PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1555192)

Clipboard (0)
None

Related Articles

1.  The roles of Wnt signaling modulators Dickkopf-1 (Dkk1) and Dickkopf-2 (Dkk2) and cell maturation state in osteogenesis on microstructured titanium surfaces 
Biomaterials  2009;31(8):2015-2024.
Osteoblast differentiation on tissue culture polystyrene (TCPS) requires Wnt/beta-catenin signaling, regulating modulators of the Wnt pathway like Dickkopf-1 (Dkk1) and Dkk2. Osteoblast differentiation is increased on microstructured titanium (Ti) surfaces compared to TCPS; therefore, we hypothesized that surface topography and hydrophilicity affect Dkk1 and Dkk2 expression and that their roles in osteoblast differentiation on Ti differs depending on cell maturation state. Human osteoblast-like MG63 cells, normal human osteoblasts (HOBs), and human mesenchymal stem cells (MSCs), as well as MG63 cells stably silenced for Dkk1 or Dkk2 were grown for 6 days on TCPS and Ti surfaces (PT [Ra<0.2 μm], SLA [Ra = 4 μm], modSLA [hydrophilic-SLA]). Dkk1 and Dkk2 mRNA and protein increased on SLA and modSLA for all cell types, but exogenous rhDkk1 and rhDkk2 affected MSCs differently than MG63 cells and HOBs. Silencing Dkk1 reduced MG63 cell number on TCPS and PT, but increased differentiation on these substrates. Silencing Dkk2 reduced stimulatory effects of SLA and modSLA on osteoblast differentiation; Dkk2 but not Dkk1 restored these effects. Antibodies to Dkk1 or Dkk2 specifically blocked substrate-dependent changes caused by the proteins, demonstrating their autocrine action. This indicates major roles for Dkk1 and the canonical Wnt pathway in early-stage differentiation, and for Dkk2 and Wnt/Ca2+-dependent signaling in late-stage differentiation on microstructured and hydrophilic surfaces, during osseointegration.
doi:10.1016/j.biomaterials.2009.11.071
PMCID: PMC3618462  PMID: 20004015
Osseointegration; Titanium; Osteoblast; Mesenchymal stem cell; Surface roughness; Cell signaling
2.  Requirement for Both Micron and Submicron Scale Structure for Synergistic Responses of Osteoblasts to Substrate Surface Energy and Topography 
Biomaterials  2007;28(18):2821-2829.
Objective
Surface roughness and surface free energy are two important factors that regulate cell responses to biomaterials. Previous studies established that titanium substrates with micron-scale and submicron scale topographies promote osteoblast differentiation and osteogenic local factor production and that there is a synergistic response to microrough Ti surfaces that have retained their high surface energy via processing that limits hydrocarbon contamination. This study tested the hypothesis that the synergistic response of osteoblasts to these modified surfaces depends on both surface microstructure and surface energy.
Methods
Ti disks were manufactured to present three different surface structures: smooth pretreatment surfaces (PT) with Ra of 0.2 µm; acid-etched surfaces (A) with a submicron roughness Ra of 0.83 µm; and sandblasted/acid-etched surfaces (SLA) with Ra of 3–4 µm. Modified acid-etched (modA) and modified sandblasted/acid-etched (modSLA) titanium substrates, which have low contamination and present a hydroxylated/hydrated surface layer to retain high surface energy, were compared with regular low surface energy A and SLA surfaces. Human osteoblast-like MG63 cells were cultured on these substrates and their responses, including cell shape, growth, differentiation (alkaline phosphatase, osteocalcin), and local factor production (TGF-β1, PGE2, osteoprotegerin [OPG]) were analyzed (N=6 per variable). Data were normalized to cell number.
Results
There were no significant differences between smooth PT and A surfaces except for a small increase in OPG. Compared to A surfaces, MG63 cells produced 30% more osteocalcin on modA, and 70% more on SLA. However, growth on modSLA increased osteocalcin by more than 250%, which exceeded the sum of independent effects of surface energy and topography. Similar effects were noted when levels of latent TGF-β1, PGE2 and OPG were measured in the conditioned media.
Conclusions
The results demonstrate a synergistic effect between high surface energy and topography of Ti substrates and show that both micron scale and submicron scale structural features are necessary.
doi:10.1016/j.biomaterials.2007.02.024
PMCID: PMC2754822  PMID: 17368532
Titanium; Surface energy; Microstructure; Submicron roughness; Osteoblast differentiation
3.  The role of phospholipase D in osteoblast response to titanium surface microstructure 
Biomaterial surface properties such as microtopography and energy can change cellular responses at the cell-implant interface. Phospholipase D (PLD) is required for the differentiation of osteoblast-like MG63 cells on machined and grit-blasted titanium surfaces. Here, we determined if PLD is also required on microstructured/high-energy substrates and the mechanism involved. shRNAs for human PLD1 and PLD2 were used to silence MG63 cells. Wild-type and PLD1 or PLD1/2 silenced cells were cultured on smooth-pretreatment surfaces (PT); grit-blasted, acid-etched surfaces (SLA); and SLA surfaces modified to have higher surface energy (modSLA). PLD was inhibited with ethanol or activated with 24,25-dihydroxyvitamin-D3 [24R,25(OH)2D3]. As surface roughness/energy increased, PLD mRNA and activity increased, cell number decreased, osteocalcin and osteoprotegerin increased, and protein kinase C (PKC) and alkaline phosphatase specific activities increased. Ethanol inhibited PLD and reduced surface effects on these parameters. There was no effect on these parameters after knockdown of PLD1, but PLD1/2 double knockdown had effects comparable to PLD inhibition. 24R,25(OH)2D3 increased PLD activity and the production of osteocalcin and osteoprotegerin, but decreased cell number on the rough/high-energy surfaces. These results confirm that surface roughness/energy-induced PLD activity is required for osteoblast differentiation and that PLD2 is the main isoform involved in this pathway. PLD is activated by 24R,25(OH)2D3 in a surface-dependent manner and inhibition of PLD reduces the effects of surface microstructure/energy on PKC, suggesting that PLD mediates the stimulatory effect of microstructured/high-energy surfaces via PKC-dependent signaling.
doi:10.1002/jbm.a.32596
PMCID: PMC4287411  PMID: 19705469
phospholipase D; osteoblast differentiation; titanium surface microstructure and surface energy; vitamin D metabolites; mechanism of cell surface interaction
4.  Mediation of Osteogenic Differentiation of Human Mesenchymal Stem Cells on Titanium Surfaces by a Wnt-Integrin Feedback Loop 
Biomaterials  2011;32(27):6399-6411.
Peri-implant bone formation depends on the ability of mesenchymal cells to colonize the implant surface and differentiate into osteoblasts. Human mesenchymal stem cells (HMSCs) undergo osteoblastic differentiation on microstructured titanium (Ti) surfaces in the absence of exogenous factors, but the mechanisms are unknown. Wnt proteins are associated with an osteoblast phenotype, but how Wnt signaling regulates HMSC differentiation on microstructured Ti surfaces is not known. HMSCs were cultured on tissue culture polystyrene or Ti (PT [Sa=0.33μm, θ=96°], SLA [Sa=2.5μm, θ=132°], modSLA [hydrophilic-SLA]). Expression of calcium-dependent Wnt ligand WNT5A increased and canonical Wnt pathway ligands decreased on microstructured Ti in a time-dependent manner. Treatment of HMSCs with canonical ligand Wnt3a preserved the mesenchymal phenotype on smooth surfaces. Treatment with Wnt5a increased osteoblastic differentiation. Expression of integrins ITGA1, ITGA2, and ITGAV increased over time and correlated with increased WNT5A expression. Treatment of HMSCs with Wnt5a, but not Wnt3a, increased integrin expression. Regulation of integrin expression due to surface roughness and energy was ablated in WNT5A-knockdown HMSCs. This indicates that surface properties regulate stem cell fate and induce osteoblast differentiation via the Wnt calcium-dependent pathway. Wnt5a enhances osteogenesis through a positive feedback with integrins and local factor regulation, particularly though BMP signaling.
doi:10.1016/j.biomaterials.2011.05.036
PMCID: PMC3350791  PMID: 21636130
Cell signaling; Surface roughness; Titanium; Stem cell; Growth factors
5.  Microstructured Titanium Regulates Interleukin Production by Osteoblasts, an Effect Modulated by Exogenous BMP-2 
Acta biomaterialia  2012;9(3):5821-5829.
Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2μm), sandblasted/acid-etched (SLA, Ra=3.2μm), or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blocking Smad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol), or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration.
doi:10.1016/j.actbio.2012.10.030
PMCID: PMC3618455  PMID: 23123301
Microstructure; Inflammation; BMP (bone morphogenetic protein); Titanium
6.  Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro 
Clinical oral implants research  2011;23(3):301-307.
Objectives
The aim of this study was to analyse the influence of the microtopography and hydrophilicity of titanium (Ti) substrates on initial oral biofilm formation.
Materials and methods
Nine bacterial species belonging to the normal oral microbiota, including: Aggregatibacter actinomycetemcomitans, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus sanguinis were tested on Ti surfaces: pretreatment (PT [Ra<0.2 μm]), acid-etched (A [Ra<0.8 μm]), A modified to be hydrophilic (modA), sand-blasted/acid-etched (SLA [Ra = 4 μm]), and hydrophilic SLA (modSLA). Disks were incubated for 24 h in anaerobic conditions using a normal culture medium (CM) or human saliva (HS). The total counts of bacteria and the proportion of each bacterial species were analysed by checkerboard DNA–DNA hybridization. Results: Higher counts of bacteria were observed on all surfaces incubated with CM compared with the samples incubated with HS. PT, SLA, and modSLA exhibited higher numbers of attached bacteria in CM, whereas SLA and modSLA had a significant increase in bacterial adhesion in HS. The proportion of the species in the initial biofilms was also influenced by the surface properties and the media used: SLA and modSLA increased the proportion of species like A. actinomycetemcomitans and S. sanguinis in both media, while the adhesion of A. israelii and P. gingivalis on the same surfaces was affected in the presence of saliva.
Conclusions
The initial biofilm formation and composition were affected by the microtopography and hydrophilicity of the surface and by the media used.
doi:10.1111/j.1600-0501.2011.02184.x
PMCID: PMC4287405  PMID: 21492236
biofilm; hydrophilicity; microstructure; titanium
7.  Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces 
Acta biomaterialia  2011;7(6):2740-2750.
The Wnt signaling pathway inhibitor Dickkopf-2 (Dkk2) regulates osteoblast differentiation on microstructured titanium (Ti) surfaces, suggesting involvement of Wnt signaling in this process. To test this, human osteoblast-like MG63 cells were cultured on tissue culture polystyrene or Ti (smooth PT (Ra = 0.2 μm), sand-blasted and acid-etched SLA (Ra = 3.22 μm), modSLA (hydrophilic SLA)). Expression of Wnt pathway receptors, activators and inhibitors was measured by qPCR. Non-canonical pathway ligands, receptors and intracellular signaling molecules, as well as bone morphogenetic proteins BMP2 and BMP4, were upregulated on SLA and modSLA, whereas canonical pathway members were downregulated. To confirm that non-canonical signaling was involved, cells were cultured daily with exogenous Wnt3a (canonical pathway) or Wnt5a (non-canonical pathway). Alternatively, cells were cultured with antibodies to Wnt3a or Wnt5a to validate that Wnt proteins secreted by the cells were mediating cell responses to the surface. Wnt5a, but not Wnt3a, increased MG63 cell differentiation and BMP2 and BMP4 proteins, suggesting Wnt5a promotes osteogenic differentiation through production of BMPs. Effects of exogenous and endogenous Wnt5a were synergistic with surface microstructure, suggesting the response also depends on cell maturation state. These results indicate a major role for the non-canonical, calcium-dependent Wnt pathway in differentiation of osteoblasts on microstructured titanium surfaces during implant osseointegration.
doi:10.1016/j.actbio.2011.02.030
PMCID: PMC4287412  PMID: 21352958
Cell signaling; Titanium surface roughness; Osteoblast differentiation; Gene expression; Regulatory factors
8.  Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces 
BioMed Research International  2014;2014:452175.
This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.
doi:10.1155/2014/452175
PMCID: PMC4095730  PMID: 25057487
9.  Coordinated Regulation of Mesenchymal Stem Cell Differentiation on Microstructured Titanium Surfaces by Endogenous Bone Morphogenetic Proteins 
Bone  2014;0:208-216.
Human mesenchymal stem cells (MSCs) differentiate into osteoblasts on microstructured titanium (Ti) surfaces without addition of medium supplements, suggesting that surface-dependent endogenous mechanisms are involved. They produce bone morphogenetic proteins (BMPs), which regulate MSC differentiation and bone formation via autocrine/paracrine mechanisms that are modulated by changes in BMP mRNA and protein, receptors, and inhibitors (Noggin, Cerberus, Gremlin 1, and Chordin). We examined expression of BMPs, their receptors and their inhibitors over time and used BMP2-silenced cells to determine how modulating endogenous BMP signaling can affect the process. MSCs were cultured on tissue culture polystyrene or Ti [PT (Ra<0.4μm); sandblasted/acid-etched Ti (SLA, Ra=3.2μm); or hydrophilic-SLA (modSLA)]. BMP mRNAs and proteins increased by day 4 of culture. Exogenous BMP2 increased differentiation whereas differentiation was decreased in BMP2-silenced cells. Noggin was regulated by day 2 whereas Gremlin 1 and Cerberus were regulated after 6 days. Osteoblastic differentiation increased in cells cultured with blocking antibodies against Noggin, Gremlin 1, and Cerberus. Endogenous BMPs enhance an osteogenic microenvironment whereas exogenous BMPs are inhibitory. Antibody blocking of the BMP2 inhibitor Cerberus resulted in IL-6 and IL-8 levels that were similar to those observed when treating cells with exogenous BMP2, while antibodies targeting the inhibitors Gremlin or Noggin did not. These results suggest that microstructured titanium implants supporting therapeutic stem cells may be treated with appropriately selected agents antagonistic to extracellular BMP inhibitors in order to enhance BMP2 mediated bone repair while avoiding undesirable inflammatory side effects observed with exogenous BMP2 treatment.
doi:10.1016/j.bone.2014.12.057
PMCID: PMC4336815  PMID: 25554602
Stromal/Stem Cells; BMP signaling; Titanium; Implants; Surface roughness
10.  Dendritic Cell Responses to Surface Properties of Clinical Titanium Surfaces 
Acta biomaterialia  2010;7(3):1354-1363.
Dendritic cells (DCs) play pivotal roles in responding to foreign entities during an innate immune response and initiating effective adaptive immunity as well as maintaining immune tolerance. The sensitivity of DCs to foreign stimuli also makes them useful cells to assess the inflammatory response to biomaterials. Elucidating the material property-DC phenotype relationships using a well-defined biomaterial system is expected to provide criteria for immuno-modulatory biomaterial design. Clinical titanium (Ti) substrates, including pretreatment (PT), sand-blasted and acid-etched (SLA), and modified SLA (modSLA), with different roughness and surface energy were used to treat DCs and resulted in differential DC responses. PT and SLA induced a mature DC (mDC) phenotype, while modSLA promoted a non-inflammatory environment by supporting an immature DC (iDC) phenotype based on surface marker expression, cytokine production profiles and cell morphology. Principal component analysis (PCA) confirmed these experimental results, and it also indicated that the non-stimulating property of modSLA covaried with certain surface properties, such as high surface hydrophilicity, % oxygen and % Ti of the substrates. In addition to the previous research that demonstrated the superior osteogenic property of modSLA compared to PT and SLA, the result reported herein indicates that modSLA may further benefit implant osteo-integration by reducing local inflammation and its associated osteoclastogenesis.
doi:10.1016/j.actbio.2010.10.020
PMCID: PMC3031747  PMID: 20977948
dendritic cells; titanium; immune response; inflammation
11.  In vivo comparison between the effects of chemically modified hydrophilic and anodically oxidized titanium surfaces on initial bone healing 
Purpose
The aim of this study was to investigate the combined effects of physical and chemical surface factors on in vivo bone responses by comparing chemically modified hydrophilic sandblasted, large-grit, acid-etched (modSLA) and anodically oxidized hydrophobic implant surfaces.
Methods
Five modSLA implants and five anodized implants were inserted into the tibiae of five New Zealand white rabbits (one implant for each tibia). The characteristics of each surface were determined using field emission scanning electron microscopy, energy dispersive spectroscopy, and confocal laser scanning microscopy before the installation. The experimental animals were sacrificed after 1 week of healing and histologic slides were prepared from the implant-tibial bone blocks removed from the animals. Histomorphometric analyses were performed on the light microscopic images, and bone-to-implant contact (BIC) and bone area (BA) ratios were measured. Nonparametric comparison tests were applied to find any significant differences (P<0.05) between the modSLA and anodized surfaces.
Results
The roughness of the anodized surface was 1.22 ± 0.17 µm in Sa, which was within the optimal range of 1.0-2.0 µm for a bone response. The modSLA surface was significantly rougher at 2.53 ± 0.07 µm in Sa. However, the modSLA implant had significantly higher BIC than the anodized implant (P=0.02). Furthermore, BA ratios did not significantly differ between the two implants, although the anodized implant had a higher mean value of BA (P>0.05).
Conclusions
Within the limitations of this study, the hydrophilicity of the modSLA surface may have a stronger effect on in vivo bone healing than optimal surface roughness and surface chemistry of the anodized surface.
Graphical Abstract
doi:10.5051/jpis.2015.45.3.94
PMCID: PMC4485065  PMID: 26131369
Animal experimentation; Dental implants; Histology; Osseointegration
12.  Use of polyelectrolyte thin films to modulate Osteoblast response to microstructured titanium surfaces 
Biomaterials  2012;33(21):5267-5277.
The microstructure and wettability of titanium (Ti) surfaces directly impact osteoblast differentiation in vitro and in vivo. These surface properties are important variables that control initial interactions of an implant with the physiological environment, potentially affecting osseointegration. The objective of this study was to use polyelectrolyte thin films to investigate how surface chemistry modulates response of human MG63 osteoblast-like cells to surface microstructure. Three polyelectrolytes, chitosan, poly(l-glutamic acid), and poly(l-lysine), were used to coat Ti substrates with two different microtopographies (PT, Sa = 0.37 µm and SLA, Sa = 2.54 µm). The polyelectrolyte coatings significantly increased wettability of PT and SLA without altering micron-scale roughness or morphology of the surface. Enhanced wettability of all coated PT surfaces was correlated with increased cell numbers whereas cell number was reduced on coated SLA surfaces. Alkaline phosphatase specific activity was increased on coated SLA surfaces than on uncoated SLA whereas no differences in enzyme activity were seen on coated PT compared to uncoated PT. Culture on chitosan-coated SLA enhanced osteocalcin and osteoprotegerin production. Integrin expression on smooth surfaces was sensitive to surface chemistry, but microtexture was the dominant variable in modulating integrin expression on SLA. These results suggest that surface wettability achieved using different thin films has a major role in regulating osteoblast response to Ti, but this is dependent on the microtexture of the substrate.
doi:10.1016/j.biomaterials.2012.03.074
PMCID: PMC3618464  PMID: 22541354
Wettability; Titanium; Surface roughness; Osteoblast
13.  The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors 
Biomaterials  2012;33(30):7386-7393.
Microtexture and chemistry of implant surfaces are important variables for modulating cellular responses. Surface chemistry and wettability are connected directly. While each of these surface properties can influence cell response, it is difficult to decouple their specific contributions. To address this problem, the aims of this study were to develop a surface wettability gradient with a specific chemistry without altering micron scale roughness and to investigate the role of surface wettability on osteoblast response. Microtextured sandblasted/acid-etched (SLA, Sa = 3.1 μm) titanium disks were treated with oxygen plasma to increase reactive oxygen density on the surface. At 0, 2, 6, 10, and 24 h after removing them from the plasma, the surfaces were coated with chitosan for 30 min, rinsed and dried. Modified SLA surfaces are denoted as SLA/h in air prior to coating. Surface characterization demonstrated that this process yielded differing wettability (SLA0 < SLA2 < SLA10 < SLA24) without modifying the micron scale features of the surface. Cell number was reduced in a wettability-dependent manner, except for the most water-wettable surface, SLA24. There was no difference in alkaline phosphatase activity with differing wettability. Increased wettability yielded increased osteocalcin and osteoprotegerin production, except on the SLA24 surfaces. mRNA for integrins α1, α2, α5, β1, and β3 was sensitive to surface wettability. However, surface wettability did not affect mRNA levels for integrin α3. Silencing β1 increased cell number with reduced osteocalcin and osteoprotegerin in a wettability-dependent manner. Surface wettability as a primary regulator enhanced osteoblast differentiation, but integrin expression and silencing β1 results indicate that surface wettability regulates osteoblast through differential integrin expression profiles than microtexture does. The results may indicate that both microtexture and wettability with a specific chemistry have important regulatory effects on osseointegration. Each property had different effects, which were mediated by different integrin receptors.
doi:10.1016/j.biomaterials.2012.06.066
PMCID: PMC3781581  PMID: 22835642
Wettability; Oxygen plasma; Chitosan; Titanium; Osteoblast; Integrin
14.  Role of α2β1 Integrins in Mediating Cell Shape on Microtextured Titanium Surfaces 
Surface microroughness plays an important role in determining osteoblast behavior on titanium. Previous studies have shown that osteoblast differentiation on microtextured titanium substrates is dependent on alpha-2 beta-1 (α2β1) integrin signaling. This study used focused ion beam (FIB) milling and scanning electron microscopy (SEM), combined with 3D image reconstruction, to investigate early interactions of individual cells with their substrate and the role of integrin α2β1 in determining cell shape. MG63 osteoblast-like cells on sand blasted/acid etched (SLA) Ti surfaces after 3 days of culturing indicated decreased cell number, increased cell differentiation, and increased expression of mRNA levels for α1, α2, αV and β1 integrin subunits compared to cells on smooth Ti (PT) surfaces. α2 or β1 silenced cells exhibited increased cell number and decreased differentiation on SLA compared to wild type cells. Wild type cells on SLA possessed an elongated morphology with reduced cell area, increased cell thickness, and more apparent contact points. Cells on PT exhibited greater spreading and were relatively flat. Silenced cells possessed a morphology and phenotype similar to wild type cells grown on PT. These observations indicate that surface microroughness affects cell response via α2β1 integrin signaling, resulting in a cell shape that promotes osteoblastic differentiation.
doi:10.1002/jbm.a.35185
PMCID: PMC4198529  PMID: 24733736
osteoblast; surface microroughness; 3D reconstruction; focused ion beam; α2β1 integrin; cell morphology
15.  Osteoblast Maturation and New Bone Formation in Response to Titanium Implant Surface Features are Reduced with Age 
The surface properties of materials contribute to host cellular response and play a significant role in determining the overall success or failure of an implanted biomaterial. Rough titanium (Ti) surface microtopography and high surface free energy have been shown to enhance osteoblast maturation in vitro and increase bone formation in vivo. While the surface properties of Ti are known to affect osteoblast response, host bone quality also plays a significant role in determining successful osseointegration. One factor affecting host bone quality is patient age. We examined both in vitro and in vivo whether response to Ti surface features was affected by animal age. Calvarial osteoblasts isolated from 1-, 3-, and 11-month-old rats all displayed a reduction in cell number and increases in alkaline phosphatase specific activity and osteocalcin in response to increasing Ti surface microtopography and surface energy. Further, osteoblasts from the three ages examined displayed increased production of osteocalcin and local factors osteoprotegerin, VEGF-A, and active TGF-β1 in response to increasing Ti surface roughness and surface energy. Latent TGF-β1 only increased in cultures of osteoblasts from 1- and 3-month-old rats. Treatment with the systemic osteotropic hormone 1α,25(OH)2D3 further enhanced the response of osteoblasts to Ti surface features for all three age groups. However, osteoblasts derived from 11-month-old animals had a reduced response to 1α,25(OH)2D3 as compared to osteoblasts derived from 1-or 3-month-old animals. These results were confirmed in vivo. Ti implants placed in the femoral intramedullary canal of old (9-month) mice yielded lower bone-to-implant contract and neovascularization in response to Ti surface roughness and energy compared to younger (2-month) mice. These results show that rodent osteoblast maturation in vitro as well as new bone formation in vivo is reduced with age. Whether comparable age differences exist in humans needs to be determined.
doi:10.1002/jbmr.1628
PMCID: PMC3835587  PMID: 22492532
16.  Sex dependent regulation of osteoblast response to implant surface properties by systemic hormones 
Background
Osseointegration depends on the implant surface, bone quality and the local and systemic host environment, which can differ in male and female patients. This study was undertaken in order to determine if male and female cells respond differently to titanium surfaces that have micron-scale roughness and if interactions of calciotropic hormones [1α,25(OH)2D3 and 17β-oestradiol (E2)] and microstructured surfaces on osteoblasts are sex dependent.
Methods
Osteoblasts from 6-week old Sprague-Dawley rats were cultured on tissue culture polystyrene (TCPS) or on titanium (Ti) disks with two different surface topographies, a smooth pretreated (PT) surface and a coarse grit-blasted/acid-etched (SLA) surface, and treated with 1α,25(OH)2D3, E2, or E2 conjugated to bovine serum albumin (E2-BSA).
Results
Male and female cells responded similarly to Ti microstructure with respect to cell number and levels of osteocalcin, transforming growth factor-β1, osteoprotegerin and prostaglandin E2 in their conditioned media, exhibiting a more differentiated phenotype on SLA than on PT or TCPS. E2 and E2-BSA increased differentiation and local factor production, an effect that was microstructure dependent and found only in female osteoblasts. 1α,25(OH)2D3 increased osteoblast differentiation and local factor production in female and male cells, but the effect was more robust in male cells.
Conclusions
Male and female rat osteoblasts respond similarly to surface microstructure but exhibit sexual dimorphism in substrate-dependent responses to systemic hormones. Oestrogen affected only female cells while 1α,25(OH)2D3 had a greater effect on male cells. These results suggest that successful osseointegration in males and females may depend on the implant surface design and correct levels of calciotropic hormones.
doi:10.1186/2042-6410-1-4
PMCID: PMC3010104  PMID: 21208469
17.  Mechanisms Regulating Increased Production of Osteoprotegerin by Osteoblasts Cultured on Microstructured Titanium Surfaces 
Biomaterials  2009;30(20):3390-3396.
Osteoblasts grown on microstructured Ti surfaces enhance osteointegration by producing local factors that regulate bone formation as well as bone remodeling, including the RANK ligand decoy receptor osteoprotegerin (OPG). The objective of this study was to explore the mechanism by which surface microstructure and surface energy mediate their stimulatory effects on OPG expression. Titanium disks were manufactured to present different surface morphologies: a smooth pretreatment surface (PT, Ra<0.2μm), microstructured sandblasted/acid etched surface (SLA, Ra=3-4μm), and a microstructured Ti plasma-sprayed surface (TPS, Ra=4μm). Human osteoblast-like MG63 cells were cultured on these substrates and the regulation of OPG production by TGF-β1, PKC, and α2β1 integrin signaling determined. Osteoblasts produced increased amounts of OPG as well as active and latent TGF-β1 and had increased PKC activity when grown on SLA and TPS. Exogenous TGF-β1 increased OPG production in a dose-dependent manner on all surfaces, and this was prevented by adding blocking antibody to the TGF-β type II receptor or by reducing TGF-β1 binding to the receptor by adding exogenous soluble type II receptor. The PKC inhibitor chelerythrine inhibited the production of OPG in a dose-dependent manner, but only in cultures on SLA and TPS. shRNA knockdown of α2 or a double knockdown of α2β1 also reduced OPG, as well as production of TGF-β1. These results indicate that substrate dependent OPG production is regulated by TGF-β1, PKC, and α2β1 and suggest a mechanism by which α2β1-signaling increases PKC, resulting in TGF-β1 production and TGF-β1 then acts on its receptor to increase transcription of OPG.
doi:10.1016/j.biomaterials.2009.03.047
PMCID: PMC2700751  PMID: 19395022
Osteoblast; TGF-β1; Osteoprotegerin; Titanium; Microtopography
18.  Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein 
PLoS ONE  2016;11(4):e0153978.
Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both physisorption and covalent coupling of BSP are similarly effective, feasible methods, although a higher BSP concentration is recommended.
doi:10.1371/journal.pone.0153978
PMCID: PMC4844107  PMID: 27111551
19.  Regulation of Osteoblast Differentiation by Acid-Etched and/or Grit-Blasted Titanium Substrate Topography Is Enhanced by 1,25(OH)2D3 in a Sex-Dependent Manner 
BioMed Research International  2015;2015:365014.
This study assessed contributions of micron-scale topography on clinically relevant titanium (Ti) to differentiation of osteoprogenitor cells and osteoblasts; the interaction of this effect with 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3); and if the effects are sex-dependent. Male and female rat bone marrow cells (BMCs) were cultured on acid-etched (A, Ra = 0.87 μm), grit-blasted (GB, Ra = 3.90 μm), or grit-blasted/acid-etched (SLA, Ra = 3.22 μm) Ti. BMCs were sensitive to surface topography and underwent osteoblast differentiation. This was greatest on SLA; acid etching and grit blasting contributed additively. Primary osteoblasts were also sensitive to SLA, with less effect from individual structural components, demonstrated by enhanced local factor production. Sex-dependent responses of BMCs to topography varied with parameter whereas male and female osteoblasts responded similarly to surface treatment. 1α,25(OH)2D3 enhanced cell responses on all surfaces similarly. Effects were sex-dependent and male cells grown on a complex microstructured surface were much more sensitive than female cells. These results indicate that effects of the complex SLA topography are greater than acid etching or grit blasting alone on multipotent BMCs and committed osteoblasts and that individual parameters are sex-specific. The effect of 1α,25(OH)2D3 was sex dependent. The results also suggest that levels of 1α,25(OH)2D3 in the patient may be important in osseointegration.
doi:10.1155/2015/365014
PMCID: PMC4402479  PMID: 25945332
20.  Role of integrin α2β1 in mediating osteoblastic differentiation on three-dimensional titanium scaffolds with submicron-scale texture 
Hierarchical surface roughness of titanium and titanium alloy implants plays an important role in osseointegration. In vitro and in vivo studies show greater osteoblast differentiation and bone formation when implants have submicron-scale textured surfaces. In this study, we tested the potential benefit of combining a submicron-scale textured surface with three-dimensional (3D) structure on osteoblast differentiation and the involvement of an integrin-driven mechanism. 3D titanium scaffolds were made using orderly oriented titanium meshes and microroughness was added to the wire surface by acid-etching. MG63 and human osteoblasts were seeded on 3D scaffolds and 2D surfaces with or without acid etching. At confluence, increased osteocalcin, vascular endothelial growth factor, osteoprotegerin (OPG), and alkaline phosphatase (ALP) activity were observed in MG63 and human osteoblasts on 3D scaffolds in comparison to 2D surfaces at the protein level, indicating enhanced osteoblast differentiation. To further investigate the mechanism of osteoblast-3D scaffold interaction, the role of integrin α2β1 was examined. The results showed β1 and α2β1 integrin silencing abolished the increase in osteoblastic differentiation markers on 3D scaffolds. Time course studies showed osteoblasts matured faster in the 3D environment in the early stage of culture, while as cells proliferated, the maturation slowed down to a comparative level as 2D surfaces. After 12 days of postconfluent culture, osteoblasts on 3D scaffolds showed a second-phase increase in ALP activity. This study shows that osteoblastic differentiation is improved on 3D scaffolds with submicron-scale texture and is mediated by integrin α2β1.
doi:10.1002/jbm.a.35323
PMCID: PMC4362998  PMID: 25203434
titanium surface properties; 3D; mesh; osteoblast differentiation
21.  A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA 
PLoS Medicine  2008;5(5):e94.
Background
Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells.
Methods and Findings
Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the tumors did not respond to interferon (IFN)α therapy at all. We showed that stable silencing of endogenous vegf mRNA in HCT116 cells enhanced both STAT1 expression and IFNα responses.
Conclusions
These findings suggest that cancer cells have a survival system that is regulated by vegf mRNA and imply that both vegf mRNA and its protein may synergistically promote the malignancy of tumor cells. Therefore, combination of anti-vegf transcript strategies, such as siRNA-based gene silencing, with anti-VEGF antibody treatment may improve anti-cancer therapies that target VEGF.
Shigetada Teshima-Kondo and colleagues find that cancer cells have a survival system that is regulated by vegf mRNA and that vegf mRNA and its protein may synergistically promote the malignancy of tumor cells.
Editors' Summary
Background
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. When a cancer is small, it uses the body's existing blood supply to get the oxygen and nutrients it needs for its growth and survival. But, when it gets bigger, it has to develop its own blood supply. This process is called angiogenesis. It involves the release by the cancer cells of proteins called growth factors that bind to other proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels). The receptors then send signals into the endothelial cells that tell them to make new blood vessels. One important angiogenic growth factor is “vascular endothelial growth factor” (VEGF). Tumors that make large amounts of VEGF tend to be more abnormal and more aggressive than those that make less VEGF. In addition, high levels of VEGF in the blood are often associated with poor responses to chemotherapy, drug regimens designed to kill cancer cells.
Why Was This Study Done?
Because VEGF is a key regulator of tumor development, several anti-VEGF therapies—drugs that target VEGF and its receptors—have been developed. These therapies strongly suppress the growth of tumor cells in the laboratory and in animals but, when used alone, are no better at increasing the survival times of patients with cancer than standard chemotherapy. Scientists are now looking for an explanation for this disappointing result. Like all proteins, cells make VEGF by “transcribing” its DNA blueprint into an mRNA copy (vegf mRNA), the coding region of which is “translated” into the VEGF protein. Other, “noncoding” regions of vegf mRNA control when and where VEGF is made. Scientists have recently discovered that the noncoding regions of some mRNAs suppress tumor development. In this study, therefore, the researchers investigate whether vegf mRNA has an unrecognized function in tumor cells that could explain the disappointing clinical results of anti-VEGF therapeutics.
What Did the Researchers Do and Find?
The researchers first used a technique called small interfering (si) RNA knockdown to stop VEGF expression in human colon cancer cells growing in dishes. siRNAs are short RNAs that bind to and destroy specific mRNAs in cells, thereby preventing the translation of those mRNAs into proteins. The treatment of human colon cancer cells with vegf-targeting siRNAs made the cells more sensitive to chemotherapy-induced apoptosis (a type of cell death). This sensitivity was only partly reversed by adding VEGF to the cells. By contrast, cancer cells engineered to make more vegf mRNA had increased resistance to chemotherapy-induced apoptosis. Treatment of these cells with an antibody that inhibited VEGF function did not completely block this resistance. Together, these results suggest that both vegf mRNA and VEGF protein have anti-apoptotic effects. The researchers show that the anti-apoptotic activity of vegf mRNA requires a noncoding part of the mRNA called the 5′ UTR, and that whereas human colon cancer cells expressing this 5′ UTR form tumors in mice, cells expressing a mutated 5′ UTR do not. Finally, they report that the expression of several pro-apoptotic genes and of an anti-tumor pathway known as the interferon/STAT1 tumor suppression pathway is down-regulated in tumors that express the vegf 5′ UTR.
What Do These Findings Mean?
These findings suggest that some cancer cells have a survival system that is regulated by vegf mRNA and are the first to show that a 5′UTR of mRNA can promote tumor growth. They indicate that VEGF and its mRNA work together to promote their development and to increase their resistance to chemotherapy drugs. They suggest that combining therapies that prevent the production of vegf mRNA (for example, siRNA-based gene silencing) with therapies that block the function of VEGF might improve survival times for patients whose tumors overexpress VEGF.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050094.
This study is discussed further in a PLoS Medicine Perspective by Hughes and Jones
The US National Cancer Institute provides information about all aspects of cancer, including information on angiogenesis, and on bevacizumab, an anti-VEGF therapeutic (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer, including angiogenesis (in several languages)
Cancer Research UK also provides basic information about what causes cancers and how they develop, grow, and spread, including information about angiogenesis
Wikipedia has pages on VEGF and on siRNA (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050094
PMCID: PMC2386836  PMID: 18494554
22.  The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells 
Biomaterials  2011;32(15):3750-3763.
Scaffold design parameters, especially physical construction factors such as mechanical stiffness of substrate materials, pore size of 3D porous scaffolds, and channel geometry, are known to influence the osteogenic signal expression and subsequent differentiation of a transplanted cell population. In this study of photocrosslinked poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) scaffolds, the effect of DEF incorporation ratio and pore size on the osteogenic signal expression of rat bone marrow stromal cells (BMSCs) was investigated. Results demonstrated that DEF concentrations and pore sizes that led to increased scaffold mechanical stiffness also upregulated osteogenic signal expression, including bone morphogenic protein-2 (BMP-2), fibroblast growth factors-2 (FGF-2), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and Runx2 transcriptional factor. Similar scaffold fabrication parameters supported rapid BMSC osteoblastic differentiation, as demonstrated by increased alkaline phosphatase (ALP) and osteocalcin expression. When scaffolds with random architecture, fabricated by porogen leaching, were compared to those with controlled architecture, fabricated by stereolithography (SLA), results showed that SLA scaffolds with the highly permeable and porous channels also have significantly higher expression of FGF-2, TGF-β1, and VEGF. Subsequent ALP expression and osteopontin secretion were also significantly increased in SLA scaffolds. Based upon these results, we conclude that scaffold properties provided by additive manufacturing techniques such as SLA fabrication, particularly increased mechanical stiffness and high permeability, may stimulate dramatic BMSC responses that promote rapid bone tissue regeneration.
doi:10.1016/j.biomaterials.2011.01.016
PMCID: PMC3075725  PMID: 21396709
Osteogenic signal expression; Stereolithography; Stiffness; Pore geometry; Bone marrow stromal cells; Poly(propylene fumarate)
23.  Superposition of nanostructures on microrough titanium–aluminum–vanadium alloy surfaces results in an altered integrin expression profile in osteoblasts 
Connective tissue research  2014;55(0 1):164-168.
Recent studies of new surface modifications that superimpose well-defined nanostructures on microrough implants, thereby mimicking the hierarchical complexity of native bone, report synergistically enhanced osteoblast maturation and local factor production at the protein level compared to growth on surfaces that are smooth, nanorough, or microrough. Whether the complex micro/nanorough surfaces enhance the osteogenic response by triggering similar patterns of integrin receptors and their associated signaling pathways as with well-established microrough surfaces, is not well understood. Human osteoblasts (hOBs) were cultured until confluent for gene expression studies on tissue culture polystyrene (TCPS) or on titanium alloy (Ti6Al4V) disks with different surface topographies: smooth, nanorough, microrough, and micro/nanorough surfaces. mRNA expression of osteogenesis-related markers such as osteocalcin (BGLAP) and bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2), BMP4, noggin (NOG) and gremlin 1 (GREM1) were all higher on microrough and micro/nanorough surfaces, with few differences between them, compared to smooth and nanorough groups. Interestingly, expression of integrins α1 and β2, which interact primarily with collagens and laminin and have been commonly associated with osteoblast differentiation on microrough Ti and Ti6Al4V, were expressed at lower levels on micro/nanorough surfaces compared to microrough ones. Conversely, the av subunit, which binds ligands such as vitronectin, osteopontin, and bone sialoprotein among others, had higher expression on micro/nanorough surfaces concomitantly with regulation of the β3 mRNA levels on nanomodified surfaces. These results suggest that the maturation of osteoblasts on micro/nanorough surfaces may be occurring through different integrin engagement than those established for microrough-only surfaces.
doi:10.3109/03008207.2014.923881
PMCID: PMC4287400  PMID: 25158204
Bone; integrin gene expression; metallic implants; nanostructures; osseointegration; surface properties
24.  Mesenchymal stem cell response to topographically modified CoCrMo 
Abstract
Surface roughness on implant materials has been shown to be highly influential on the behavior of osteogenic cells. Four surface topographies were engineered on cobalt chromium molybdenum (CoCrMo) in order to examine this influence on human mesenchymal stem cells (MSC). These treatments were smooth polished (SMO), acid etched (AE) using HCl 7.4% and H2SO4 76% followed by HNO3 30%, sand blasted, and acid etched using either 50 μm Al2O3 (SLA50) or 250 μm Al2O3 grit (SLA250). Characterization of the surfaces included energy dispersive X‐ray analysis (EDX), contact angle, and surface roughness analysis. Human MSCs were cultured onto the four CoCrMo substrates and markers of cell attachment, retention, proliferation, cytotoxicity, and osteogenic differentiation were studied. Residual aluminum was observed on both SLA surfaces although this appeared to be more widely spread on SLA50, whilst SLA250 was shown to have the roughest topography with an R a value greater than 1 μm. All substrates were shown to be largely non‐cytotoxic although both SLA surfaces were shown to reduce cell attachment, whilst SLA50 also delayed cell proliferation. In contrast, SLA250 stimulated a good rate of proliferation resulting in the largest cell population by day 21. In addition, SLA250 stimulated enhanced cell retention, calcium deposition, and hydroxyapatite formation compared to SMO (p < 0.05). The enhanced response stimulated by SLA250 surface modification may prove advantageous for increasing the bioactivity of implants formed of CoCrMo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3747–3756, 2015.
doi:10.1002/jbm.a.35514
PMCID: PMC4975717  PMID: 26015290
mesenchymal stem cells; osteogenic differentiation; adhesion; SLA; cobalt alloy
25.  Direct and Indirect Effects of Microstructured Titanium Substrates on the Induction of Mesenchymal Stem Cell Differentiation towards the Osteoblast Lineage 
Biomaterials  2010;31(10):2728.
Microstructured and high surface energy titanium substrates increase osseointegration in vivo. In vitro, osteoblast differentiation is increased, but effects of the surface directly on multipotent mesenchymal stem cells (MSCs) and consequences for MSCs in the peri-implant environment are not known. We evaluated responses of human MSCs to substrate surface properties and examined the underlying mechanisms involved. MSCs exhibited osteoblast characteristics (alkaline phosphatase, RUNX2, and osteocalcin) when grown on microstructured Ti; this effect was more robust with increased hydrophilicity. Factors produced by osteoblasts grown on microstructured Ti were sufficient to induce co-cultured MSC differentiation to osteoblasts. Silencing studies showed that this was due to signaling via α2β1 integrins in osteoblasts on the substrate surface and paracrine action of secreted Dkk2. Thus, human MSCs are sensitive to substrate properties that induce osteoblastic differentiation; osteoblasts interact with these surface properties via α2β1 and secrete Dkk2, which acts on distal MSCs.
doi:10.1016/j.biomaterials.2009.12.029
PMCID: PMC2821717  PMID: 20053436

Results 1-25 (1555192)