Search tips
Search criteria

Results 1-25 (1184998)

Clipboard (0)

Related Articles

1.  Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients 
Lupus Science & Medicine  2014;1(1):e000015.
Epstein–Barr virus (EBV) has for long been associated with systemic lupus erythematosus (SLE). In this study, we investigated the levels of latent and lytic antigen EBV-specific T-cells and antibodies in SLE patients.
T cells were analyzed by flow cytometry and antibodies were analyzed by enzyme-linked immunosorbent assay.
SLE patients showed a significantly reduced number of activated (CD69) T-cells upon ex vivo stimulation with EBV nuclear antigen (EBNA) 1 or EBV early antigen diffuse (EBV-EA/D) in whole blood samples compared with healthy controls. Also, a reduced number of T-cells from SLE patients were found to produce interferon-γ upon stimulation with these antigens. Importantly, responses to a superantigen were normal in SLE patients. Compared with healthy controls, SLE patients had fewer EBV-specific T-cells but higher titres of antibodies against EBV. Furthermore, an inverse correlation was revealed between the number of lytic antigen EBV-specific T-cells and disease activity of the SLE patients, with high-activity SLE patients having fewer T-cells than low-activity SLE patients.
These results indicate a limited or a defective EBV-specific T-cell response in SLE patients, which may suggest poor control of EBV infection in SLE with an immune reaction shift towards a humoral response in an attempt to control viral reactivation. A role for decreased control of EBV as a contributing agent in the development or exacerbation of SLE is proposed.
PMCID: PMC4225738  PMID: 25396062
Systemic lupus erythematosus; Epstein-Barr virus; T-cells; antibodies
2.  Antibodies Elicited in Response to EBNA-1 May Cross-React with dsDNA 
PLoS ONE  2011;6(1):e14488.
Several genetic and environmental factors have been linked to Systemic Lupus Erythematosus (SLE). One environmental trigger that has a strong association with SLE is the Epstein Barr Virus (EBV). Our laboratory previously demonstrated that BALB/c mice expressing the complete EBNA-1 protein can develop antibodies to double stranded DNA (dsDNA). The present study was undertaken to understand why anti-dsDNA antibodies arise during the immune response to EBNA-1.
Methodology/Principal Findings
In this study, we demonstrated that mouse antibodies elicited in response to EBNA-1 cross-react with dsDNA. First, we showed that adsorption of sera reactive with EBNA-1 and dsDNA, on dsDNA cellulose columns, diminished reactivity with EBNA-1. Next, we generated mononclonal antibodies (MAbs) to EBNA-1 and showed, by several methods, that they also reacted with dsDNA. Examination of two cross-reactive MAbs—3D4, generated in this laboratory, and 0211, a commercial MAb—revealed that 3D4 recognizes the carboxyl region of EBNA-1, while 0211 recognizes both the amino and carboxyl regions. In addition, 0211 binds moderately well to the ribonucleoprotein, Sm, which has been reported by others to elicit a cross-reactive response with EBNA-1, while 3D4 binds only weakly to Sm. This suggests that the epitope in the carboxyl region may be more important for cross-reactivity with dsDNA while the epitope in the amino region may be more important for cross-reactivity with Sm.
In conclusion, our results demonstrate that antibodies to the EBNA-1 protein cross-react with dsDNA. This study is significant because it demonstrates a direct link between the viral antigen and the development of anti-dsDNA antibodies, which are the hallmark of SLE. Furthermore, it illustrates the crucial need to identify the epitopes in EBNA-1 responsible for this cross-reactivity so that therapeutic strategies can be designed to mask these regions from the immune system following EBV exposure.
PMCID: PMC3014975  PMID: 21245919
3.  Elevated Serum Levels of Interferon-Regulated Chemokines Are Biomarkers for Active Human Systemic Lupus Erythematosus 
PLoS Medicine  2006;3(12):e491.
Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN) in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity.
Methods and Findings
We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity.
These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus.
A comprehensive survey of the serologic proteome in human SLE suggests that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed.
Editors' Summary
The term “lupus,” meaning wolf in Latin, is often used as an abbreviation for the disease systemic lupus erythematosus (SLE). The name may have been given because some people with SLE have a rash that slightly resembles a wolf's face. The condition affects around 50 to 100 people per 100,000, and is much more common in women than men. SLE is a complicated disease that comes about when antibodies inappropriately attack the body's own connective tissues, although it is not known why this happens. Symptoms vary between different people; the disease may get better and then worse, without explanation; and can affect many different organs including the skin, joints, kidneys, blood cells, and brain and nervous system. SLE is difficult for doctors to diagnose. Although the disease cannot be cured, patients who are diagnosed with SLE can be treated for their symptoms, and the right management can slow progress of the disease. One area of SLE research focuses on finding “molecular markers” (e.g., proteins or other compounds) that could be tested for in the blood. Researchers hope this would help doctors to more accurately diagnose SLE initially, and then also help to track progress in a patient's condition.
Why Was This Study Done?
“Gene expression” is a term meaning the process by which a gene's DNA sequence is converted into the structures and functions of a cell. These investigators had found in previous studies that certain genes were more “highly expressed” in the blood cells of patients with SLE. Some of these genes were already known to be regulated by interferons (a group of proteins, produced by certain blood cells, that are important in helping to defend against viral infections). The investigators performing this study wanted to understand more clearly the role of interferon in SLE and to see whether the genes that are more highly expressed in patients with SLE go on to produce higher levels of protein, which might then provide useful markers for monitoring the condition.
What Did the Researchers Do and Find?
This research project was a “case-control” study, in which the researchers compared the levels of certain proteins in the blood of people who had SLE with the levels in people who did not have the condition. Thirty people were recruited as cases, from a group of patients with SLE who have been under evaluation at Johns Hopkins School of Medicine since 1987. Fifteen controls were recruited from a group of healthy people of similar age and sex as the patients with SLE; everyone involved in the study gave their consent to take part. Blood samples were taken from each individual, and the serum (liquid component of blood) was separated out. The serum levels of 160 different blood proteins were then measured. When comparing levels of blood proteins between the groups, the researchers found that 30 specific proteins were present at higher or lower levels in the SLE-affected patients. Many of these proteins are cytokines, which are regulated by interferons and are involved in the process of “signaling” within the immune system. A few proteins were found at lower levels. Levels of the interferon-regulated proteins were, on average, seen at higher levels in people whose condition was more severe.
What Do These Findings Mean?
These results suggest that patients with SLE are likely to have a very different pattern of regulation of certain proteins within the blood, particularly the proteins involved in signaling within the immune system. The authors propose that these proteins may be involved in the progression of the disease. There is also the possibility that some of these proteins may prove useful in diagnostic tests, or in tests for monitoring how the disease progresses. However, before any such tests could be used in clinical practice, they would need to be further developed and then thoroughly tested in clinical trials.
Additional Information.
Please access these Web sites via the online version of this summary at
Patient information from the UK National Health Service on systemic lupus erythematosus
Patient handout from the US National Institutes of Health
MedlinePLUS encyclopedia entry on lupus
Information on lupus from the UK Arthritis Research Campaign
PMCID: PMC1702557  PMID: 17177599
4.  Aberrant Epstein–Barr viral infection in systemic lupus erythematosus☆ 
Autoimmunity reviews  2009;8(4):337.
Serologic association, cross-reactivity of select EBV-specific antibodies with SLE autoantigens, SLE-like autoimmunity after immunization with EBV peptides, increased EB viral load in SLE patients, and SLE-specific alterations in EBV humoral and cellular immunity implicate Epstein–Barr virus (EBV) in the development of systemic lupus erythematosus (SLE). To investigate SLE-specific differences in EBV gene expression, levels of eight EBV genes were compared between SLE patients and controls by using both ex vivo-infected and un-manipulated peripheral blood mononuclear cells (PBMCs). Expression levels of mRNA were significantly greater by Wilcoxen signed rank test in the ex vivo-infected SLE patient-derived cells for 4 of 8 EBV genes, including BLLF1, 3.2-fold (p<0.004); LMP-2, 1.7-fold (p<0.008); EBNA-1, 1.7-fold (p<0.01); and BcRF1, a proposed DNA binding protein, 1.7-fold (p<0.02). The frequency of LMP-1 gene expression was significantly greater by Chi square analysis in the peripheral blood from SLE patients than controls (44% of patients, 10% of controls p<0.05). PBMCs from SLE patients had greater expression of latent genes as well as increased expression of both latent and lytic genes after infection, suggesting that EBV may participate in SLE etiology through several mechanisms. Such altered infection patterns may contribute to the increased levels of EBV and the molecular mimicry seen in sera from SLE patients.
PMCID: PMC2822456  PMID: 19167523
Systemic lupus erythematosus; Epstein–Barr virus; Gene expression; Latency
5.  Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus 
PLoS Pathogens  2011;7(10):e1002328.
Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients.
Author Summary
Systemic Lupus Erythematosus (SLE) has been associated with Epstein-Barr Virus (EBV) infection for decades, however the mechanistic links have remained elusive. Most human adults are infected by EBV and carry the virus for life without clinical symptoms. However, for unknown reasons EBV induces infectious mononucleosis in some individuals, during which cross-reactive antibodies specific for both virus and self have been detected. Interestingly, such cross-reactive antibodies are also frequently found in SLE patients. Since, EBV seropositivity and viremia are more frequent in SLE patients than in healthy individuals, it has been postulated that EBV trigger autoimmunity. Here we show that SLE patients are indeed less capable of controlling EBV viremia, since their EBV-specific CD8+ T cells have diminished capacity to secrete effector molecules (e.g. cytokines and chemokines) and to kill EBV-infected targets as a consequence of their Programmed Death 1 (PD-1) receptor up-regulation. Longitudinal studies further reveal that disease flares precede EBV viremia. Thus, contrary to expectations, EBV reactivation appears to be an aggravating consequence, rather than a cause, of SLE immunopathology. Our results pave the way for immunological interventions that restore the host-EBV balance, which may result in decreased levels of aggravating cross-reactive antibodies and ultimately be beneficial to SLE patients.
PMCID: PMC3197610  PMID: 22028659
6.  Lupus-like autoantibody development in rabbits and mice after immunization with EBNA-1 fragments 
Journal of autoimmunity  2008;31(4):362-371.
Epstein-Barr virus has been implicated in the etiology of systemic lupus erythematosus (SLE) through serologic and immunologic studies. A potential mechanism for this influence is through molecular mimicry. The EBV nuclear antigen EBNA-1 contains a region, PPPGRRP, with considerable homology to the initial sequence targeted by antibodies in Sm B’ autoimmunity, PPPGMRPP. This study examined whether immunization of rabbits and mice with peptides containing the PPPGRRP sequence from EBNA-1 constructed on a poly-lysine backbone was able to drive the development of autoantibodies against the Smith antigen (Sm) and the related antigenic complex, the U1 nuclear ribonucleoproteins (nRNP). PPPGRRP immunization, and immunization with an EBNA-1 fragment containing PPPGRRP, led to autoantibodies in both rabbits and mice at high frequency (83% of rabbits and 43% of mice). Five out of six immunized rabbits developed either leucopenia or lymphopenia or both. The fine specificity of antibody binding against the lupus-associated autoantigens Sm B’, nRNP A, and nRNP C after immunization with the EBNA-1-derived peptides was very similar to the early antibody binding patterns against these proteins in human SLE. This similarity, as well as the prevalence of autoimmunity after immunization with these peptides, identifies PPPGRRP as a strong candidate for molecular mimicry in SLE etiology.
PMCID: PMC2852321  PMID: 18849143
autoantibodies; molecular mimicry; systemic lupus erythematosus; Epstein-Barr virus
7.  Prevalence of human herpesvirus 8 infection in systemic lupus erythematosus 
Virology Journal  2011;8:210.
For decades, scientists have tried to understand the environmental factors involved in the development of systemic lupus erythematosus (SLE), in which viral infections was included. Previous studies have identified Epstein-Barr virus (EBV) to incite SLE. Human herpesvirus 8 (HHV-8), another member of the gammaherpesvirus family, shares a lot in common with EBV. The characteristics of HHV-8 make it a well-suited candidate to trigger SLE.
In the present study, serum samples from patients (n = 108) with diagnosed SLE and matched controls (n = 122) were collected, and the prevalence of HHV-8 was compared by a virus-specific nested PCR and a whole virus enzyme-linked immunoassay (EIA). There was significant difference in the prevalence of HHV-8 DNA between SLE patients and healthy controls (11 of 107 vs 1 of 122, p = 0.001); significant difference was also found in the detection of HHV-8 antibodies (19 of 107 vs 2 of 122, p < 0.001).
We also detected the antibodies to Epstein-Barr virus viral capsid antigen (EBV-VCA) and Epstein-Barr nuclear antigen-1 (EBNA-1). Both patients and controls showed high seroprevalence with no significant difference (106 of 107 vs 119 of 122, p = 0.625).
Our finding indicated that there might be an association between HHV-8 and the development of SLE.
PMCID: PMC3116491  PMID: 21549013
8.  Detection of Viral Citrullinated Peptide Antibodies Directed Against EBV or VCP: In Early Rheumatoid Arthritis Patients of Indian Origin 
Study was undertaken to analyze the frequency of anti-viral citrullinated peptide (anti-VCP) antibodies in sera from patients with early rheumatoid arthritis (ERA).
Materials and Methods:
Viral citrullinated peptide (VCP) and Epstein-Barr nuclear antigen (EBNA-1) peptide were commercially prepared and antibodies to these were determined in 25 patients of ERA, 40 disease control patients constituting 25 rheumatoid arthritis (RA), 7 systemic lupus erythematosus (SLE), 2 scleroderma, 1 spondyloarthritis (SpA), 1 juvenile rheumatoid arthritis (JRA), 1 osteoarthritis (OA), 1 psoriatic arthritis (PsA), 1 undifferentiated arthritis (UA), and 1 gout and 25 healthy controls (HCs) were taken for comparison. In-house ELISA was established for both the antibodies while cyclic citrullinated peptide (CCP) antibody was detected by commercial ELISA kit.
Significant increase in VCP antibody by ERA and disease controls than healthy normal was observed. VCP IgM antibody was significantly increased in RA patients than HC. The presence of VCP antibody signifies a good marker for ERA. We observed significant difference in the VCP IgG and IgM antibody when compared to EBNA-1. In-house ELISA established for EBNA-1 and VCP antibodies showed low sensitivity but 96% specificity.
We observed that sera from early RA patients reacted to the deiminated protein encoded by Epstain Barr Virus (EBV). Thus a possible role of virus in inducing an anti-citrullinated peptide antibody (ACPA) response reveals viral etiology in this disease.
PMCID: PMC3040093  PMID: 21346905
Anti-viral citrullinated peptides/antibodies; ERA; EBNA-1; ELISA
9.  Lupus and Epstein-Barr 
Current opinion in rheumatology  2012;24(4):383-388.
Purpose of review
Systemic lupus erythematosus (SLE) is a heterogeneous human disease influenced by a complex interplay of necessary, but not individually sufficient, factors. Although many genetic and environmental factors are associated with SLE, this review will focus on the evolving evidence for key Epstein-Barr virus (EBV)-specific roles in SLE, focusing on new experimental studies published during 2009, 2010, and 2011.
Recent findings
SLE patients have a dysregulated immune response against EBV. EBV antigens exhibit structural molecular mimicry with common SLE antigens and functional molecular mimicry with critical immune-regulatory components. SLE patients, from a number of unique geographic regions, are shown to have higher rates of EBV seroconversion, especially against early EBV antigens, suggesting frequent viral reactivation. SLE patients also have increased EBV viral loads and impaired EBV-specific CD8+ cytotoxic T cells, with impaired cytokine responses to EBV in lupus patients. Irregular cytokine production in plasmacytoid dendritic cells and CD69+ CD4+ T cells after stimulation with EBV has also been demonstrated.
Recent advances demonstrate SLE-specific serologic responses, gene expression, viral load, T-cell responses, humoral fine specificity, and molecular mimicry with EBV, further supporting potential roles for EBV in lupus etiology and pathogenesis.
PMCID: PMC3562348  PMID: 22504579
environmental factors; Epstein-Barr virus; etiology; systemic lupus erythematosus
10.  A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing Antibodies against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1) 
PLoS Genetics  2013;9(1):e1003147.
Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10−15 for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen.
Author Summary
Many factors influence individual differences in susceptibility to infectious disease, including genetic factors of the host. Here we use several genome-wide investigative tools (linkage, association, joint linkage and association, and the analysis of gene expression data) to search for host genetic factors influencing Epstein-Barr virus (EBV) infection. EBV is a human herpes virus that infects up to 90% of adults worldwide, infection with which has been associated with severe complications including malignancies and autoimmune disorders. In a sample of >1,300 Mexican American family members, we found significant evidence of association of anti–EBV antibody levels with loci on chromosome 6 in the human leukocyte antigen region, which contains genes related to immune function. The top two independent loci in this region were HLA-DRB1 and HLA-DQB1, both of which are involved in the presentation of foreign antigens to T cells. This finding was specific to EBV and not to 12 other pathogens we examined. We also report an overlap of genetic factors influencing both EBV antibody level and EBV–related cancers and autoimmune disorders. This work demonstrates the presence of EBV susceptibility loci and provides impetus for further investigation to better understand the underlying mechanisms related to differences in disease progression among individuals infected with this pathogen.
PMCID: PMC3542101  PMID: 23326239
11.  Somatic mutations in the variable regions of a human IgG anti-double- stranded DNA autoantibody suggest a role for antigen in the induction of systemic lupus erythematosus 
The processes that govern the generation of pathogenic anti-DNA autoantibodies in human systemic lupus erythematosus (SLE) are largely unknown. Autoantibodies may arise as a consequence of polyclonal B cell activation and/or antigen-driven B cell activation and selection. The role of these processes in humoral autoimmunity may be studied by molecular genetic analysis of immunoglobulin (Ig) variable (V) regions of antibodies that are characteristic of SLE. We have analyzed the gene elements that encode a high affinity, IgG anti-double-stranded DNA autoantibody secreted by a monoclonal Epstein-Barr virus (EBV)- transformed cell line derived from a patient with active SLE. In addition, we have identified, cloned, and sequenced the germline counterparts of the VH and VL genes expressed in this autoantibody. The comparison of both sets of gene elements shows that the autoantibody VH and VL regions harbor numerous somatic mutations characteristic of an antigen-driven immune response. The light chain expressed in this autoantibody is a somatically mutated variant of the kv325 germline gene that is frequently associated with paraproteins having autoantibody activity and with Ig molecules produced by malignant B cells that express the CD5 antigen. Furthermore, the utilized DH segment has been repeatedly found in multireactive, low affinity IgM anti-DNA autoantibodies from SLE patients and healthy individuals. These results suggest that pathogenic IgG anti-DNA autoantibodies in human SLE may arise through antigen-driven selection of somatic mutations in the gene elements that frequently encode multireactive IgM autoantibodies.
PMCID: PMC2118793  PMID: 1899104
12.  Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus 
Infection with Epstein-Barr virus (EBV) has been suggested to contribute to the pathogenesis of systemic lupus erythematosus (SLE). We sought to determine whether prior infection with the virus occurs more frequently in patients with SLE compared to matched controls.
We performed a systematic review and meta-analyses of studies that reported the prevalence of anti-EBV antibodies in the sera from cases of SLE and controls by searching Medline and Embase databases from 1966 to 2012, with no language restriction. Mantel-Haenszel odds ratios (OR) for the detection of anti-EBV antibodies were calculated, and meta-analyses conducted. Quality assessments were performed using a modified version of the Newcastle-Ottawa scale.
Twenty-five case–control studies were included. Quality assessment found most studies reported acceptable selection criteria but poor description of how cases and controls were recruited. There was a statistically significant higher seroprevalence of anti-viral capsid antigen (VCA) IgG (OR 2.08; 95% confidence interval (CI) 1.15 – 3.76, p = 0.007) but not anti-EBV-nuclear antigen1 (EBNA1) (OR 1.45; 95% CI 0.7 to 2.98, p = 0.32) in cases compared to controls. The meta-analyses for anti-early antigen (EA) /D IgG and anti-VCA IgA also showed significantly high ORs (4.5; 95% CI 3.00 to 11.06, p < 0.00001 and 5.05 (95% CI 1.95 – 13.13), p = 0.0009 respectively). However, funnel plot examination suggested publication bias.
Overall, our findings support the hypothesis that infection with EBV predisposes to the development of SLE. However, publication bias cannot be excluded and the methodological conduct of studies could be improved, with regard to recruitment, matching and reporting of blinded laboratory analyses.
PMCID: PMC3978841  PMID: 24387619
13.  Epstein-Barr Virus Nuclear Antigen 3A Promotes Cellular Proliferation by Repression of the Cyclin-Dependent Kinase Inhibitor p21WAF1/CIP1 
PLoS Pathogens  2014;10(10):e1004415.
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs.
Author Summary
Epstein-Barr virus (EBV) infects over 98% of the population worldwide and is associated with a variety of human cancers. In the healthy host, the virus represses expression of its proteins to avoid detection by the immune system to enable it to remain in the body for the lifetime of its host, a situation known as latency. This downregulation was first observed in EBV-associated Burkitt lymphoma (BL), which classically express only one viral protein, EBNA-1. A subset of BL named Wp-restricted (Wp-R) BL express additional latency-associated viral proteins. Because Wp-R BL also express wild-type p53 (which normally prevents cellular proliferation), we wanted to explore the possibility that these viral proteins play a role in tumorigenesis. Indeed, we have demonstrated that Wp-R BL cells are more tumorigenic in immunocompromised mice than other BL. Here, we have investigated the role of one of these viral proteins, EBNA-3A. If we inhibit the expression of EBNA-3A, Wp-R BL cells fail to proliferate and express increased p21WAF1/CIP1, a cellular protein that inhibits cell proliferation. These results suggest that this previously undescribed function of EBNA-3A plays a role in the proliferation and likely contributes to tumorigenesis in Wp-R BL.
PMCID: PMC4183747  PMID: 25275486
14.  Messenger RNA Sequence Rather than Protein Sequence Determines the Level of Self-synthesis and Antigen Presentation of the EBV-encoded Antigen, EBNA1 
PLoS Pathogens  2012;8(12):e1003112.
Unique purine-rich mRNA sequences embedded in the coding sequences of a distinct group of gammaherpesvirus maintenance proteins underlie the ability of the latently infected cell to minimize immune recognition. The Epstein-Barr virus nuclear antigen, EBNA1, a well characterized lymphocryptovirus maintenance protein has been shown to inhibit in cis antigen presentation, due in part to a large internal repeat domain encoding glycine and alanine residues (GAr) encoded by a purine-rich mRNA sequence. Recent studies have suggested that it is the purine-rich mRNA sequence of this repeat region rather than the encoded GAr polypeptide that directly inhibits EBNA1 self-synthesis and contributes to immune evasion. To test this hypothesis, we generated a series of EBNA1 internal repeat frameshift constructs and assessed their effects on cis-translation and endogenous antigen presentation. Diverse peptide sequences resulting from alternative repeat reading frames did not alleviate the translational inhibition characteristic of EBNA1 self-synthesis or the ensuing reduced surface presentation of EBNA1-specific peptide-MHC class I complexes. Human cells expressing the EBNA1 frameshift variants were also poorly recognized by antigen-specific T-cells. Furthermore, a comparative analysis of the mRNA sequences of the corresponding repeat regions of different viral maintenance homologues highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. Based on these combined observations, we propose that the cis-translational inhibitory effect of the EBNA1 internal repeat sequence operates mechanistically at the nucleotide level, potentially through RNA secondary structural elements, and is unlikely to be mediated through the GAr polypeptide. The demonstration that the EBNA1 repeat mRNA sequence and not the encoded protein sequence underlies immune evasion in this class of virus suggests a novel approach to therapeutic development through the use of anti-sense strategies or small molecules targeting EBNA1 mRNA structure.
Author Summary
Viruses establishing persistent latent infections have evolved various mechanisms to avoid immune surveillance. The Epstein-Barr virus-encoded nuclear antigen, EBNA1, expressed in all EBV-associated malignancies, modulates its own protein levels at quantities sufficient to maintain viral infection but low enough so as to minimize an immune response by the infected host cell. This evasion mechanism is regulated through an internal purine-rich mRNA repeat sequence encoding glycine and alanine residues. In this study we assess the impact of the repeat's nucleotide versus peptide sequence on inhibiting EBNA1 self-synthesis and antigen presentation. We demonstrate that altered peptide sequences resulting from frameshift mutations within the repeat do not alleviate the immune-evasive function of EBNA1, suggesting that the repetitive purine-rich mRNA sequence itself is responsible for inhibiting EBNA1 synthesis and subsequent poor immunogenicity. Our comparative analysis of the mRNA sequences of the corresponding repeat regions of different gammaherpesvirus maintenance homologues to EBNA1 highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. These studies demonstrate the importance of gammaherpesvirus purine-rich mRNA repeat sequences on antigenic epitope generation and evasion from T-cell mediated immune control, suggesting novel approaches to prevention and treatment of latent infection by this class of virus.
PMCID: PMC3531512  PMID: 23300450
15.  Selective Involvement of the Amygdala in Systemic Lupus Erythematosus 
PLoS Medicine  2006;3(12):e499.
Antibodies specifically affect the amygdala in a mouse model of systemic lupus erythematosus (SLE). The aim of our study was to investigate whether there is also specific involvement of the amygdala in human SLE.
Methods and Findings
We analyzed a group of 37 patients with neuropsychiatric SLE (NP-SLE), 21 patients with SLE, and a group of 12 healthy control participants with diffusion weighted imaging (DWI). In addition, in a subset of eight patients, plasma was available to determine their anti-NMDAR antibody status. From the structural magnetic resonance imaging data, the amygdala and the hippocampus were segmented, as well as the white and gray matter, and the apparent diffusion coefficient (ADC) was retrieved. ADC values between controls, patients with SLE, and patients with NP-SLE were tested using analysis of variance with post-hoc Bonferroni correction. No differences were found in the gray or white matter segments. The average ADC in the amygdala of patients with NP-SLE and SLE (940 × 10−6 mm2/s; p = 0.006 and 949 × 10−6 mm2/s; p = 0.019, respectively) was lower than in healthy control participants (1152 × 10−6 mm2/s). Mann-Whitney analysis revealed that the average ADC in the amygdala of patients with anti-NMDAR antibodies (n = 4; 802 × 10−6 mm2/s) was lower (p = 0.029) than the average ADC of patients without anti-NMDAR antibodies (n = 4; 979 × 10−6 mm2/s) and also lower (p = 0.001) than in healthy control participants.
This is the first study to our knowledge to observe damage in the amygdala in patients with SLE. Patients with SLE with anti-NMDAR antibodies had more severe damage in the amygdala compared to SLE patients without anti-NMDAR antibodies.
Patients with SLE who also had antibodies against the NMDA receptor had more severe damage in the amygdala as compared with patients with SLE without these antibodies.
Editors' Summary
The human body is continually attacked by viruses, bacteria, fungi, and parasites, but the immune system usually prevents these pathogens from causing disease. To be effective, the immune system has to respond rapidly to foreign antigens (bits of proteins that are unique to the pathogen) but ignore self-antigens. In autoimmune diseases, this ability to discriminate between self and nonself fails for unknown reasons, and the immune system begins to destroy human tissues. In the chronic autoimmune disease systemic lupus erythematosus (SLE or lupus), the immune system attacks the skin, joints, nervous system, and many other organs. Patients with SLE make numerous “autoantibodies” (antibodies are molecules made by the immune system that recognize and attack antigens; autoantibodies attack self-antigens). These autoantibodies start the attack on the body; then other parts of the immune system join in, causing inflammation and forming deposits of immune cells, both of which damage tissues. Common symptoms of SLE include skin rashes and arthritis, but some patients develop NP-SLE, a form of SLE that includes neuropsychiatric symptoms such as amnesia, dementia, mood disorders, strokes, and seizures. There is no cure for SLE, but mild cases are controlled with ibuprofen and other non-steroidal anti-inflammatory drugs; severe cases are kept in check with corticosteroids and other powerful immunosuppressants.
Why Was This Study Done?
In most of the tissues affected by SLE, the damage done by autoantibodies and immune cells can be seen when the tissues are examined with a microscope. But there is little microscopic damage visible in the brains of patients with NP-SLE. More generally, it is unclear how or even whether the immune system affects mental functions and emotion. In this study, researchers used magnetic resonance imaging (MRI) to investigate whether there are any structural changes in the brains of patients with NP-SLE that could explain their neuropsychiatric symptoms. They have also examined whether any changes in the brain can be linked to the presence of autoantibodies that recognize a protein called the NMDA receptor (anti-NMDAR antibodies) that is present on brain cells.
What Did the Researchers Do and Find?
The researchers used an MRI technique called diffusion weighted imaging to examine the brains of several patients with NP-SLE or SLE and the brains of several healthy individuals. Using this technique, it is possible to quantify the amount of structural damage in different regions of the brain. The researchers found no differences in most areas of the brain between the two groups of patients and the healthy controls. However, there were clear signs of damage in the amygdala (the part of the brain that regulates emotions and triggers responses to danger) in the patients with SLE or NP-SLE when compared to the control individuals. The researchers also found that the damage was more severe in the patients who had anti-NMDAR autoantibodies than in those that did not have these autoantibodies.
What Do These Findings Mean?
These findings suggest that autoantibodies produced by patients with SLE specifically damage the amygdala, a discovery that helps to explain some of the neuropsychiatric symptoms of this condition. Previous work has shown that the treatment of mice with anti-NMDAR antibodies and epinephrine, a stress hormone that causes leaks in the blood-brain barrier (antibodies can't usually get into the brain because of this barrier), results in damage to the amygdala and a deficient response to dangerous stimuli. The researchers suggest that a similar series of events might happen in SLE—patients often mention that a period of major stress precedes the development of symptoms. To provide stronger evidence for such a scenario, a detailed study of how stress relates to neuropsychiatric symptoms is needed. The damage to the amygdala (and the lack of damage elsewhere in the brain) and the possible association between brain damage and anti-NMDAR antibodies seen in this small study also need to be confirmed in more patients. Nevertheless, these findings provide an intriguing glimpse into the interplay between the immune system and the brain and into how stress might lead to physical damage in the brain.
Additional Information.
Please access these Web sites via the online version of this summary at
MedlinePlus encyclopedia pages on autoimmunity and on systemic lupus erythematosus
US National Institute of Arthritis and Musculoskeletal and Skin Diseases booklet for patients with SLE
American College of Rheumatology information for patients on SLE
NHS Direct Online Health Encyclopedia pages on SLE
The Lupus Foundation of America information and support for patients with SLE
PMCID: PMC1702559  PMID: 17177602
16.  Toll-Like Receptor 7 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1 
PLoS ONE  2012;7(8):e43317.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus. Toll-like receptor 7 (TLR7) is involved in host innate immunity against pathogens, and its aberrant activation is linked to the development of systemic lupus erythematosus (SLE, also called “lupus”). Type I interferons (IFN) are apparently driving forces for lupus pathogenesis. Previously, we found that EBV latent membrane protein 1 (LMP1) primes cells for IFN production. In this report, the relationship among EBV LMP1, TLRs, and IFN production are examined. We find that TLR7 activation increases the expression of EBV LMP1, and IFN regulatory factor 7 (IRF7) is involved in the stimulation process. TLR7 activation did not induce IFNs from EBV-infected cells, but potentiates those cells for IFN production by TLR3 or TLR9 activation. In addition, we find that LMP1 and IFNs are co-expressed in the same cells in some lupus patients. Therefore, the aberrant activation of TLR7 might induce LMP1 expression and LMP1-expression cells may be producing IFNs in lupus patients. These results suggest EBV might be an exacerbating factor in some lupus patients via promoting IFN production.
PMCID: PMC3432040  PMID: 22952664
17.  The granulocyte colony stimulating factor pathway regulates autoantibody production in a murine induced model of systemic lupus erythematosus 
An NZB-derived genetic locus (Sle2c2) that suppresses autoantibody production in a mouse model of induced systemic lupus erythematosus contains a polymorphism in the gene encoding the G-CSF receptor. This study was designed to test the hypothesis that the Sle2c2 suppression is associated with an impaired G-CSF receptor function that can be overcome by exogenous G-CSF.
Leukocytes from B6.Sle2c2 and B6 congenic mice, which carry a different allele of the G-CSF receptor, were compared for their responses to G-CSF. Autoantibody production was induced with the chronic graft-versus-host-disease (cGVHD) model by adoptive transfer of B6.bm12 splenocytes. Different treatment regimens varying the amount and frequency of G-CSF (Neulasta®) or carrier control were tested on cGVHD outcomes. Autoantibody production, immune cell activation, and reactive oxygen species (ROS) production were compared between the two strains with the various treatments. In addition, the effect of G-CSF treatment was examined on the production autoantibodies in the B6.Sle1.Sle2.Sle3 (B6.TC) spontaneous model of lupus.
B6.Sle2c2 and B6 leukocytes responded differently to G-CSF. G-CSF binding by B6.Sle2c2 leukocytes was reduced as compared to B6, which was associated with a reduced expansion in response to in vivo G-CSF treatment. G-CSF in vivo treatment also failed to mobilize bone-marrow B6.Sle2c2 neutrophils as it did for B6 neutrophils. In contrast, the expression of G-CSF responsive genes indicated a higher G-CSF receptor signaling in B6.Sle2c2 cells. G-CSF treatment restored the ability of B6.Sle2c2 mice to produce autoantibodies in a dose-dependent manner upon cGVHD induction, which correlated with restored CD4+ T cells activation, as well as dendritic cell and granulocyte expansion. Steady-state ROS production was higher in B6.Sle2c2 than in B6 mice. cGVHD induction resulted in a larger increase in ROS production in B6 than in B6.Sle2c2 mice, and this difference was eliminated with G-CSF treatment. Finally, a low dose G-CSF treatment accelerated the production of anti-dsDNA IgG in young B6.TC mice.
The different in vivo and in vitro responses of B6.Sle2c2 leukocytes are consistent with the mutation in the G-CSFR having functional consequences. The elimination of Sle2c2 suppression of autoantibody production by exogenous G-CSF indicates that Sle2c2 corresponds to a loss of function of G-CSF receptor. This result was corroborated by the increased anti-dsDNA IgG production in G-CSF-treated B6.TC mice, which also carry the Sle2c2 locus. Overall, these results suggest that the G-CSF pathway regulates the production of autoantibodies in murine models of lupus.
PMCID: PMC3672747  PMID: 23566364
18.  Induction of p16INK4a Is the Major Barrier to Proliferation when Epstein-Barr Virus (EBV) Transforms Primary B Cells into Lymphoblastoid Cell Lines 
PLoS Pathogens  2013;9(2):e1003187.
To explore the role of p16INK4a as an intrinsic barrier to B cell transformation by EBV, we transformed primary B cells from an individual homozygous for a deletion in the CDKN2A locus encoding p16INK4a and p14ARF. Using recombinant EBV-BAC viruses expressing conditional EBNA3C (3CHT), we developed a system that allows inactivation of EBNA3C in lymphoblastoid cell lines (LCLs) lacking active p16INK4a protein but expressing a functional 14ARF-fusion protein (p14/p16). The INK4a locus is epigenetically repressed by EBNA3C – in cooperation with EBNA3A – despite the absence of functional p16INK4a. Although inactivation of EBNA3C in LCLs from normal B cells leads to an increase in p16INK4a and growth arrest, EBNA3C inactivation in the p16INK4a-null LCLs has no impact on the rate of proliferation, establishing that the repression of INK4a is a major function of EBNA3C in EBV-driven LCL proliferation. This conditional LCL system allowed us to use microarray analysis to identify and confirm genes regulated specifically by EBNA3C, independently of proliferation changes modulated by the p16INK4a-Rb-E2F axis. Infections of normal primary B cells with recombinant EBV-BAC virus from which EBNA3C is deleted or with 3CHT EBV in the absence of activating ligand 4-hydroxytamoxifen, revealed that EBNA3C is necessary to overcome an EBV-driven increase in p16INK4a expression and concomitant block to proliferation 2–4 weeks post-infection. If cells are p16INK4a-null, functional EBNA3C is dispensable for the outgrowth of LCLs.
Author Summary
Epstein-Barr virus (EBV) is a causative agent of several types of B cell lymphoma. In human B cells, EBV reduces protein levels of at least two tumour suppressors that would otherwise be activated in response to over-expressed oncogenes. These proteins are BIM, which induces cell death and p16INK4a, which prevents cell proliferation. Repression of both is via epigenetic methylation of histones and is dependent on expression of both EBNA3A and EBNA3C – two EBV proteins required for the transformation of normal B cells into lymphoblastoid cell lines (LCLs). In this report we have used EBV with a conditionally active EBNA3C – active only in the presence of 4-hydroxytamoxifen – together with B cells from an individual carrying a homozygous deletion of p16INK4a to confirm that regulation of p16INK4a expression is a major function of EBNA3C and demonstrate that if B cells lack p16INK4a, then EBNA3C is no longer required for EBV-driven proliferation of LCLs. Furthermore we show that early after the infection of normal B cells, EBV induces p16INK4a accumulation that – if unchecked by EBNA3C (and EBNA3A) – prevents LCL outgrowth. Formal proof that p16INK4a is the main target of EBNA3C comes with the production of p16-null LCLs that have never expressed functional EBNA3C.
PMCID: PMC3578823  PMID: 23436997
19.  EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. 
Journal of Virology  1996;70(6):4179-4183.
Although genetic and biochemical data indicate that the cell protein RBPJkappa is a mediator of EBNA-2 and EBNA-3C effects on transcriptional regulatory elements, the extent of association of these Epstein-Barr virus nuclear proteins with RBPJkappa in transformed B lymphocytes has not been determined. We now report that most of the EBNA-2 and at least 20% of the EBNA-3C coimmunoprecipitated with RBPJkappa from extracts of transformed B lymphocytes that contained most of the cellular EBNA-2 and EBNA3C. Both proteins are associated preferentially with the smaller of the two RBPJkappa isoforms. EBNA-2-RBPJkappa complexes do not contain EBNA-3C, and EBNA-3C-RBPJkappa complexes do not contain EBNA-2. Although EBNA-2 and EBNA-3C are extensively associated with RBPJkappa, a fraction of RBPJkappa appears to be free of EBNAs after repeated immunoprecipitations with anti-EBNA, Epstein-Barr virus-immune, human antibody. Promoters with RBPJkappa sites in their regulatory elements are likely to be differentially regulated by these RBPJkappa-EBNA-2 and RBPJkappa-EBNA-3 complexes.
PMCID: PMC190314  PMID: 8648764
20.  IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2011;71(3):463-468.
High serum interferon α (IFNα) activity is a heritable risk factor for systemic lupus erythematosus (SLE). Auto-antibodies found in SLE form immune complexes which can stimulate IFNα production by activating endosomal Toll-like receptors and interferon regulatory factors (IRFs), including IRF5. Genetic variation in IRF5 is associated with SLE susceptibility; however, it is unclear how IRF5 functional genetic elements contribute to human disease.
1034 patients with SLE and 989 controls of European ancestry, 555 patients with SLE and 679 controls of African–American ancestry, and 73 patients with SLE of South African ancestry were genotyped at IRF5 polymorphisms, which define major haplotypes. Serum IFNα activity was measured using a functional assay.
In European ancestry subjects, anti-double-stranded DNA (dsDNA) and anti-Ro antibodies were each associated with different haplotypes characterised by a different combination of functional genetic elements (OR > 2.56, p >003C; 1.9×10−14 for both). These IRF5 haplotype-auto-antibody associations strongly predicted higher serum IFNα in patients with SLE and explained > 70% of the genetic risk of SLE due to IRF5. In African–American patients with SLE a similar relationship between serology and IFNα was observed, although the previously described European ancestry-risk haplotype was present at admixture proportions in African–American subjects and absent in African patients with SLE.
The authors define a novel risk haplotype of IRF5 that is associated with anti-dsDNA antibodies and show that risk of SLE due to IRF5 genotype is largely dependent upon particular auto-antibodies. This suggests that auto-antibodies are directly pathogenic in human SLE, resulting in increased IFNα in cooperation with particular combinations of IRF5 functional genetic elements.
SLE is a systemic autoimmune disorder affecting multiple organ systems including the skin, musculoskeletal, renal and haematopoietic systems. Humoral autoimmunity is a hallmark of SLE, and patients frequently have circulating auto-antibodies directed against dsDNA, as well as RNA binding proteins (RBP). Anti-RBP autoantibodies include antibodies which recognize Ro, La, Smith (anti-Sm), and ribonucleoprotein (anti-nRNP), collectively referred to as anti-retinol-binding protein). Anti-retinol-binding protein and anti-dsDNA auto-antibodies are rare in the healthy population.1 These auto-antibodies can be present in sera for years preceding the onset of clinical SLE illness2 and are likely pathogenic in SLE.34
PMCID: PMC3307526  PMID: 22088620
21.  Differential Gene Expression Patterns of EBV Infected EBNA-3A Positive and Negative Human B Lymphocytes 
PLoS Pathogens  2009;5(7):e1000506.
The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis.
Author Summary
Epstein-Barr virus (EBV) infects primary human B cells and establishes a latent infection, which leads to permanently growing B cell cultures. These growth transformed B cells express a well defined set of latent viral genes, which are also expressed in post-transplant lymphomas of immunosuppressed patients. In a concerted action these latent viral proteins drive cellular proliferation and prevent apoptosis. For this study, recombinant Epstein-Barr virus mutants that lack the gene for the Epstein-Barr virus nuclear antigen-3A (EBNA-3A) were generated. EBNA-3A is a transcriptional modulator of gene expression. We show here that EBNA-3A deficient growth transformed B cells can be established in vitro. Our results suggest that EBNA-3A supports viability but is not absolutely essential for proliferation of the infected B cell. By virtue of the established EBNA-3A deficient cell lines, we could for the first time identify a broad array of cellular target genes controlled by EBNA-3A in EBV infected B cells. These EBNA-3A target genes will permit a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis.
PMCID: PMC2700271  PMID: 19578441
22.  Epstein–Barr virus nuclear antigen (EBNA) 3A induces the expression of and interacts with a subset of chaperones and co-chaperones 
The Journal of General Virology  2008;89(Pt 4):866-877.
Viral nuclear oncoproteins EBNA3A and EBNA3C are essential for the efficient immortalization of B cells by Epstein–Barr virus (EBV) in vitro and it is assumed that they play an essential role in viral persistence in the human host. In order to identify cellular genes regulated by EBNA3A expression, cDNA encoding EBNA3A was incorporated into a recombinant adenoviral vector. Microarray analysis of human diploid fibroblasts infected with either adenovirus EBNA3A or an empty control adenovirus consistently showed an EBNA3A-specific induction of mRNA corresponding to the chaperones Hsp70 and Hsp70B/B′ and co-chaperones Bag3 and DNAJA1/Hsp40. Analysis of infected fibroblasts by real-time quantitative RT-PCR and Western blotting confirmed that EBNA3A, but not EBNA3C, induced expression of Hsp70, Hsp70B/B′, Bag3 and DNAJA1/Hsp40. This was also confirmed in a stable, inducible expression system. EBNA3A activated transcription from the Hsp70B promoter, but not multimerized heat-shock elements in transient transfection assays, consistent with specific chaperone and co-chaperone upregulation. Co-immunoprecipitation experiments suggest that EBNA3A can form a complex with the chaperone/co-chaperone proteins in both adenovirus-infected cells and EBV-immortalized lymphoblastoid cell lines. Consistent with this, induction of EBNA3A resulted in redistribution of Hsp70 from the cytoplasm to the nucleus. EBNA3A therefore specifically induces (and then interacts with) all of the factors necessary for an active Hsp70 chaperone complex.
PMCID: PMC2885026  PMID: 18343826
23.  Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. 
Journal of Virology  1990;64(5):2126-2134.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.
PMCID: PMC249370  PMID: 2157875
24.  A Single Amino Acid in EBNA-2 Determines Superior B Lymphoblastoid Cell Line Growth Maintenance by Epstein-Barr Virus Type 1 EBNA-2 
Journal of Virology  2014;88(16):8743-8753.
Sequence differences in the EBNA-2 protein mediate the superior ability of type 1 Epstein-Barr virus (EBV) to transform human B cells into lymphoblastoid cell lines compared to that of type 2 EBV. Here we show that changing a single amino acid (S442D) from serine in type 2 EBNA-2 to the aspartate found in type 1 EBNA-2 confers a type 1 growth phenotype in a lymphoblastoid cell line growth maintenance assay. This amino acid lies in the transactivation domain of EBNA-2, and the S442D change increases activity in a transactivation domain assay. The superior growth properties of type 1 EBNA-2 correlate with the greater induction of EBV LMP-1 and about 10 cell genes, including CXCR7. In chromatin immunoprecipitation assays, type 1 EBNA-2 is shown to associate more strongly with EBNA-2 binding sites near the LMP-1 and CXCR7 genes. Unbiased motif searching of the EBNA-2 binding regions of the differentially regulated cell genes identified an ETS-interferon regulatory factor composite element motif that closely corresponds to the sequences known to mediate EBNA-2 regulation of the LMP-1 promoter. It appears that the superior induction by type 1 EBNA-2 of the cell genes contributing to cell growth is due to their being regulated in a manner different from that for most EBNA-2-responsive genes and in a way similar to that for the LMP-1 gene.
IMPORTANCE The EBNA-2 transcription factor plays a key role in B cell transformation by EBV and defines the two EBV types. Here we identify a single amino acid (Ser in type 1 EBV, Asp in type 2 EBV) of EBNA-2 that determines the superior ability of type 1 EBNA-2 to induce a key group of cell genes and the EBV LMP-1 gene, which mediate the growth advantage of B cells infected with type 1 EBV. The EBNA-2 binding sites in these cell genes have a sequence motif similar to the sequence known to mediate regulation of the EBV LMP-1 promoter. Further detailed analysis of transactivation and promoter binding provides new insight into the physiological regulation of cell genes by EBNA-2.
PMCID: PMC4136291  PMID: 24850736
25.  Adenovirus-Based Vaccines against Rhesus Lymphocryptovirus EBNA-1 Induce Expansion of Specific CD8+ and CD4+ T Cells in Persistently Infected Rhesus Macaques 
Journal of Virology  2014;88(9):4721-4735.
The impact of Epstein-Barr virus (EBV) on human health is substantial, but vaccines that prevent primary EBV infections or treat EBV-associated diseases are not yet available. The Epstein-Barr nuclear antigen 1 (EBNA-1) is an important target for vaccination because it is the only protein expressed in all EBV-associated malignancies. We have designed and tested two therapeutic EBV vaccines that target the rhesus (rh) lymphocryptovirus (LCV) EBNA-1 to determine if ongoing T cell responses during persistent rhLCV infection in rhesus macaques can be expanded upon vaccination. Vaccines were based on two serotypes of E1-deleted simian adenovirus and were administered in a prime-boost regimen. To further modulate the response, rhEBNA-1 was fused to herpes simplex virus glycoprotein D (HSV-gD), which acts to block an inhibitory signaling pathway during T cell activation. We found that vaccines expressing rhEBNA-1 with or without functional HSV-gD led to expansion of rhEBNA-1-specific CD8+ and CD4+ T cells in 33% and 83% of the vaccinated animals, respectively. Additional animals developed significant changes within T cell subsets without changes in total numbers. Vaccination did not increase T cell responses to rhBZLF-1, an immediate early lytic phase antigen of rhLCV, thus indicating that increases of rhEBNA-1-specific responses were a direct result of vaccination. Vaccine-induced rhEBNA-1-specific T cells were highly functional and produced various combinations of cytokines as well as the cytolytic molecule granzyme B. These results serve as an important proof of principle that functional EBNA-1-specific T cells can be expanded by vaccination.
IMPORTANCE EBV is a common human pathogen that establishes a persistent infection through latency in B cells, where it occasionally reactivates. EBV infection is typically benign and is well controlled by the host adaptive immune system; however, it is considered carcinogenic due to its strong association with lymphoid and epithelial cell malignancies. Latent EBNA-1 is a promising target for a therapeutic vaccine, as it is the only antigen expressed in all EBV-associated malignancies. The goal was to determine if rhEBNA-1-specific T cells could be expanded upon vaccination of infected animals. Results were obtained with vaccines that target EBNA-1 of rhLCV, a virus closely related to EBV. We found that vaccination led to expansion of rhEBNA-1 immune cells that exhibited functions fit for controlling viral infection. This confirms that rhEBNA-1 is a suitable target for therapeutic vaccines. Future work should aim to generate more-robust T cell responses through modified vaccines.
PMCID: PMC3993789  PMID: 24522914

Results 1-25 (1184998)