Search tips
Search criteria

Results 1-25 (1154637)

Clipboard (0)

Related Articles

1.  Stress-Mediated Increases in Systemic and Local Epinephrine Impair Skin Wound Healing: Potential New Indication for Beta Blockers 
PLoS Medicine  2009;6(1):e1000012.
Stress, both acute and chronic, can impair cutaneous wound repair, which has previously been mechanistically ascribed to stress-induced elevations of cortisol. Here we aimed to examine an alternate explanation that the stress-induced hormone epinephrine directly impairs keratinocyte motility and wound re-epithelialization. Burn wounds are examined as a prototype of a high-stress, high-epinephrine, wound environment. Because keratinocytes express the β2-adrenergic receptor (β2AR), another study objective was to determine whether β2AR antagonists could block epinephrine effects on healing and improve wound repair.
Methods and Findings
Migratory rates of normal human keratinocytes exposed to physiologically relevant levels of epinephrine were measured. To determine the role of the receptor, keratinocytes derived from animals in which the β2AR had been genetically deleted were similarly examined. The rate of healing of burn wounds generated in excised human skin in high and low epinephrine environments was measured. We utilized an in vivo burn wound model in animals with implanted pumps to deliver β2AR active drugs to study how these alter healing in vivo. Immunocytochemistry and immunoblotting were used to examine the up-regulation of catecholamine synthetic enzymes in burned tissue, and immunoassay for epinephrine determined the levels of this catecholamine in affected tissue and in the circulation. When epinephrine levels in the culture medium are elevated to the range found in burn-stressed animals, the migratory rate of both cultured human and murine keratinocytes is impaired (reduced by 76%, 95% confidence interval [CI] 56%–95% in humans, p < 0.001, and by 36%, 95% CI 24%–49% in mice, p = 0.001), and wound re-epithelialization in explanted burned human skin is delayed (by 23%, 95% CI 10%–36%, p = 0.001), as compared to cells or tissues incubated in medium without added epinephrine. This impairment is reversed by β2AR antagonists, is absent in murine keratinocytes that are genetically depleted of the β2AR, and is reproduced by incubation of keratinocytes with other β2AR-specific agonists. Activation of the β2AR in cultured keratinocytes signals the down-regulation of the AKT pathway, accompanied by a stabilization of the actin cytoskeleton and an increase in focal adhesion formation, resulting in a nonmigratory phenotype. Burn wound injury in excised human skin also rapidly up-regulates the intra-epithelial expression of the epinephrine synthesizing enzyme phenylethanolamine-N-methyltransferase, and tissue levels of epinephrine rise dramatically (15-fold) in the burn wounded tissue (values of epinephrine expressed as pg/ug protein ± standard error of the mean: unburned control, 0.6 ± 0.36; immediately postburn, 9.6 ± 1.58; 2 h postburn, 3.1 ± 1.08; 24 h post-burn, 6.7 ± 0.94). Finally, using an animal burn wound model (20% body surface in mice), we found that systemic treatment with βAR antagonists results in a significant increase (44%, 95% CI 27%–61%, p < 0.00000001) in the rate of burn wound re-epithelialization.
This work demonstrates an alternate pathway by which stress can impair healing: by stress-induced elevation of epinephrine levels resulting in activation of the keratinocyte β2AR and the impairment of cell motility and wound re-epithelialization. Furthermore, since the burn wound locally generates epinephrine in response to wounding, epinephrine levels are locally, as well as systemically, elevated, and wound healing is impacted by these dual mechanisms. Treatment with beta adrenergic antagonists significantly improves the rate of burn wound re-epithelialization. This work suggests that specific β2AR antagonists may be apt, near-term translational therapeutic targets for enhancing burn wound healing, and may provide a novel, low-cost, safe approach to improving skin wound repair in the stressed individual.
Rivkah Isseroff and colleagues describe how stress-induced elevation of epinephrine levels can impair the healing of burns in mice and suggest that β2 adrenergic receptor antagonists may have a role in improving skin wound repair.
Editors' Summary
Skin—the largest organ in the human body—protects the rest of the body against infection by forming an impervious layer over the whole external body surface. Consequently, if this layer is damaged by rubbing, cutting, or burning, it must be quickly and efficiently repaired. Wound repair (healing) involves several different processes. First, the clotting cascade stops bleeding at the wound site and immune system cells attracted into the site remove any bacteria or debris in the wound. Various factors are released by the immune cells and the other cells in and near the damaged area that encourage the migration of several different sorts of cells into the wound. These cells proliferate and prepare the wound for “re-epithelialization.” In this process, keratinocytes (a type of epithelial cell that makes a tough, insoluble protein called keratin; epithelial cells cover all the surfaces of the body) migrate into the wound site and form a new, intact epithelial layer. If any of these processes fail, the result can be a chronic (long-lasting) nonhealing wound. In particular, if the wound does not re-epithelialize, it remains open and susceptible to infection and loss of body fluids.
Why Was This Study Done?
One factor that impairs the repair of skin wounds is stress. In stressful situations (including situations in which wounds are likely to occur), the human body releases several chemicals that prepare the body for “fight or flight,” including cortisol and epinephrine (also called adrenaline). Most scientists ascribe the effects of stress on wound healing to stress-induced increases in cortisol, but might stress-induced epinephrine also affect wound healing? In this study, the researchers test whether epinephrine impairs keratinocyte migration and re-epithelialization of burn wounds (keratinocytes have a receptor for epinephrine called the β2 adrenergic receptor [β2AR] on their cell surface that allows them to respond to epinephrine). They chose to study burn wounds for two reasons. First, major burns cause a massive release of stress chemicals into the bloodstream that raises blood levels (systemic levels) of cortisol and epinephrine for days or weeks after the initial trauma. Second, despite recent therapeutic advances, many people still die from major burns (4,000 every year in the USA alone) so there is a pressing need for better ways to treat this type of wound.
What Did the Researchers Do and Find?
The researchers investigated the effects of epinephrine on wound healing in three types of experiments. First, they looked at the effect of epinephrine on keratinocytes growing in dishes (in vitro experiments). Levels of epinephrine similar to those in the blood of stressed individuals greatly inhibited the motility and migration of human keratinocytes (isolated from the foreskin of newborn babies) and of mouse keratinocytes. It also inhibited the repair of scratch wounds made in monolayers of keratinocytes growing on dishes. Treatment of the cultures with a β2AR antagonist (a chemical that prevents epinephrine activating the β2AR) reversed the effects of epinephrine. In addition, the migration of mouse keratinocytes that had been genetically altered so that they did not express β2AR was not inhibited by epinephrine. Next, the researchers investigated the healing of burn wounds made in small pieces of human skin growing in dishes (ex vivo experiments). Burn injuries rapidly increased the amount of epinephrine in these tissue explants, they report, and treatment of the explants with a βAR antagonist (an inhibitor of all types of βARs) greatly increased wound re-epithelialization. Finally, the researchers report that the re-epithelialization of burn wounds in living mice was improved when the mice were treated with a β2AR antagonist.
What Do These Findings Mean?
These findings reveal a second pathway by which stress can impair wound healing. They show that stress-induced increases in systemic and local epinephrine activate β2ARs on keratinocytes and that this activation inhibits keratinocyte motility and wound re-epithelialization. Although results obtained in animals do not always reflect what happens in people, the finding that the treatment of mice with β2AR antagonists improves the rate of burn wound re-epithelialization, suggests that beta blockers—drugs that inhibit all βARs and that are widely used to treat high blood pressure and to prevent heart disease—or specific β2AR antagonists might provide a new therapeutic approach to the treatment of burns and, perhaps, chronic nonhealing wounds.
Additional Information.
Please access these Web sites via the online version of this summary at
Wikipedia has pages on wound healing, burn injuries, and epinephrine (Note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The MedlinePlus Encyclopedia has a page on burns (in English and Spanish)
MedlinePlus provides links to other information on burns (in English and Spanish)
PMCID: PMC2621262  PMID: 19143471
2.  Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: involvement of ERK and Akt signaling pathways 
Acta Pharmacologica Sinica  2010;31(4):493-500.
The adverse effects of local anesthetics (LAs) on wound healing at surgical sites have been suggested, and may be related to their cytotoxicity. This study was aimed to compare the cellular toxicity of bupivacaine and lidocaine (two well-known LAs), and to explore the molecular mechanism(s).
Toxicity of bupivacaine and lidocaine was assessed in cultured mouse C2C12 myoblasts by cell viability and apoptosis assays. Effects of LAs on extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) activation, which are essential for cell proliferation and survival, were evaluated by immunoblotting.
Both LAs, especially bupivacaine, prevented cell growth and caused cell death in a dose-dependent manner. The half maximal inhibitory concentrations (IC50) for bupivacaine and lidocaine were 0.49±0.04 and 3.37±0.53 mmol/L, respectively. When applied at the same dilutions of commercially available preparations, the apoptotic effect induced by bupivacaine was more severe than that of lidocaine in C2C12 cells. Furthermore, bupivacaine significantly diminished the ERK activation, which may underlie its anti-proliferative actions. Both LAs suppressed Akt activation, which correlated with their effects on apoptosis.
Our study demonstrated that, when used at the same dilutions from clinically relevant concentrations, bupivacaine is more cytotoxic than lidocaine in vitro. Anti-proliferation and cell death with concomitant apoptosis mediated by bupivacaine may offer an explanation for its adverse effects in vivo (eg slowing wound healing at the surgical sites). A less toxic, long-acting anesthetic may be needed.
PMCID: PMC4007657  PMID: 20228829
local anesthetic; cytotoxicity; cell proliferation; apoptosis; extracellular signal-regulated kinase; Akt
3.  Effect of wound infiltration with bupivacaine or lower dose bupivacaine/magnesium versus placebo for postoperative analgesia after cesarean section 
The authors examined the analgesic effect of wound infiltration with bupivacaine or lower dose bupivacaine and magnesium versus normal saline for postoperative analgesia after cesarean section.
Materials and Methods:
A total of 120 patients, American Society of Anesthesiologists (ASA) I-II were prepared for elective cesarean section. At the end of the surgery, the wound was continuously infiltrated at a rate of 5 ml/h for 24 h post-operatively by one of the following solutions: 0.25% bupivacaine, a mixture of 0.125% bupivacaine and 5% magnesium sulphate or normal saline (0.9%). Total opioid consumption, Visual Analogue Scale (VAS) at rest and movement, incidence of opioid side-effects and signs of wound inflammation were assessed during the period of the study (24 h post-operatively). Three months later, residual pain, surgical wound infection, need for extra-antibiotic therapy and wound healing impairment were assessed.
Post-operative pain scores at rest were statistically significant higher in the control group than those in the both wound infiltration groups from 4th h and onwards (P < 0.0001). Meanwhile, post-operative pain was higher in bupivacaine group versus magnesium group (P < 0.0001, P < 0.0001, 0.0012, respectively). There was statistically significant increase in VAS during movement in the control group versus others at 2, 4, 12, 24 h post-operatively (P < 0.0001). However, patients received magnesium plus bupivacaine wound infiltration showed a significant decrease in post-operative pain scores than whom received bupivacaine from 4th h and onward (P < 0.0001, 0.0054, 0.0001, respectively). Morphine consumption was significantly reduced in the magnesium group, (P < 0.0001). Incidence of residual pain was comparable in the three groups. The incidence of sedation and urine retention were noted to be significantly higher in the control group in comparison to other groups, (P <0.0001). The incidence of post-operative nausea and vomiting was reduced in patients received magnesium plus bupivacaine block versus others (P < 0.0001).
Continuous wound infiltration with a mixture of bupivacaine and magnesium sulphate after cesarean section showed an effective analgesia and reduced post-operative Patient Controlled Analgesia (PCA) requirements as compared to continuous wound infiltration with local anesthetic only or placebo with fewer incidences of opioid adverse effects.
PMCID: PMC4173540
Analgesia; cesarean section; magnesium sulphate; wound infiltration
4.  Therapy of acute wounds with water-filtered infrared-A (wIRA) 
Water-filtered infrared-A (wIRA) as a special form of heat radiation with a high tissue penetration and with a low thermal load to the skin surface acts both by thermal and thermic as well as by non-thermal and non-thermic effects. wIRA produces a therapeutically usable field of heat in the tissue and increases tissue temperature, tissue oxygen partial pressure, and tissue perfusion. These three factors are decisive for a sufficient tissue supply with energy and oxygen and consequently as well for wound healing and infection defense.
wIRA can considerably alleviate the pain (with remarkably less need for analgesics) and diminish an elevated wound exudation and inflammation and can show positive immunomodulatory effects. wIRA can advance wound healing or improve an impaired wound healing both in acute and in chronic wounds including infected wounds. Even the normal wound healing process can be improved.
A prospective, randomized, controlled, double-blind study with 111 patients after major abdominal surgery at the University Hospital Heidelberg, Germany, showed with 20 minutes irradiation twice a day (starting on the second postoperative day) in the group with wIRA and visible light VIS (wIRA(+VIS), approximately 75% wIRA, 25% VIS) compared to a control group with only VIS a significant and relevant pain reduction combined with a markedly decreased required dose of analgesics: during 230 single irradiations with wIRA(+VIS) the pain decreased without any exception (median of decrease of pain on postoperative days 2-6 was 13.4 on a 100 mm visual analog scale VAS 0-100), while pain remained unchanged in the control group (p<0.001). The required dose of analgesics was 57-70% lower in the subgroups with wIRA(+VIS) compared to the control subgroups with only VIS (median 598 versus 1398 ml ropivacaine, p<0.001, for peridural catheter analgesia; 31 versus 102 mg piritramide, p=0.001, for patient-controlled analgesia; 3.4 versus 10.2 g metamizole, p=0.005, for intravenous and oral analgesia). During irradiation with wIRA(+VIS) the subcutaneous oxygen partial pressure rose markedly by approximately 30% and the subcutaneous temperature by approximately 2.7°C (both in a tissue depth of 2 cm), whereas both remained unchanged in the control group: after irradiation the median of the subcutaneous oxygen partial pressure was 41.6 (with wIRA) versus 30.2 mm Hg in the control group (p<0.001), the median of the subcutaneous temperature was 38.9 versus 36.4°C (p<0.001). The overall evaluation of the effect of irradiation, including wound healing, pain and cosmesis, assessed on a VAS (0-100 with 50 as indifferent point of no effect) by the surgeon (median 79.0 versus 46.8, p<0.001) or the patient (79.0 versus 50.2, p<0.001) was markedly better in the group with wIRA compared to the control group. This was also true for single aspects: Wound healing assessed on a VAS by the surgeon (median 88.6 versus 78.5, p<0.001) or the patient (median 85.8 versus 81.0, p=0.040, trend) and cosmetic result assessed on a VAS by the surgeon (median 84.5 versus 76.5, p<0.001) or the patient (median 86.7 versus 73.6, p=0.001). In addition there was a trend in favor of the wIRA group to a lower rate of total wound infections (3 of 46, approximately 7%, versus 7 of 48, approximately 15%, p=0.208) including late infections after discharge, caused by the different rate of late infections after discharge: 0 of 46 in the wIRA group and 4 of 48 in the control group. And there was a trend towards a shorter postoperative hospital stay: 9 days in the wIRA group versus 11 days in the control group (p=0.037). The principal finding of this study was that postoperative irradiation with wIRA can improve even a normal wound healing process.
A prospective, randomized, controlled, double-blind study with 45 severely burned children at the Children’s Hospital Park Schönfeld, Kassel, Germany, showed with 30 minutes irradiation once a day (starting on the first day, day of burn as day 1) in the group with wIRA and visible light VIS (wIRA(+VIS), approximately 75% wIRA, 25% VIS) compared to a control group with only VIS a markedly faster reduction of wound size. On the fifth day (after 4 days with irradiation) decision was taken, whether surgical debridement of necrotic tissue was necessary because of deeper (second degree, type b) burns (11 of 21 in the group with wIRA, 14 of 24 in the control group) or non-surgical treatment was possible (second degree, type a, burns). The patients treated conservatively were kept within the study and irradiated till complete reepithelialization. The patients in the group with wIRA showed a markedly faster reduction of wound area: a median reduction of wound size of 50% was reached already after 7 days compared to 9 days in the control group, a median reduction of wound size of 90% was already achieved after 9 days compared to 13 days in the control group. In addition the group with wIRA showed superior results till 3 months after the burn in terms of the overall surgical assessment of the wound, cosmesis, and assessment of effects of irradiation compared to the control group.
In a prospective, randomized, controlled study with 12 volunteers at the University Medical Center Charité, Berlin, Germany, within each volunteer 4 experimental superficial wounds (5 mm diameter) as an acute wound model were generated by suction cup technique, removing the roof of the blister with a scalpel and a sterile forceps (day 1). 4 different treatments were used and investigated during 10 days: no therapy, only wIRA(+VIS) (approximately 75% wIRA, 25% VIS; 30 minutes irradiation once a day), only dexpanthenol (= D-panthenol) cream once a day, wIRA(+VIS) and dexpanthenol cream once a day. Healing of the small experimental wounds was from a clinical point of view excellent with all 4 treatments. Therefore there were only small differences between the treatments with slight advantages of the combination wIRA(+VIS) and dexpanthenol cream and of dexpanthenol cream alone concerning relative change of wound size and assessment of feeling of the wound area. However laser scanning microscopy with a scoring system revealed differences between the 4 treatments concerning the formation of the stratum corneum (from first layer of corneocytes to full formation) especially on the days 5-7: fastest formation of the stratum corneum was seen in wounds treated with wIRA(+VIS) and dexpanthenol cream, second was wIRA(+VIS) alone, third dexpanthenol cream alone and last were untreated wounds. Bacterial counts of the wounds (taken every 2 days) showed, that wIRA(+VIS) and the combination of wIRA(+VIS) with dexpanthenol cream were able to inhibit the colonisation with physiological skin flora up to day 5 when compared with the two other groups (untreated group and group with dexpanthenol cream alone). At any investigated time, the amount of colonisation under therapy with wIRA(+VIS) alone was lower (interpreted as more suppressed) compared with the group with wIRA(+VIS) and dexpanthenol cream.
During rehabilitation after hip and knee endoprosthetic operations the resorption of wound seromas and wound hematomas was both clinically and sonographically faster and pain was reduced by irradiation with wIRA(+VIS).
wIRA can be used successfully for persistent postoperative pain e.g. after thoracotomy.
As perspectives for wIRA it seems clinically prudent to use wIRA both pre- and postoperatively, e.g. in abdominal and thoracic operations. wIRA can be used preoperatively (e.g. during 1-2 weeks) to precondition donor and recipient sites of skin flaps, transplants or partial-thickness skin grafts, and postoperatively to improve wound healing and to decrease pain, inflammation and infections at all mentioned sites. wIRA can be used to support routine pre- or intraoperative antibiotic administration or it might even be discussed to replace this under certain conditions by wIRA.
PMCID: PMC2831241  PMID: 20204084
water-filtered infrared-A (wIRA); wound healing; acute wounds; prospective, randomized, controlled, double-blind studies; reduction of pain; problem wounds; wound infections; infection defense; wound exudation; inflammation; thermal and non-thermal effects; thermic and non-thermic effects; energy supply; oxygen supply; tissue oxygen partial pressure; tissue temperature; tissue blood flow; visual analog scales (VAS); quality of life
5.  Negative Pressure Wound Therapy 
Executive Summary
This review was conducted to assess the effectiveness of negative pressure wound therapy.
Clinical Need: Target Population and Condition
Many wounds are difficult to heal, despite medical and nursing care. They may result from complications of an underlying disease, like diabetes; or from surgery, constant pressure, trauma, or burns. Chronic wounds are more often found in elderly people and in those with immunologic or chronic diseases. Chronic wounds may lead to impaired quality of life and functioning, to amputation, or even to death.
The prevalence of chronic ulcers is difficult to ascertain. It varies by condition and complications due to the condition that caused the ulcer. There are, however, some data on condition-specific prevalence rates; for example, of patients with diabetes, 15% are thought to have foot ulcers at some time during their lives. The approximate community care cost of treating leg ulcers in Canada, without reference to cause, has been estimated at upward of $100 million per year.
Surgically created wounds can also become chronic, especially if they become infected. For example, the reported incidence of sternal wound infections after median sternotomy is 1% to 5%. Abdominal surgery also creates large open wounds. Because it is sometimes necessary to leave these wounds open and allow them to heal on their own (secondary intention), some may become infected and be difficult to heal.
Yet, little is known about the wound healing process, and this makes treating wounds challenging. Many types of interventions are used to treat wounds.
Current best practice for the treatment of ulcers and other chronic wounds includes debridement (the removal of dead or contaminated tissue), which can be surgical, mechanical, or chemical; bacterial balance; and moisture balance. Treating the cause, ensuring good nutrition, and preventing primary infection also help wounds to heal. Saline or wet-to-moist dressings are reported as traditional or conventional therapy in the literature, although they typically are not the first line of treatment in Ontario. Modern moist interactive dressings are foams, calcium alginates, hydrogels, hydrocolloids, and films. Topical antibacterial agents—antiseptics, topical antibiotics, and newer antimicrobial dressings—are used to treat infection.
The Technology Being Reviewed
Negative pressure wound therapy is not a new concept in wound therapy. It is also called subatmospheric pressure therapy, vacuum sealing, vacuum pack therapy, and sealing aspirative therapy.
The aim of the procedure is to use negative pressure to create suction, which drains the wound of exudate (i.e., fluid, cells, and cellular waste that has escaped from blood vessels and seeped into tissue) and influences the shape and growth of the surface tissues in a way that helps healing. During the procedure, a piece of foam is placed over the wound, and a drain tube is placed over the foam. A large piece of transparent tape is placed over the whole area, including the healthy tissue, to secure the foam and drain the wound. The tube is connected to a vacuum source, and fluid is drawn from the wound through the foam into a disposable canister. Thus, the entire wound area is subjected to negative pressure. The device can be programmed to provide varying degrees of pressure either continuously or intermittently. It has an alarm to alert the provider or patient if the pressure seal breaks or the canister is full.
Negative pressure wound therapy may be used for patients with chronic and acute wounds; subacute wounds (dehisced incisions); chronic, diabetic wounds or pressure ulcers; meshed grafts (before and after); or flaps. It should not be used for patients with fistulae to organs/body cavities, necrotic tissue that has not been debrided, untreated osteomyelitis, wound malignancy, wounds that require hemostasis, or for patients who are taking anticoagulants.
Review Strategy
The inclusion criteria were as follows:
Randomized controlled trial (RCT) with a sample size of 20 or more
Human study
Published in English
Summary of Findings
Seven international health technology assessments on NPWT were identified. Included in this list of health technology assessments is the original health technology review on NPWT by the Medical Advisory Secretariat from 2004. The Medical Advisory Secretariat found that the health technology assessments consistently reported that NPWT may be useful for healing various types of wounds, but that its effectiveness could not be empirically quantified because the studies were poorly done, the patient populations and outcome measures could not be compared, and the sample sizes were small.
Six RCTs were identified that compared NPWT to standard care. Five of the 6 studies were of low or very low quality according to Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. The low and very low quality RCTs were flawed owing to small sample sizes, inconsistent reporting of results, and patients lost to follow-up. The highest quality study, which forms the basis of this health technology policy assessment, found that:
There was not a statistically significant difference (≥ 20%) between NPWT and standard care in the rate of complete wound closure in patients who had complete wound closure but did not undergo surgical wound closure (P = .15).
The authors of this study did not report the length of time to complete wound closure between NPWT and standard care in patients who had complete wound closure but who did not undergo surgical wound closure
There was no statistically significant difference (≥ 20%) in the rate of secondary amputations between the patients that received NPWT and those that had standard care (P = .06)
There may be an increased risk of wound infection in patients that receive NPWT compared with those that receive standard care.
Based on the evidence to date, the clinical effectiveness of NPWT to heal wounds is unclear. Furthermore, saline dressings are not standard practice in Ontario, thereby rendering the literature base irrelevant in an Ontario context. Nonetheless, despite the lack of methodologically sound studies, NPWT has diffused across Ontario.
Discussions with Ontario clinical experts have highlighted some deficiencies in the current approach to wound management, especially in the community. Because NPWT is readily available, easy to administer, and may save costs, compared with multiple daily conventional dressing changes, it may be used inappropriately. The discussion group highlighted the need to put in place a coordinated, multidisciplinary strategy for wound care in Ontario to ensure the best, continuous care of patients.
PMCID: PMC3379164  PMID: 23074484
6.  Delayed Wound Healing in Diabetic (db/db) Mice with Pseudomonas aeruginosa Biofilm Challenge – A Model for the Study of Chronic Wounds 
Chronic wounds are a major clinical problem that leads to considerable morbidity and mortality. We hypothesized that an important factor in the failure of chronic wounds to heal was the presence of microbial biofilm resistant to antibiotics and protected from host defenses. A major difficulty in studying chronic wounds is the absence of suitable animal models. The goal of this study was to create a reproducible chronic wound model in diabetic mice by application of bacterial biofilm. Six millimeter punch biopsy wounds were created on the dorsal surface of diabetic (db/db) mice, subsequently challenged with Pseudomonas aeruginosa (PAO1) biofilms two days post-wounding, and covered with semi-occlusive dressings for two weeks. Most of the control wounds were epithelialized by 28 days post-wounding. In contrast, none of biofilm challenged wounds were closed. Histological analysis showed extensive inflammatory cell infiltration, tissue necrosis and epidermal hyperplasia adjacent to challenged wounds- all indicators of an inflammatory non-healing wound. Quantitative cultures and transmission electron microscopy demonstrated that the majority of bacteria were in the scab above the wound bed rather than in the wound tissue. The model was reproducible, allowed localized cutaneous wound infections without high mortality and demonstrated delayed wound healing following biofilm challenge. This model may provide an approach to study the role of microbial biofilms in chronic wounds as well as the effect of specific biofilm therapy on wound healing.
PMCID: PMC2939909  PMID: 20731798
wound matrix; bacteria; scab; immunohistology; electron microscopy
7.  p38 MAPK inhibition reduces diabetes-induced impairment of wound healing 
In healthy tissue, a wound initiates an inflammatory response characterized by the presence of a hematoma, infiltration of inflammatory cells into the wound and, eventually, wound healing. In pathological conditions like diabetes mellitus, wound healing is impaired by the presence of chronic nonresolving inflammation. p38 mitogen-activated protein kinase (MAPK) inhibitors have demonstrated anti-inflammatory effects, primarily by inhibiting the expression of inflammatory cytokines and regulating cellular traffic into wounds. The db/db mouse model of type 2 diabetes was used to characterize the time course of expression of activated p38 during impaired wound healing. The p38α-selective inhibitor, SCIO-469, was applied topically and effects on p38 activation and on wound healing were evaluated. A topical dressing used clinically, Promogran™, was used as a comparator. In this study, we established that p38 is phosphorylated on Days 1 to 7 post-wounding in db/db mice. Further, we demonstrated that SCIO-469, at a dose of 10 μg/wound, had a positive effect on wound contraction, granulation tissue formation, and re-epithelialization, and also increased wound maturity during healing. These effects were similar to or greater than those observed with Promogran™. These results suggest a novel approach to prophylactic and therapeutic management of chronic wounds associated with diabetes or other conditions in which healing is impaired.
PMCID: PMC3048002  PMID: 21437122
p38 MAPK ihibition; diabetic wound healing; db/db mouse; nonresolving healing; Promogran™
8.  Morphine-induced early delays in wound closure: involvement of sensory neuropeptides and modification of neurokinin receptor expression 
Biochemical pharmacology  2009;77(11):1747-1755.
Dose-limiting side effects of centrally-acting opioid drugs have led to the use of topical opioids to reduce the pain associated with chronic cutaneous wounds. However, previous studies indicate that topical morphine application impairs wound healing. This study was designed to elucidate the mechanisms by which morphine delays wound closure. Rats were depleted of sensory neuropeptides by treatment with capsaicin, and full-thickness 4 mm diameter wounds were excised from the intrascapular region. Wounds were treated topically twice daily with 5 mM morphine sulfate, 1 mM substance P, 1 mM neurokinin A, or 5 mM morphine combined with 1 m M substance P or neurokinin A and wound areas assessed. During closure, wound tissue was taken 1, 3, 5, and 8 days post-wounding from control and morphine-treated rats and immunostained for neurokinin receptors and markers for macrophages, myofibroblasts, and vasculature. Results obtained from capsaicin-treated animals demonstrated a significant delay in the early stages of wound contraction that was reversed by neuropeptide application. Treatment of capsaicin-treated rats with topical morphine did not further delay wound closure, suggesting that topical opioids impair wound closure via the inhibition of peripheral neuropeptide release into the healing wound. Morphine application altered neurokinin-1 and neurokinin-2 receptor expression in inflammatory and parenchymal cells essential for wound healing in a cell-specific manner, demonstrating a direct effect of morphine on neurokinin receptor regulation within an array of cells involved in wound healing. These data provide evidence indicating a potentially detrimental effect of topical morphine application on the dynamic wound healing process.
PMCID: PMC4159122  PMID: 19428329
substance P; neurokinin A; primary afferent neuron; skin; macrophage; myofibroblast
In the study of the action of non-antiseptic substances on the rate of cicatrization, the chief obstacle encountered is the facility with which wounds become reinfected under an aseptic dressing. At the beginning of Experiment 1 the wound was sterile. It was subjected to flushing with distilled water for 2 hours, then to flushing with 30 per cent sodium chloride solution for another 2 hours. During that time no special precaution was taken to sterilize the wound and the dressing was left intact until the following morning. It was then found that the wound contained from 30 to 50 bacteria per field. The following day, after the wound had been subjected to the same treatment, the number of bacteria had increased to 50 and 100 per field, and as an immediate consequence the surface of the wound increased from 12 to 12.6 sq. cm. in 2 days. The wound was then dressed antiseptically and was found to be sterile 3 days later. Reinfection again took place the following day in spite of antiseptic dressing with chloramine paste 4 parts per 1,000, which was applied for 20 hours. In Experiment 2 similar results were observed. After 2 days of flushing with distilled water, the number of bacteria had increased to 50 per field. The wound was thereupon sterilized, but new reinfection ensued a few days later. Another wound on the same patient became reinfected under the same conditions after 1 day of sterile dressing. In none of the patients could the wounds be kept in a sterile condition throughout the whole experiment. It was impossible to maintain the sterility of a wound under aseptic dressing. Dakin's solution was therefore injected every 4 hours, or less often, according to the degree of infection, or chloramine paste was applied during the night. If there were 3 or 4 bacteria per field, the experiment was discontinued in order that the wound might be sterilized again. The cicatrization and bacteriological curves of Experiment 4 show that by the application of chloramine paste a wound may be maintained in an appropriately bacteriological condition for carrying out an experiment. Nevertheless, in spite of the antiseptic precautions taken, it was necessary to interrupt this experiment on two occasions, on December 13 to 15 and on December 18 to 22, in order that a complete sterilization of the wound might be effected. When the sterilization was performed as soon as the bacteria were discovered, little retardation occurred in the process of cicatrization. Moreover, the reinfection from the skin was often due to fine bacilli which have but mild retarding action on the rate of healing. The use of at least six flushings in 2 hours with Dakin's solution or of 12 hours' dressing with chloramine paste 10 parts per 1,000, was necessary to keep the wound in a condition of surgical asepsis. The action of distilled water was studied in Experiments 1, 2, and 3. In Experiment 1 the wound was subjected to flushing with distilled water first for 2 hours, then 4 hours, and later for 8 hours per day. The wound was maintained in a condition of mild infection. No marked modification, either acceleration or retardation, was noted in the rate of repair during the period that the treatment was applied. From November 21 to 25 the wound was almost clean and the observed curve remained parallel to the calculated curve, showing that distilled water did not retard the rate of healing. In Experiment 2 the wound was subjected to uninterrupted flushing with distilled water, first for 2 and 8 hours, then for 24 hours. It was continued from November 24 to 30; viz., for 112 hours out of 120, without the occurrence of any marked modification of the course of healing. The bacteriological curve showed that from November 22 to 27 inclusive the wound was kept aseptic. The slight retardation which occurred afterwards was probably brought about by the infection. In Experiment 3 the wound was subjected to flushing with distilled water, first for 2, then for 4, 6, and 8 hours, a total of 20 hours in 4 days. From November 21 to 24 the wound remained surgically aseptic. No modification in the rate of healing occurred. The action of the hypertonic sodium chloride solution was studied in a similar way. In Experiment 4 the wound was flushed at first with 40 per cent sodium chloride solution, from December 4 to 9 for 12 hours a day, and from December 10 to 13 for 24 hours a day, making a total of 144 hours out of 240 hours. At the end of this time the surface area of the wound coincided exactly with the calculated area. Owing to reinfection the experiment was suspended. From December 24 to 29 the wound was kept in contact with 50 per cent sodium chloride solution for 54 hours, and after December 30 flushing with 80 per cent solution for 24 hours a day was resorted to. The total amount of time involved in the above treatments was 174 hours with 40 per cent solution, 72 hours with 50 per cent solution, and 120 hours with 80 per cent solution. On January 1, the surface measured 11 sq. cm. and the calculated surface was 11.3 sq. cm. On January 5 the. surface observed was 10 sq. cm. and the calculated surface was 9 sq. cm. It should be noticed that on January 5 the bacteria numbered 4 per field, which might account for the difference. In Experiment 5 the wound was flushed for 24 hours every day with 50 per cent sodium chloride solution from December 11 to 18, a total of 192 hours. From December 18 to 24 the wound was dressed with agar-agar cakes containing 40 per cent sodium chloride. The concentration was raised to 50 per cent from December 24 to 27. The cicatrization curve indicates only a slight retardation of the repair which can be attributed to infection when both cicatrization and infection curves are compared. The temporary acceleration on the 13th may have been due to the influence of the dressing, but as it did not occur again an experimental error is probably the cause of the change observed in the curve. In Experiment 6 two practically identical wounds at a distance of but a few centimeters from each other were located on the right thigh of Patient 721. The areas of the wounds were respectively 40 and 33 sq. cm. One of the wounds was flushed with distilled water only. The other was subjected to the action of 40 per cent sodium chloride solution. From December 20 to 25 both wounds were in a condition of surgical asepsis. However, the cicatrization curves show that in spite of the difference of treatment the rate of healing was not modified. The rate of healing of the wounds did not therefore apparently undergo any measurable modification under the influence of distilled water or hypertonic salt solution. It is well known that the osmotic changes of the medium have a marked influence on tissues deprived of circulation. But it seems that a tissue with normal circulation is protected by it against the changes of the osmotic pressure occurring at its surface. The above experiments show that apparently the conditions of the tissues of a wound are not modified by the changes of the osmotic pressure of the dressing. The beneficial effects of hypertonic sodium chloride solution on the sterilization of wounds and on the rate of healing recently described by various surgeons are possibly an illusion due to lack of precise technique.
PMCID: PMC2125649  PMID: 19868150
10.  Low-Intensity Vibration Improves Angiogenesis and Wound Healing in Diabetic Mice 
PLoS ONE  2014;9(3):e91355.
Chronic wounds represent a significant health problem, especially in diabetic patients. In the current study, we investigated a novel therapeutic approach to wound healing – whole body low-intensity vibration (LIV). LIV is anabolic for bone, by stimulating the release of growth factors, and modulating stem cell proliferation and differentiation. We hypothesized that LIV improves the delayed wound healing in diabetic mice by promoting a pro-healing wound environment. Diabetic db/db mice received excisional cutaneous wounds and were subjected to LIV (0.4 g at 45 Hz) for 30 min/d or a non-vibrated sham treatment (controls). Wound tissue was collected at 7 and 15 d post-wounding and wound healing, angiogenesis, growth factor levels and wound cell phenotypes were assessed. LIV increased angiogenesis and granulation tissue formation at day 7, and accelerated wound closure and re-epithelialization over days 7 and 15. LIV also reduced neutrophil accumulation and increased macrophage accumulation. In addition, LIV increased expression of pro-healing growth factors and chemokines (insulin-like growth factor-1, vascular endothelial growth factor and monocyte chemotactic protein-1) in wounds. Despite no evidence of a change in the phenotype of CD11b+ macrophages in wounds, LIV resulted in trends towards a less inflammatory phenotype in the CD11b− cells. Our findings indicate that LIV may exert beneficial effects on wound healing by enhancing angiogenesis and granulation tissue formation, and these changes are associated with increases in pro-angiogenic growth factors.
PMCID: PMC3950202  PMID: 24618702
11.  Temporal effects of topical morphine application on cutaneous wound healing 
Anesthesiology  2008;109(1):130-136.
Studies have shown that topical administration of exogenous opioid drugs impairs wound healing by inhibiting the peripheral release of neuropeptides, thereby inhibiting neurogenic inflammation. This delay is immediate and peaks during the first days of wound closure. This study examined the effects of topical morphine treatment in a cutaneous wound healing model in the rat.
Full-thickness 4mm diameter wounds were placed on the periscapular region of rats that subsequently received twice-daily topical applications of IntraSite Gel (Smith+Nephew, Hull, United Kingdom) alone or gel infused with 5 mM morphine sulfate on days 0–3 or 4–10 post-wounding or throughout the time course. Wound tissue was taken on days 1, 3, 5, 8, and 18 post-wounding and immunostained for myofibroblast and macrophage markers or stained with hematoxylin and eosin.
Delays in wound closure observed during morphine application on days 0–3 post-wounding mimicked those seen in wounds treated with morphine throughout the entire healing process. However, no significant delays in closure were seen in wounds treated with morphine beginning on day 4 post-wounding. Treatment of wounds with morphine significantly reduced the number of myofibroblasts and macrophages in the closing wound. Additionally, morphine application resulted in decreases in skin thickness and an increase in residual scar tissue in healed skin.
These findings demonstrate the time-dependent and persistent nature of the detrimental effects of topical morphine on cutaneous wound healing. The data identify specific limitations that could be ameliorated to optimize topical opioid administration as an analgesic therapeutic strategy in the treatment of painful cutaneous wounds.
PMCID: PMC2598738  PMID: 18580183
12.  Management of Chronic Pressure Ulcers 
Executive Summary
In April 2008, the Medical Advisory Secretariat began an evidence-based review of the literature concerning pressure ulcers.
Please visit the Medical Advisory Secretariat Web site, to review these titles that are currently available within the Pressure Ulcers series.
Pressure ulcer prevention: an evidence based analysis
The cost-effectiveness of prevention strategies for pressure ulcers in long-term care homes in Ontario: projections of the Ontario Pressure Ulcer Model (field evaluation)
Management of chronic pressure ulcers: an evidence-based analysis
The Medical Advisory Secretariat (MAS) conducted a systematic review on interventions used to treat pressure ulcers in order to answer the following questions:
Do currently available interventions for the treatment of pressure ulcers increase the healing rate of pressure ulcers compared with standard care, a placebo, or other similar interventions?
Within each category of intervention, which one is most effective in promoting the healing of existing pressure ulcers?
A pressure ulcer is a localized injury to the skin and/or underlying tissue usually over a bony prominence, as a result of pressure, or pressure in conjunction with shear and/or friction. Many areas of the body, especially the sacrum and the heel, are prone to the development of pressure ulcers. People with impaired mobility (e.g., stroke or spinal cord injury patients) are most vulnerable to pressure ulcers. Other factors that predispose people to pressure ulcer formation are poor nutrition, poor sensation, urinary and fecal incontinence, and poor overall physical and mental health.
The prevalence of pressure ulcers in Ontario has been estimated to range from a median of 22.1% in community settings to a median of 29.9% in nonacute care facilities. Pressure ulcers have been shown to increase the risk of mortality among geriatric patients by as much as 400%, to increase the frequency and duration of hospitalization, and to decrease the quality of life of affected patients. The cost of treating pressure ulcers has been estimated at approximately $9,000 (Cdn) per patient per month in the community setting. Considering the high prevalence of pressure ulcers in the Ontario health care system, the total cost of treating pressure ulcers is substantial.
Wounds normally heal in 3 phases (inflammatory phase, a proliferative phase of new tissue and matrix formation, and a remodelling phase). However, pressure ulcers often fail to progress past the inflammatory stage. Current practice for treating pressure ulcers includes treating the underlying causes, debridement to remove necrotic tissues and contaminated tissues, dressings to provide a moist wound environment and to manage exudates, devices and frequent turning of patients to provide pressure relief, topical applications of biologic agents, and nutritional support to correct nutritional deficiencies. A variety of adjunctive physical therapies are also in use.
Health technology assessment databases and medical databases were searched from 1996 (Medline), 1980 (EMBASE), and 1982 (CINAHL) systematically up to March 2008 to identify randomized controlled trials (RCTs) on the following treatments of pressure ulcers: cleansing, debridement, dressings, biological therapies, pressure-relieving devices, physical therapies, nutritional therapies, and multidisciplinary wound care teams. Full literature search strategies are reported in appendix 1. English-language studies in previous systematic reviews and studies published since the last systematic review were included if they had more than 10 subjects, were randomized, and provided objective outcome measures on the healing of pressure ulcers. In the absence of RCTs, studies of the highest level of evidence available were included. Studies on wounds other than pressure ulcers and on surgical treatment of pressure ulcers were excluded. A total of 18 systematic reviews, 104 RCTs, and 4 observational studies were included in this review.
Data were extracted from studies using standardized forms. The quality of individual studies was assessed based on adequacy of randomization, concealment of treatment allocation, comparability of groups, blinded assessment, and intention-to-treat analysis. Meta-analysis to estimate the relative risk (RR) or weighted mean difference (WMD) for measures of healing was performed when appropriate. A descriptive synthesis was provided where pooled analysis was not appropriate or not feasible. The quality of the overall evidence on each intervention was assessed using the grading of recommendations assessment, development, and evaluation (GRADE) criteria.
Findings from the analysis of the included studies are summarized below:
There is no good trial evidence to support the use of any particular wound cleansing solution or technique for pressure ulcers.
There was no evidence that debridement using collagenase, dextranomer, cadexomer iodine, or maggots significantly improved complete healing compared with placebo.
There were no statistically significant differences between enzymatic or mechanical debridement agents with the following exceptions:
Papain urea resulted in better debridement than collagenase.
Calcium alginate resulted in a greater reduction in ulcer size compared to dextranomer.
Adding streptokinase/streptodornase to hydrogel resulted in faster debridement.
Maggot debridement resulted in more complete debridement than conventional treatment.
There is limited evidence on the healing effects of debridement devices.
Hydrocolloid dressing was associated with almost three-times more complete healing compared with saline gauze.
There is evidence that hydrogel and hydropolymer may be associated with 50% to 70% more complete healing of pressure ulcers than hydrocolloid dressing.
No statistically significant differences in complete healing were detected among other modern dressings.
There is evidence that polyurethane foam dressings and hydrocellular dressings are more absorbent and easier to remove than hydrocolloid dressings in ulcers with moderate to high exudates.
In deeper ulcers (stage III and IV), the use of alginate with hydrocolloid resulted in significantly greater reduction in the size of the ulcers compared to hydrocolloid alone.
Studies on sustained silver-releasing dressing demonstrated a tendency for reducing the risk of infection and promoting faster healing, but the sample sizes were too small for statistical analysis or for drawing conclusions.
Biological Therapies
The efficacy of platelet-derived growth factors (PDGFs), fibroblast growth factor, and granulocyte-macrophage colony stimulating factor in improving complete healing of chronic pressure ulcers has not been established.
Presently only Regranex, a recombinant PDGF, has been approved by Health Canada and only for treatment of diabetic ulcers in the lower extremities.
A March 2008 US Food and Drug Administration (FDA) communication reported increased deaths from cancers in people given three or more prescriptions for Regranex.
Limited low-quality evidence on skin matrix and engineered skin equivalent suggests a potential role for these products in healing refractory advanced chronic pressure ulcers, but the evidence is insufficient to draw a conclusion.
Adjunctive Physical Therapy
There is evidence that electrical stimulation may result in a significantly greater reduction in the surface area and more complete healing of stage II to IV ulcers compared with sham therapy. No conclusion on the efficacy of electrotherapy can be drawn because of significant statistical heterogeneity, small sample sizes, and methodological flaws.
The efficacy of other adjunctive physical therapies [electromagnetic therapy, low-level laser (LLL) therapy, ultrasound therapy, ultraviolet light therapy, and negative pressure therapy] in improving complete closure of pressure ulcers has not been established.
Nutrition Therapy
Supplementation with 15 grams of hydrolyzed protein 3 times daily did not affect complete healing but resulted in a 2-fold improvement in Pressure Ulcer Scale for Healing (PUSH) score compared with placebo.
Supplementation with 200 mg of zinc three times per day did not have any significant impact on the healing of pressure ulcers compared with a placebo.
Supplementation of 500 mg ascorbic acid twice daily was associated with a significantly greater decrease in the size of the ulcer compared with a placebo but did not have any significant impact on healing when compared with supplementation of 10 mg ascorbic acid three times daily.
A very high protein tube feeding (25% of energy as protein) resulted in a greater reduction in ulcer area in institutionalized tube-fed patients compared with a high protein tube feeding (16% of energy as protein).
Multinutrient supplements that contain zinc, arginine, and vitamin C were associated with a greater reduction in the area of the ulcers compared with standard hospital diet or to a standard supplement without zinc, arginine, or vitamin C.
Firm conclusions cannot be drawn because of methodological flaws and small sample sizes.
Multidisciplinary Wound Care Teams
The only RCT suggests that multidisciplinary wound care teams may significantly improve healing in the acute care setting in 8 weeks and may significantly shorten the length of hospitalization. However, since only an abstract is available, study biases cannot be assessed and no conclusions can be drawn on the quality of this evidence.
PMCID: PMC3377577  PMID: 23074533
13.  Effect of Hominis Placenta on cutaneous wound healing in normal and diabetic mice 
Nutrition Research and Practice  2014;8(4):404-409.
The number of diabetic patients has recently shown a rapid increase, and delayed wound healing is a major clinical complication in diabetes. In this study, the wound healing effect of Hominis placenta (HP) treatment was investigated in normal and streptozotocin-induced diabetic mice.
Four full thickness wounds were created using a 4 mm biopsy punch on the dorsum. HP was injected subcutaneously at the middle region of the upper and lower wounds. Wounds were digitally photographed and wound size was measured every other day until the 14th day. Wound closure rate was analyzed using CANVAS 7SE software. Wound tissues were collected on days 2, 6, and 14 after wounding for H/E, immunohistochemistry for FGF2, and Masson's trichrome staining for collagen study.
Significantly faster wound closure rates were observed in the HP treated group than in normal and diabetes control mice on days 6 and 8. Treatment with HP resulted in reduced localization of inflammatory cells in wounded skin at day 6 in normal mice and at day 14 in diabetic mice (P < 0.01). Expression of fibroblast growth factor (FGF) 2 showed a significant increase in the HP treated group on day 14 in both normal (P < 0.01) and diabetic mice (P < 0.05). In addition, HP treated groups showed a thicker collagen layer than no treatment groups, which was remarkable on the last day, day 14, in both normal and diabetic mice.
Taken together, HP treatment has a beneficial effect on acceleration of cutaneous wound healing via regulation of the entire wound healing process, including inflammation, proliferation, and remodeling.
PMCID: PMC4122712  PMID: 25110560
Diabetes; wound; Hominis placenta; inflammation; fibroblast growth factor 2
14.  Community-Based Care for Chronic Wound Management 
Executive Summary
In August 2008, the Medical Advisory Secretariat (MAS) presented a vignette to the Ontario Health Technology Advisory Committee (OHTAC) on a proposed targeted health care delivery model for chronic care. The proposed model was defined as multidisciplinary, ambulatory, community-based care that bridged the gap between primary and tertiary care, and was intended for individuals with a chronic disease who were at risk of a hospital admission or emergency department visit. The goals of this care model were thought to include: the prevention of emergency department visits, a reduction in hospital admissions and re-admissions, facilitation of earlier hospital discharge, a reduction or delay in long-term care admissions, and an improvement in mortality and other disease-specific patient outcomes.
OHTAC approved the development of an evidence-based assessment to determine the effectiveness of specialized community based care for the management of heart failure, Type 2 diabetes and chronic wounds.
Please visit the Medical Advisory Secretariat Web site at: to review the following reports associated with the Specialized Multidisciplinary Community-Based care series.
Specialized multidisciplinary community-based care series: a summary of evidence-based analyses
Community-based care for the specialized management of heart failure: an evidence-based analysis
Community-based care for chronic wound management: an evidence-based analysis
Please note that the evidence-based analysis of specialized community-based care for the management of diabetes titled: “Community-based care for the management of type 2 diabetes: an evidence-based analysis” has been published as part of the Diabetes Strategy Evidence Platform at this URL:
Please visit the Toronto Health Economics and Technology Assessment Collaborative Web site at: to review the following economic project associated with this series:
Community-based Care for the specialized management of heart failure: a cost-effectiveness and budget impact analysis.
The objective of this evidence-based review is to determine the effectiveness of a multidisciplinary wound care team for the management of chronic wounds.
Clinical Need: Condition and Target Population
Chronic wounds develop from various aetiologies including pressure, diabetes, venous pathology, and surgery. A pressure ulcer is defined as a localized injury to the skin/and or underlying tissue occurring most often over a bony prominence and caused, alone or in combination, by pressure, shear, or friction. Up to three fifths of venous leg ulcers are due to venous aetiology.
Approximately 1.5 million Ontarians will sustain a pressure ulcer, 111,000 will develop a diabetic foot ulcer, and between 80,000 and 130,000 will develop a venous leg ulcer. Up to 65% of those afflicted by chronic leg ulcers report experiencing decreased quality of life, restricted mobility, anxiety, depression, and/or severe or continuous pain.
Multidisciplinary Wound Care Teams
The term ‘multidisciplinary’ refers to multiple disciplines on a team and ‘interdisciplinary’ to such a team functioning in a coordinated and collaborative manner. There is general consensus that a group of multidisciplinary professionals is necessary for optimum specialist management of chronic wounds stemming from all aetiologies. However, there is little evidence to guide the decision of which professionals might be needed form an optimal wound care team.
Evidence-Based Analysis Methods
Literature Search
A literature search was performed on July 7, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, Wiley Cochrane, Centre for Reviews and Dissemination/International Agency for Health Technology Assessment, and on July 13, 2009 using the Cumulative Index to Nursing & Allied Health Literature (CINAHL), and the International Agency for Health Technology Assessment (INAHTA) for studies pertaining to leg and foot ulcers. A similar literature search was conducted on July 29’ 2009 for studies pertaining to pressure ulcers. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established.
Inclusion Criteria
Randomized controlled trials and Controlled clinical Trials (CCT)
Systematic review with meta analysis
Population includes persons with pressure ulcers (anywhere) and/or leg and foot ulcers
The intervention includes a multidisciplinary (two or more disciplines) wound care team.
The control group does not receive care by a wound care team
Studies published in the English language between 2004 and 2009
Exclusion Criteria
Single centre retrospective observational studies
Outcomes of Interest
Proportion of persons and/or wounds completely healed
Time to complete healing
Quality of Life
Pain assessment
Summary of Findings
Two studies met the inclusion and exclusion criteria, one a randomized controlled trial (RCT), the other a CCT using a before and after study design. There was variation in the setting, composition of the wound care team, outcome measures, and follow up periods between the studies. In both studies, however, the wound care team members received training in wound care management and followed a wound care management protocol.
In the RCT, Vu et al. reported a non-significant difference between the proportion of wounds healed in 6 months using a univariate analysis (61.7% for treatment vs. 52.5% for control; p=0.074, RR=1.19) There was also a non-significant difference in the mean time to healing in days (82 for treatment vs. 101 for control; p=0.095). More persons in the intervention group had a Brief Pain Inventory (BPI) score equal to zero (better pain control) at 6 months when compared with the control group (38.6% for intervention vs. 24.4% for control; p=0.017, RR=1.58). By multivariate analysis a statistically significant hazard ratio was reported in the intervention group (1.73, 95% CI 1.20-1.50; p=0.003).
In the CCT, Harrison et al. reported a statistically significant difference in healing rates between the pre (control) and post (intervention) phases of the study. Of patients in the pre phase, 23% had healed ulcers 3 months after study enrolment, whereas 56% were healed in the post phase (P<0.001, OR=4.17) (Figure 3). Furthermore, 27% of patients were treated daily or more often in the pre phase whereas only 6% were treated at this frequency in the post phase (P<0.001), equal to a 34% relative risk reduction in frequency of daily treatments. The authors did not report the results of pain relief assessment.
The body of evidence was assessed using the GRADE methodology for 4 outcomes: proportion of wounds healed, proportion of persons with healed wounds, wound associated pain relief, and proportion of persons needing daily wound treatments. In general, the evidence was found to be low to very low quality.
The evidence supports that managing chronic wounds with a multidisciplinary wound care team significantly increases wound healing and reduces the severity of wound-associated pain and the required daily wound treatments compared to persons not managed by a wound care team. The quality of evidence supporting these outcomes is low to very low meaning that further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
PMCID: PMC3377537  PMID: 23074522
15.  Ala42S100A8 Ameliorates Psychological-Stress Impaired Cutaneous Wound Healing 
Brain, behavior, and immunity  2009;23(6):755-759.
Although wound healing is generally a successful, carefully orchestrated and evolutionary sound process, it can be disregulated by extrinsic factors such as psychological stress. In the SKH-1 restraint stress model of cutaneous wound healing, the rate of wound closure is approximately 30% slower in stressed mice. Delay in healing is associated with exaggerated acute inflammation and deficient bacterial clearance at the wound site. It has been suggested that wound hypoxia may contribute to the mechanisms of impaired cutaneous wound healing in the mouse SKH-1 model.
Optimal healing of a cutaneous wound is a stepwise repair program. In its early phase, an inflammatory oxidative burst generated by neutrophils is observed. 40% of neutrophils cytosolic protein weight is comprised of two calcium binding proteins S100A8 and S100A9. Our previous work has shown that S100A8 act as an oxidation sensitive repellent of human neutrophils in-vitro. Ala42S100A8, a site-directed mutant protein is resistant to oxidative inhibition and inhibits neutrophil recruitment in-vivo.
Accordingly, we tested the hypothesis that S100A8 may ameliorate wound healing in this model. We examined the effect of wild type and ala42S100A8 for their ability to ameliorate wound closure rates. The data indicated that a single local application of ala42S100A8 ameliorated the decreased rate of wound closure resulting from stress. This occurred without significantly affecting wound bacterial clearance. Wild type S100A8 only had a partial beneficial effect on the rate of wound closure. Those findings support further translational studies of S100 based intervention to ameliorate impaired wound healing.
PMCID: PMC2710400  PMID: 19336252
Wound healing; calprotectin; S100A8; oxidation; psychological stress; neutrophils; bacterial clearance; cutaneous; translational
16.  Improved diabetic wound healing through topical silencing of p53 is associated with augmented vasculogenic mediators 
Diabetes is characterized by several poorly understood phenomena including dysfunctional wound healing and impaired vasculogenesis. P53, a master cell cycle regulator, is upregulated in diabetic wounds and has recently been shown to play regulatory roles in vasculogenic pathways. We have previously described a novel method to topically silence target genes in a wound bed with siRNA. We hypothesized that silencing p53 results in improved diabetic wound healing and augmentation of vasculogenic mediators. Paired 4-mm stented wounds were created on diabetic db/db mice. Topically applied p53 siRNA, evenly distributed in an agarose matrix, was applied to wounds at post-wound day 1 and 7 (matrix alone and nonsense siRNA served as controls). Animals were sacrificed at post-wound days 10 and 24. Wound time to closure was photometrically assessed, and wounds were harvested for histology, immunohistochemistry, and immunofluorescence. Vasculogenic cytokine expression was evaluated via western blot, RT-PCR, and ELISA. ANOVA/t-test was used to determine significance (p<=0.05). Local p53 silencing resulted in faster wound healing with wound closure at 18 ± 1.3d in the treated group versus 28 ± 1.0d in controls. The treated group demonstrated improved wound architecture at each time point while demonstrating near complete local p53 knockdown. Moreover, treated wounds showed a 1.92 fold increase in CD31 endothelial cell staining over controls. Western blot analysis confirmed near complete p53 knockdown in treated wounds. At day 10, VEGF secretion (ELISA) was significantly increased in treated wounds (109.3 ± 13.9 pg/ml) versus controls (33.0 ± 3.8 pg/ml) while RT-PCR demonstrated a 1.86 fold increase in SDF-1 expression in treated wounds versus controls. This profile was reversed after treated wounds healed and prior to closure of controls (day 24). Augmented vasculogenic cytokine profile and endothelial cell markers are associated with improved diabetic wound healing in topical gene therapy with p53 siRNA.
PMCID: PMC3145486  PMID: 20955346
siRNA; wound; diabetes; p53
17.  Dermal wound transcriptomic responses to Infection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a rabbit ear wound model 
Bacterial infections of wounds impair healing and worsen scarring. We hypothesized that transcriptome analysis of wounds infected with Klebsiella pneumoniae (K.p.) or Pseudomonas aeruginosa (P.a.) would indicate host-responses associated with the worse healing of P.a.- than K.p.-infected wounds.
Wounds created on post-operative day (POD) 0 were infected during the inflammatory phase of healing on POD3 and were harvested on POD4 for microarray and transcriptome analysis. Other wounds received topical antibiotic after infection for 24 hours to promote biofilm development, and were harvested on POD6 or POD12.
Wounds infected for 24 hours, relative to uninfected wounds, elevated transcripts of immune-response functions characteristic of infiltrating leukocytes. But P.a.-infected wounds elevated many more transcripts and to higher levels than K.p.-infected wounds. Coincidently, suppressed transcripts of both wounds enriched into stress-response pathways, including EIF2 signaling; however, this was more extensive for P.a.-infected wounds, including many-fold more transcripts enriching in the ‘cell death’ annotation, suggesting resident cutaneous cell toxicity in response to a more damaging P.a. inflammatory milieu. The POD6 wounds were colonized with biofilm but expressed magnitudes fewer immune-response transcripts with no stress-response enrichments. However, elevated transcripts of P.a.-infected wounds were inferred to be regulated by type I interferons, similar to a network unique to P.a.-infected wounds on POD4. On POD12, transcripts that were more elevated in K.p.-infected wounds suggested healing, while transcripts more elevated in P.a.-infected wounds indicated inflammation.
An extensive inflammatory response of wounds was evident from upregulated transcripts 24 hours after infection with either bacterium, but the response was more intense for P.a.- than K.p.-infected wounds. Coincidently, more extensive down-regulated transcripts of P.a.-infected wounds indicated a stronger “integrated stress response” to the inflammatory milieu that tipped more toward cutaneous cell death. Unique to P.a.-infected wounds on POD4 and POD6 were networks inferred to be regulated by interferons, which may result from intracellular replication of P.a. These data point to specific downregulated transcripts of cells resident to the wound as well as upregulated transcripts characteristic of infiltrating leukocytes that could be useful markers of poorly healing wounds and indicators of wound-specific treatments for improving outcomes.
PMCID: PMC4101837  PMID: 25035691
18.  Inhibition of SDF-1α further impairs diabetic wound healing 
Impaired diabetic wound healing is associated with abnormal SDF-1α production, decreased angiogenesis, and chronic inflammation. Lentiviral-mediated overexpression of SDF-1α can correct the impairments in angiogenesis and healing in diabetic wounds. We hypothesized that SDF-1α is a critical component of the normal wound healing response and that inhibition of SDF-1α would further delay the wound-healing process.
Design of study
Db/Db diabetic mice and Db/+ non-diabetic mice were wounded with an 8mm punch biopsy and the wounds treated with a lentiviral vector containing either the GFP or SDF-1α inhibitor transgene. The inhibitor transgene is a mutant form of SDF-1α that binds, but does not activate, the CXCR4 receptor. Computerized planimetry was used to measure wound size daily. Wounds were analyzed at 3 and 7 days by histology and for production of inflammatory markers using real-time PCR. The effect of the SDF-1α inhibitor on cellular migration was also assessed.
Inhibition of SDF-1α resulted in a significant decrease in the rate of diabetic wound healing, (3.8 cm2/day versus 6.5 cm2/day in GFP-treated wounds p=0.04), and also impaired the early phase of non-diabetic wound healing. SDF-1α inhibition also resulted in fewer small-caliber vessels, less granulation tissue formation, and increased proinflammatory gene expression (IL-6 and MIP-2) in the diabetic wounds.
The relative level of SDF-1α in the wound plays a key role in the wound healing response. Alterations in the wound level of SDF-1α, as seen in diabetes or by SDF-1α inhibition, impair healing by decreasing cellular migration and angiogenesis, leading to increased production of inflammatory cytokines and inflammation.
PMCID: PMC3058337  PMID: 21211927
19.  Time Course Study of Delayed Wound Healing in a Biofilm-Challenged Diabetic Mouse Model 
Wound Repair and Regeneration  2012;20(3):342-352.
Bacterial biofilm has been shown to play a role in delaying wound healing of chronic wounds, a major medical problem that results in significant healthcare burden. A reproducible animal model could be very valuable for studying the mechanism and management of chronic wounds. Our previous work demonstrated that Pseudomonas aeruginosa (PAO1) biofilmchallenge on wounds in diabetic (db/db) mice significantly delayed wound healing. In this wound time course study, we further characterize the bacterial burden, delayed wound healing and certain aspects of the host inflammatory response in the PAO1 biofilm-challenged db/db mouse model. PAO1 biofilms were transferred onto 2 day old wounds created on the dorsal surface of db/db mice. Control wounds without biofilm-challenge healed by 4 weeks, consistent with previous studies; none of the biofilm-challenged wounds healed by 4 weeks; 64% of the biofilm-challenged wounds healed by 6 weeks; and all of the biofilm-challenged wounds healed by 8 weeks. During the wound healing process, P. aeruginosa were gradually cleared from the wounds while the presence of S. aureus (part of the normal mouse skin flora) increased. Scabs from all unhealed wounds contained 107 P. aeruginosa, which was 100 fold higher than the counts isolated from wound beds (i.e. 99% of the P. aeruginosa was in the scab). Histology and genetic analysis showed proliferative epidermis, deficient vascularization and increased inflammatory cytokines. Hypoxia inducible factor (HIF) expression increased 3 fold in 4 week wounds. In summary, our study demonstrates that biofilm-challenged wounds typically heal in approximately 6 weeks, at least 2 weeks longer than non biofilm-challenged normal wounds. These data suggest that this delayed wound healing model enables the in vivo study of bacterial biofilm responses to host defenses and the effects of biofilms on host wound healing pathways. It may also be used to test anti-biofilm strategies the treatment of chronic wounds.
PMCID: PMC3349451  PMID: 22564229
Pseudomonas aeruginosa; biofilm; wound infection; keratinocytes; inflammatory response; gene expression
20.  Therapy of chronic wounds with water-filtered infrared-A (wIRA) 
The central portion of chronic wounds is often hypoxic and relatively hypothermic, representing a deficient energy supply of the tissue, which impedes wound healing or even makes it impossible. Water-filtered infrared-A (wIRA) is a special form of heat radiation with a high tissue penetration and a low thermal load to the skin surface. wIRA produces a therapeutically usable field of heat and increases temperature, oxygen partial pressure and perfusion of the tissue. These three factors are decisive for a sufficient tissue supply with energy and oxygen and consequently as well for wound healing, especially in chronic wounds, and infection defense. wIRA acts both by thermal and thermic as well as by non-thermal and non-thermic effects. wIRA can advance wound healing or improve an impaired wound healing process and can especially enable wound healing in non-healing chronic wounds. wIRA can considerably alleviate the pain and diminish wound exudation and inflammation and can show positive immunomodulatory effects.
In a prospective, randomized, controlled study of 40 patients with chronic venous stasis ulcers of the lower legs irradiation with wIRA and visible light (VIS) accelerated the wound healing process (on average 18 vs. 42 days until complete wound closure, residual ulcer area after 42 days 0.4 cm² vs. 2.8 cm²) and led to a reduction of the required dose of pain medication in comparison to the control group of patients treated with the same standard care (wound cleansing, wound dressing with antibacterial gauze, and compression garment therapy) without the concomitant irradiation.
Another prospective study of 10 patients with non-healing chronic venous stasis ulcers of the lower legs included extensive thermographic investigation. Therapy with wIRA(+VIS) resulted in a complete or almost complete wound healing in 7 patients and a marked reduction of the ulcer size in another 2 of the 10 patients, a clear reduction of pain and required dose of pain medication, and a normalization of the thermographic image.
In a current prospective, randomized, controlled, blinded study patients with non-healing chronic venous stasis ulcers of the lower legs are treated with compression garment therapy, wound cleansing, wound dressings and 30 minutes irradiation five times per week over 9 weeks. A preliminary analysis of the first 23 patients of this study has shown in the group with wIRA(+VIS) compared to a control group with VIS an advanced wound healing, an improved granulation and in the later phase of treatment a decrease of the bacterial burden.
Some case reports have demonstrated that wIRA can also be used for mixed arterial-venous ulcers or arterial ulcers, if irradiation intensity is chosen appropriately low and if irradiation is monitored carefully. wIRA can be used concerning decubital ulcers both in a preventive and in a therapeutic indication. wIRA can improve the resorption of topically applied substances also on wounds.
An irradiation with VIS and wIRA presumably acts with endogenous protoporphyrin IX (or protoporphyrin IX of bacteria) virtually similar as a mild photodynamic therapy (endogenous PDT-like effect). This could lead to improved cell regeneration and wound healing and to antibacterial effects.
In conclusion, these results indicate that wIRA generally should be considered for the treatment of chronic wounds.
PMCID: PMC2831243  PMID: 20204086
water-filtered infrared-A (wIRA); wound healing; chronic wounds; chronic venous stasis ulcers of the lower legs; prospective, randomized, controlled, blinded study; reduction of pain; problem wounds; wound infections; infection defense; wound exudation; inflammation; energy supply; oxygen supply; tissue oxygen partial pressure; tissue temperature; tissue blood flow; thermal and non-thermal effects; thermic and non-thermic effects; visual analog scales (VAS); infrared thermography; thermographic image analysis; quality of life
21.  Relationship between Post-kidney Transplantation Antithymocyte Globulin Therapy and Wound Healing Complications 
Background: Wound healing disorders are probably the most common post-transplantation surgical complications. It is thought that wound healing disturbance occurs due to antiproliferative effects of immunosuppressive drugs. On the other hand, success of transplantation is dependent on immunosuppressive therapies. Antihuman thymocyte globulin (ATG) has been widely used as induction therapy but the impact of this treatment on wound healing is not fully understood.
Objective: To investigate wound healing complications after ATG therapy in renal transplant recipients.
Methods: The medical records of 333 kidney transplant recipients were assessed for wound healing disorders. Among these patients, 92 received ATG and 5 doses of 1.5 mg/kg ATG along with the standard protocol of drugs.
Results: The mean age of patients was 38.9 years. Of 333 recipients, 92 (23.7%) received ATG; 21 (6.3%) developed wound healing complications. There was a significant relationship between ATG therapy and wound complications (p=0.034). Also, women were more likely to develop wound healing disorders than men (p=0.002). No statistical difference was observed between age and wound healing complication (p=0.28). There was no significant difference between the mean duration of hospitalization between ATG and Non-ATG group (p=0.9).
Conclusion: ATG increases the risk of overall wound complications. It is needed to pay more attention to the patients treated with this immunosuppressant to avoid the risk of re-interventions, lessen the duration of hospitalization and decrease the impairment of graft function.
PMCID: PMC4089281  PMID: 25013627
Kidney transplantation; Antithymocyte globulin; Wound healing complication
22.  Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice 
PLoS ONE  2009;4(6):e5803.
Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer.
PMCID: PMC2686151  PMID: 19495412
23.  Sex Hormones and Mucosal Wound Healing 
Brain, behavior, and immunity  2008;23(5):629-635.
Wound healing studies, which have chiefly examined dermal tissues, have reported a female advantage in healing rates. Recently our laboratory demonstrated women heal mucosal wounds more slowly than men. We hypothesized sex hormones influence wound healing rates, possibly through their modulating effects on inflammation. This study involved 329 younger subjects aged 18-43 (165 women, 164 men) and 93 older subjects aged 50-88 (60 women, 33 men). A 3.5mm diameter wound was created on the hard oral palate and videographed daily to assess wound closure. Blood collected at the time of wounding was used to assess circulating testosterone, progesterone and estradiol levels, and in vitro cytokine production in response to LPS. No strong associations were observed between healing times and estradiol or progesterone levels. However, in younger subjects, lower testosterone levels related to faster wound closure. Conversely, in older women higher testosterone levels related to 1) lower inflammatory responses; and 2) faster healing times. No such relationships were seen in older men, or in women taking oral contraceptives or hormone replacement therapy [HRT]. Older women (50-54 years) not yet experiencing menopause healed similarly to younger women and dissimilarly from age-matched post-menopausal women. This suggests that the deleterious effects of aging on wound healing occur secondary to the effects of menopause. Supporting this, there was evidence in post-menopausal women that HRT augmented wound closure. Overall, this study suggests that human mucosal healing rates are modulated by testosterone levels. Based upon when between-group differences were observed, testosterone may impact upon the proliferative phase of healing which involves immune processes such as re-epithelialization and angiogenesis.
PMCID: PMC2746088  PMID: 19111925
Testosterone; estradiol; progesterone; follicular; luteal; menopause; inflammation; cytokines; aging; menstrual cycle
24.  Androgen receptor–mediated inhibition of cutaneous wound healing 
Impaired wound healing states in the elderly lead to substantial morbidity, mortality, and a cost to the USHealth Services of over $9 billion per annum. In addition to intrinsic aging per se causing delayed healing, studies have suggested marked sex-differences in wound repair. We report that castration of male mice results in a striking acceleration of local cutaneous wound healing, and is associated with a reduced inflammatory response and increased hair growth. Using a hairless mouse model, we have demonstrated that testosterone reduction stimulates the healing response not through hair follicle epithelial/mesenchymal cell proliferation, but directly via effects on wound cell populations. We suggest that endogenous testosterone inhibits the cutaneous wound healing response in males and is associated with an enhanced inflammatory response. The mechanisms underlying the observed effects involve a direct upregulation of proinflammatory cytokine expression by macrophages in response to testosterone. Blockade of androgen action systemically, via receptor antagonism, accelerates healing significantly, suggesting a specific target for future therapeutic intervention in impaired wound healing states in elderly males.
PMCID: PMC151108  PMID: 12208862
25.  Local Toxicity from Local Anesthetic Polymeric Microparticles 
Anesthesia and analgesia  2013;116(4):794-803.
Local tissue injury from sustained release formulations for local anesthetics can be severe. There is considerable variability in reporting of that injury. We investigated the influence of the intrinsic myotoxicity of the encapsulated local anesthetic (lidocaine, low; bupivacaine, high) on tissue reaction in rats.
Cytotoxicity from a range of lidocaine and bupivacaine concentrations was measured in C2C12 myotubes over 6 days. Rats were given sciatic nerve blocks with 4 microparticulate formulations of lidocaine and bupivacaine: 10% (w/w) lidocaine poly-lactic-co-glycolic acid (PLGA), 10% (w/w) bupivacaine PLGA, 50% (w/w) lidocaine PLGA, and 50% (w/w) bupivacaine PLGA. Effectiveness of nerve blockade was assessed by a modified hotplate test and weight-bearing measurements. Myotoxicity was scored in histologic sections of injection sites. Bupivacaine and lidocaine release kinetics from the particles were measured.
Median sensory blockade duration for 50% (w/w) lidocaine was 255 (90–540) min versus 840 (277–1215) min for 50% (w/w) bupivacaine (P=0.056). All microparticulate formulations resulted in myotoxicity. The choice of local anesthetic did not influence the severity of myotoxicity. Median myotoxicity scores for 50% (w/w) lidocaine compared to 50% (w/w) bupivacaine at 4 days was 3.4 (2.1–4.2) vs. 3.3 (2.9–3.5)(P=0.44) and at 14 days 1.9 (1.8–2.4) versus 1.7 (1.3–1.9)(P=0.23) respictively.
Lidocaine and bupivacaine PLGA microspheres resulted in similar degrees of myotoxicity, irrespective of drug loading. Intrinsic myotoxicity did not predict tissue injury from sustained release of these anesthetics. Caution is warranted in the use of such devices near muscle and nerve.
PMCID: PMC3606664  PMID: 23460564

Results 1-25 (1154637)