.
Sea urchin early histone genes are active in preblastula embryos; late histone genes are maximally expressed during subsequent stages of embryogenesis. We used the Xenopus laevis oocyte to assay for trans-acting factors involved in this differential regulation. Sea urchin nuclear proteins were prepared by extracting gastrula-stage chromatin successively with 0.45, 1, and 2 M NaCl. We injected three fractions into oocytes along with plasmids bearing sea urchin early and late H2b histone genes. While neither the 0 to 0.45 M nor the 1 to 2 M salt fraction affected H2b gene expression, the 0.45 to 1 M salt fraction stimulated early and late H2b mRNA levels significantly. Late H2b gene expression was stimulated preferentially when the early and late genes were coinjected into the same oocytes. This extract did not stimulate the accumulation of transcripts of injected herpesvirus thymidine kinase genes or of the sea urchin Spec 1 gene, suggesting that the stimulatory activity is not a general transcription factor. We localized the DNA sequence required for the stimulatory effect to a region of the late H2b gene located between -43 and +62 relative to the transcription start site. A component of the 0.45 to 1 M salt wash fraction specifically bound to the 105-base-pair late gene DNA sequence and to the corresponding early gene fragment. The abundance of this binding activity decreased on a per genome basis during early development of the sea urchin.
PMCID: PMC363268  PMID: 3367908
12.  Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development. 
Molecular and Cellular Biology  1994;14(2):1402-1409.
Contiguous deoxyguanosine residues (G strings) have been implicated in regulation of gene expression in several organisms via the binding of G-string factors. Regulation of expression of the chicken adult beta-globin gene may involve the interplay between binding of an erythrocyte-specific G-string factor, BGP1, and the stability of a positioned nucleosome (C. D. Lewis, S. P. Clark, G. Felsenfeld, and H. Gould, Genes Dev. 2:863-873, 1988). We have purified a 59.5-kDa nuclear protein (suGF1) from sea urchin embryos by DNA affinity chromatography. suGF1 has high binding affinity and specificity for oligo(dG).oligo(dC). The identity of the purified protein was confirmed by renaturation of sequence-specific DNA-binding activity from a sodium dodecyl sulfate-polyacrylamide gel slice and by Southwestern (DNA-protein) blotting. suGF1 binds in vitro to a G11 string present in the H1-H4 intergenic region of a sea urchin early histone gene battery. This suGF1 DNA recognition site occurs within a homopurine-homopyrimidine stretch previously shown to be incorporated into a positioned nucleosome core in vitro. DNase I footprinting shows that suGF1 protects the same base pairs on the promoter of the chicken beta A-globin gene as does BGP1. We show that a G-string cis-regulatory element of a sea urchin cell lineage-specific gene LpS1 (M. Xiang, S.-Y. Lu, M. Musso, G. Karsenty, and W. H. Klein, Development 113:1345-1355, 1991) also represents a high-affinity recognition site for suGF1. suGF1 may be a member of a family of G-string factors involved in the regulation of expression of unrelated genes during development of a number of different organisms.
PMCID: PMC358495  PMID: 8289815
13.  Gene Expression, Single Nucleotide Variant and Fusion Transcript Discovery in Archival Material from Breast Tumors 
PLoS ONE  2013;8(11):e81925.
Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs) and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel) and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes) and ScriptSeq whole transcriptome protocols respectively, p<2x10-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988) between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads). Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol performed particularly well for lincRNA expression from FFPE libraries, but detection of eSNV and fusion transcripts was less sensitive.
PMCID: PMC3838386  PMID: 24278466
14.  Identification of a New Sea Urchin Ets Protein, SpEts4, by Yeast One-Hybrid Screening with the Hatching Enzyme Promoter 
Molecular and Cellular Biology  1999;19(2):1271-1278.
We report the use of a yeast one-hybrid system to isolate a transcriptional regulator of the sea urchin embryo hatching enzyme gene, SpHE. This gene is asymmetrically expressed along the animal-vegetal axis of sea urchin embryos under the cell-autonomous control of maternal regulatory activities and therefore provides an excellent entry point for understanding the mechanism that establishes animal-vegetal developmental polarity. To search for transcriptional regulators, we used a fragment of the SpHE promoter containing several individual elements instead of the conventional bait that contains a multimerized cis element. This screen yielded a number of positive clones that encode a new member of the Ets family, named SpEts4. This protein contains transcriptional activation activity, since expression of reporter genes in yeast does not depend on the presence of the yeast GAL4 activation domain. Sequences in the N-terminal region of SpEts4 mediate the activation activity, as shown by deletion or domain-swapping experiments. The newly identified DNA binding protein binds with a high degree of specificity to a SpHE promoter Ets element and forms a complex with a mobility identical to that obtained with 9-h sea urchin embryo nuclear extracts. SpEts4 positively regulates SpHE transcription, since mutation of the SpEts4 site in SpHE promoter transgenes reduces promoter activity in vivo while SpEts4 mRNA coinjection increases its output. As expected for a positive SpHE transcriptional regulator, the timing of SpEts4 gene expression precedes the transient expression of SpHE in the very early sea urchin blastula.
PMCID: PMC116056  PMID: 9891061
15.  A database of mRNA expression patterns for the sea urchin embryo 
Developmental biology  2006;300(1):476-484.
We present an initial characterization of a database that contains temporal expression profiles of sequences found in 35,282 gene predictions within the sea urchin genome. The relative RNA abundance for each sequence was determined at 5 key stages of development using high-density oligonucleotide microarrays that were hybridized with populations of polyA+ RNA sequence. These stages were two-cell, which represents maternal RNA, early blastula, the time at which major tissue territories are specified, early and late gastrula, during which important morphogenetic events occur, and the pluteus larva, which marks the culmination of pre-feeding embryogenesis. We provide evidence that the microarray reliably reports the temporal profiles for the large majority of predicted genes, as shown by comparison to data for many genes with known expression patterns. The sensitivity of this assay allows detection of mRNAs whose concentration is only several hundred copies/embryo. The temporal expression profiles indicate that 5% of the gene predictions encode mRNAs that are found only in the maternal population while 24% are embryo-specific. Further, we find that the concentration of >80% of different mRNAs is modulated by more than a factor of 3 during development. Along with the annotated sea urchin genome sequence and the whole-genome tiling array (the transcriptome, Samanta, M., Tongprasit, W., Istrrail, S., Cameron, R., Tu, Q., Davidson, E., Stolc, V., in press. A high-resolution transcriptome map of the sea urchin embryo. Science), this database proves a valuable resource for designing experiments to test the function of specific genes during development.
PMCID: PMC1762123  PMID: 17007833
Gene prediction; Microarray; Genscan
16.  Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples 
Acta Neuropathologica  2011;123(4):615-626.
The diagnosis of medulloblastoma likely encompasses several distinct entities, with recent evidence for the existence of at least four unique molecular subgroups that exhibit distinct genetic, transcriptional, demographic, and clinical features. Assignment of molecular subgroup through routine profiling of high-quality RNA on expression microarrays is likely impractical in the clinical setting. The planning and execution of medulloblastoma clinical trials that stratify by subgroup, or which are targeted to a specific subgroup requires technologies that can be economically, rapidly, reliably, and reproducibly applied to formalin-fixed paraffin embedded (FFPE) specimens. In the current study, we have developed an assay that accurately measures the expression level of 22 medulloblastoma subgroup-specific signature genes (CodeSet) using nanoString nCounter Technology. Comparison of the nanoString assay with Affymetrix expression array data on a training series of 101 medulloblastomas of known subgroup demonstrated a high concordance (Pearson correlation r = 0.86). The assay was validated on a second set of 130 non-overlapping medulloblastomas of known subgroup, correctly assigning 98% (127/130) of tumors to the appropriate subgroup. Reproducibility was demonstrated by repeating the assay in three independent laboratories in Canada, the United States, and Switzerland. Finally, the nanoString assay could confidently predict subgroup in 88% of recent FFPE cases, of which 100% had accurate subgroup assignment. We present an assay based on nanoString technology that is capable of rapidly, reliably, and reproducibly assigning clinical FFPE medulloblastoma samples to their molecular subgroup, and which is highly suited for future medulloblastoma clinical trials.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-011-0899-7) contains supplementary material, which is available to authorized users.
PMCID: PMC3306784  PMID: 22057785
Medulloblastoma; Molecular classification; Clinical trials; NanoString
17.  A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos 
Developmental Biology  2012;364(1):77-87.
In sea urchin embryos Delta signaling specifies non-skeletogenic mesoderm (NSM). Despite the identification of some direct targets, several aspects of Delta Notch (D/N) signaling remain supported only by circumstantial evidence. To obtain a detailed and more complete image of Delta function we followed a systems biology approach and evaluated the effects of D/N perturbation on expression levels of 205 genes up to gastrulation. This gene set includes virtually all transcription factors that are expressed in a localized fashion by mid-gastrulation, and which thus provide spatial regulatory information to the embryo. Also included are signaling factors and some pigment cell differentiation genes. We show that the number of pregastrular D/N signaling targets among these regulatory genes is small and is almost exclusively restricted to non-skeletogenic mesoderm genes. However, Delta signaling also activates foxY in the small micromeres. As is the early NSM, the small micromeres are in direct contact with Delta expressing skeletogenic mesoderm. In contrast, no endoderm regulatory genes are activated by Delta signaling even during the second phase of delta expression, when this gene is transcribed in NSM cells adjacent to the endoderm. During this phase Delta provides an ongoing input which continues to activate foxY expression in small micromere progeny. Disruption of the second phase of Delta expression specifically abolishes specification of late mesodermal derivatives such as the coelomic pouches to which the small micromeres contribute.
PMCID: PMC3294105  PMID: 22306924
Delta; Notch; DAPT; FoxY; Mesoderm; Coelomic Pouch; Pigment; Small Micromeres; Sea Urchin
18.  Patterning of the Dorsal-Ventral Axis in Echinoderms: Insights into the Evolution of the BMP-Chordin Signaling Network 
PLoS Biology  2009;7(11):e1000248.
Deciphering the process of dorsal-ventral patterning in the sea urchin reveals an extreme case of BMP translocation and an unusual configuration of the BMP-Chordin axis in echinoderms.
Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFβ Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient.
Author Summary
During early development of many organisms, patterning along the dorsal-ventral axis is regulated by the activities of two signaling centers located on the ventral and dorsal sides of the embryo. One of these centers produces growth factors of the BMP family that act as morphogens, whereas the other center secretes BMP antagonists such as Chordin that regulate the flow of BMPs along the dorsal-ventral axis. Expression from these two signaling centers results in roughly complementary distributions of BMP and BMP antagonist. We have analyzed BMP-mediated dorsal-ventral axis patterning in embryos of sea urchins, which are phylogenetically close to vertebrates and extensively rely on cell-cell interactions for their development. We found that in sea urchins, unlike in most organisms, the activity of a single signaling center located on the ventral side is responsible for generating both the ventral and the dorsal sides of the embryo. In addition, we discovered that the BMP2/4 gene is co-expressed with Chordin in this ventral center but that the BMP2/4 protein is translocated to the opposite side of the embryo where it activates the genetic program responsible for dorsal differentiation. Our study reveals an unusual example of signaling at a distance by a BMP growth factor. It also highlights that although the proteins used for dorsal-ventral patterning are evolutionarily conserved, there are considerable variations in the manner in which these proteins can be used in different species to generate a gradient of BMP morphogen.
PMCID: PMC2772021  PMID: 19956794
19.  Statistical Issues in the Design and Analysis of nCounter Projects 
Cancer Informatics  2014;13(Suppl 7):35-43.
Numerous statistical methods have been published for designing and analyzing microarray projects. Traditional genome-wide microarray platforms (such as Affymetrix, Illumina, and DASL) measure the expression level of tens of thousands genes. Since the sets of genes included in these array chips are selected by the manufacturers, the number of genes associated with a specific disease outcome is limited and a large portion of the genes are not associated. nCounter is a new technology by NanoString to measure the expression of a selected number (up to 800) of genes. The list of genes for nCounter chips can be selected by customers. Due to the limited number of genes and the price increase in the number of selected genes, the genes for nCounter chips are carefully selected among those discovered from previous studies, usually using traditional high-throughput platforms, and only a small number of definitely unassociated genes, called control genes, are included to standardize the overall expression level across different chips. Furthermore, nCounter chips measure the expression level of each gene using a counting observation while the traditional high-throughput platforms produce continuous observations. Due to these differences, some statistical methods developed for the design and analysis of high-throughput projects may need modification or may be inappropriate for nCounter projects. In this paper, we discuss statistical methods that can be used for designing and analyzing nCounter projects.
PMCID: PMC4266201  PMID: 25574131
censoring; false discovery rate; gradient lasso; permutation; proportional hazards model
20.  Experimentally Based Sea Urchin Gene Regulatory Network and the Causal Explanation of Developmental Phenomenology 
Gene regulatory networks for development underlie cell fate specification and differentiation. Network topology, logic and dynamics can be obtained by thorough experimental analysis. Our understanding of the gene regulatory network controlling endomesoderm specification in the sea urchin embryo has attained an advanced level such that it explains developmental phenomenology. Here we review how the network explains the mechanisms utilized in development to control the formation of dynamic expression patterns of transcription factors and signaling molecules. The network represents the genomic program controlling timely activation of specification and differentiation genes in the correct embryonic lineages. It can also be used to study evolution of body plans. We demonstrate how comparing the sea urchin gene regulatory network to that of the sea star and to that of later developmental stages in the sea urchin, reveals mechanisms underlying the origin of evolutionary novelty. The experimentally based gene regulatory network for endomesoderm specification in the sea urchin embryo provides unique insights into the system level properties of cell fate specification and its evolution.
PMCID: PMC2836836  PMID: 20228891
gene regulation in development; evolution; systems level properties
21.  A Multiplex Assay to Measure RNA Transcripts of Prostate Cancer in Urine 
PLoS ONE  2012;7(9):e45656.
The serum prostate-specific antigen (PSA) test has a high false positive rate. As a single marker, PSA provides limited diagnostic information. A multi-marker test capable of detecting not only tumors but also the potentially lethal ones provides an unmet clinical need. Using the nanoString nCounter gene expression system, a 20-gene multiplex test was developed based on digital gene counting of RNA transcripts in urine as a means to detect prostate cancer. In this test, voided urine is centrifuged to pellet cells and the purified RNA is amplified for hybridization to preselected probesets. Amplification of test cell line RNA appeared not to introduce significant bias, and the counts matched well with gene abundance levels as measured by DNA microarrays. For data analysis, the individual counts were compared to that of β2 microglobulin, a housekeeping gene. Urine samples of 5 pre-operative cases and 2 non-cancer were analyzed. Pathology information was then retrieved. Signals for a majority of the genes were low for non-cancer and low Gleason scores, and 6/6 known prostate cancer markers were positive in the cases. One case of Gleason 4+5 showed, in contrast, strong signals for all cancer-associated markers, including CD24. One non-cancer also showed signals for all 6 cancer markers, and this man might harbor an undiagnosed cancer. This multiplex test assaying a natural waste product can potentially be used for screening, early cancer detection and patient stratification. Diagnostic information is gained from the RNA signatures that are associated with cell types of prostate tumors.
PMCID: PMC3447789  PMID: 23029164
22.  RNA Deep Sequencing Reveals Differential MicroRNA Expression during Development of Sea Urchin and Sea Star 
PLoS ONE  2011;6(12):e29217.
microRNAs (miRNAs) are small (20–23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at
PMCID: PMC3247247  PMID: 22216218
23.  Comparison of the late H1 histone genes of the sea urchins Lytechinus pictus and Strongelocentrotus purpuratus. 
Nucleic Acids Research  1986;14(20):8121-8133.
We have isolated and sequenced a gene encoding a late H1 histone subtype from the sea urchin species L. pictus. The primary structure of the late H1 subtype encoded by this gene is 209 amino acids in length, and has a net positive charge of 67. This gene is present in a single copy per haploid genome and encodes an mRNA of 752 nucleotides. Late H1 transcripts are detected in the unfertilized egg and are most prevalent in gastrulating embryos. Comparison of 375 bp of 5' flanking sequences of the L. pictus late H1 gene and the H1-gamma gene of a distantly related sea urchin species, S. purpuratus, reveals large blocks of sequences that are identical between the two genes. To determine if these conserved 5' sequences are present in other members of the sea urchin H1 gene family, the analogous region of S. purpuratus H1-alpha, an early H1 gene, was sequenced. The homology between the flanking sequences of the early and late families was limited to consensus sequences which are found upstream of all H1 genes. The possible regulatory implications of these findings are discussed.
PMCID: PMC311839  PMID: 3022245
24.  Basic mechanisms of ovarian function: germ cells 
Recent work is reviewed on several molecular aspects of gene expression during oocyte maturation and early development. Several analyses have been carried out on protein synthesis patterns using the high resolution two-dimensional polyacrylamide gel electrophoresis technique. The protein pattern of some 400–500 spots in sea urchin oocytes before and just after fertilization are quite similar. By gastrula, major stage specific protein changes have been noted. In a similar study major protein changes are noted during the meiotic maturation process in mammals. With the use of the single-copy DNA hybridization technique, the quantitative levels of rare mRNA sequence expression have been determined during oogenesis and early development in the sea urchin model. The mature oocyte sequence set of some 37 × 106 nucleotides of information (or potentially 18,500 different proteins) is synthesized during oogenesis and slowly utilized during development. The sea urchin gastrula mRNA is predominantly synthesized by the embryo genome; however, essentially all those gastrula mRNA sequences can also be found in the mature oocyte (maternal) set. It is proposed by Hough-Evans et al. that this maternal sequence set, which is made during oogenesis and both utilized (translated in 10,000–20,000 proteins), and in part, continually synthesized by all stages of the embryo, plays a critical role in the morphogenic formation of a sea urchin embryo.
PMCID: PMC1637209  PMID: 17539137
25.  DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). 
Molecular and Cellular Biology  1995;15(5):2858-2871.
Pax-6 is known to be a key regulator of vertebrate eye development. We have now isolated cDNA for an invertebrate Pax-6 protein from sea urchin embryos. Transcripts of this gene first appear during development at the gastrula stage and are later expressed at high levels in the tube foot of the adult sea urchin. The sea urchin Pax-6 protein is highly homologous throughout the whole protein to its vertebrate counterpart with the paired domain and homeodomain being virtually identical. Consequently, we found that the DNA-binding and transactivation properties of the sea urchin and mouse Pax-6 proteins are very similar, if not identical. A potent activation domain capable of stimulating transcription from proximal promoter and distal enhancer positions was localized within the C-terminal sequences of both the sea urchin and mouse Pax-6 proteins. The homeodomain of Pax-6 was shown to cooperatively dimerize on DNA sequences consisting of an inverted repeat of the TAAT motif with a preferred spacing of 3 nucleotides. The consensus recognition sequence of the Pax-6 paired domain deviates primarily only at one position from that of BSAP (Pax-5), and yet the two proteins exhibit largely different binding specificities for individual, naturally occurring sites. By creating Pax-6-BSAP fusion proteins, we were able to identify a short amino acid stretch in the N-terminal part of the paired domain which is responsible for these differences in DNA-binding specificity. Mutation of three Pax-6-specific residues in this region (at positions 42, 44, and 47 of the paired domain) to the corresponding amino acids of BSAP resulted in a complete switch of the DNA-binding specificity from Pax-6 to BSAP. These three amino acids were furthermore shown to discriminate between the Pax-6- and BSAP-specific nucleotide at the divergent position of the two consensus recognition sequences.
PMCID: PMC230517  PMID: 7739566

Results 1-25 (1321247)