PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1323976)

Clipboard (0)
None

Related Articles

1.  An Enhancer Element Harboring Variants Associated with Systemic Lupus Erythematosus Engages the TNFAIP3 Promoter to Influence A20 Expression 
PLoS Genetics  2013;9(9):e1003750.
Functional characterization of causal variants present on risk haplotypes identified through genome-wide association studies (GWAS) is a primary objective of human genetics. In this report, we evaluate the function of a pair of tandem polymorphic dinucleotides, 42 kb downstream of the promoter of TNFAIP3, (rs148314165, rs200820567, collectively referred to as TT>A) recently nominated as causal variants responsible for genetic association of systemic lupus erythematosus (SLE) with tumor necrosis factor alpha inducible protein 3 (TNFAIP3). TNFAIP3 encodes the ubiquitin-editing enzyme, A20, a key negative regulator of NF-κB signaling. A20 expression is reduced in subjects carrying the TT>A risk alleles; however, the underlying functional mechanism by which this occurs is unclear. We used a combination of electrophoretic mobility shift assays (EMSA), mass spectrometry (MS), reporter assays, chromatin immunoprecipitation-PCR (ChIP-PCR) and chromosome conformation capture (3C) EBV transformed lymphoblastoid cell lines (LCL) from individuals carrying risk and non-risk TNFAIP3 haplotypes to characterize the effect of TT>A on A20 expression. Our results demonstrate that the TT>A variants reside in an enhancer element that binds NF-κB and SATB1 enabling physical interaction of the enhancer with the TNFAIP3 promoter through long-range DNA looping. Impaired binding of NF-κB to the TT>A risk alleles or knockdown of SATB1 expression by shRNA, inhibits the looping interaction resulting in reduced A20 expression. Together, these data reveal a novel mechanism of TNFAIP3 transcriptional regulation and establish the functional basis by which the TT>A risk variants attenuate A20 expression through inefficient delivery of NF-κB to the TNFAIP3 promoter. These results provide critical functional evidence supporting a direct causal role for TT>A in the genetic predisposition to SLE.
Author Summary
A key objective of human genetics is the identification and characterization of variants responsible for association with complex diseases. A pair of single nucleotide polymorphisms (rs148314165, rs200820567) 42 kb downstream from the promoter of TNFAIP3, have been proposed as the variants responsible for association with systemic lupus erythematosus based on comprehensive genetic and bioinformatic analyses. TNFAIP3 encodes for the ubiquitin-editing enzyme, A20, which plays a central role in maintaining immune system homeostasis through restriction of NF-κB signaling. Cells that carry this risk haplotype express low levels of TNFAIP3 compared to cells carrying the nonrisk haplotype. How the risk alleles of rs148314165 and rs200820567 might influence low TNFAIP3 expression is unknown. In this paper, we demonstrate that these variants reside in an enhancer element that binds NF-κB and SATB1 enabling the interaction of the enhancer with the TNFAIP3 promoter through long-range DNA looping. Impaired binding of NF-κB directly to the risk alleles or shRNA-mediated knockdown of SATB1 inhibits interaction of the enhancer with the TNFAIP3 promoter resulting in reduced A20 expression. These results clarify the functional mechanism by which rs148314165 and rs200820567 attenuate A20 expression and support a causal role for these variants in the predisposition to autoimmune disease.
doi:10.1371/journal.pgen.1003750
PMCID: PMC3764111  PMID: 24039598
2.  African-Derived Genetic Polymorphisms in TNFAIP3 Mediate Risk for Autoimmunity 
The TNF α-induced protein 3 (TNFAIP3) is an ubiquitin-modifying enzyme and an essential negative regulator of inflammation. Genome-wide association studies have implicated the TNFAIP3 locus in susceptibility to autoimmune disorders in European cohorts, including rheumatoid arthritis, coronary artery disease, psoriasis, celiac disease, type 1 diabetes, inflammatory bowel disease, and systemic lupus erythematosus (SLE). There are two nonsynonymous coding polymorphisms in the deubiquitinating (DUB) domain of TNFAIP3: F127C, which is in high-linkage disequilibrium with reported SLE-risk variants, and A125V, which has not been previously studied. We conducted a case–control study in African-American SLE patients using these coding variants, along with tagging polymorphisms in TNFAIP3, and identified a novel African-derived risk haplotype that is distinct from previously reported risk variants (odds ratio = 1.6, p = 0.006). In addition, a rare protective haplotype was defined by A125V (odds ratio = 0.31, p = 0.027). Although A125V was associated with protection from SLE, surprisingly the same allele was associated with increased risk of inflammatory bowel disease. We tested the functional activity of nonsynonymous coding polymorphisms within TNFAIP3, and found that the A125V coding-change variant alters the DUB activity of the protein. Finally, we used computer modeling to depict how the A125V amino acid change in TNFAIP3 may affect the three-dimensional structure of the DUB domain to a greater extent than F127C. This is the first report of an association between TNFAIP3 polymorphisms and autoimmunity in African-Americans.
doi:10.4049/jimmunol.1000324
PMCID: PMC3307531  PMID: 20483768
3.  Identification of a systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans 
Objective
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder whose etiology is incompletely understood, but likely involves environmental triggers in genetically susceptible individuals. We sought to identify the genetic loci associated with SLE in a Korean population by performing an unbiased genome-wide association scan.
Methods
A total of 1,174 Korean SLE cases and 4,248 population controls were genotyped with strict quality control measures and analyzed for association. For select variants, replication was tested in an independent set of 1,412 SLE cases and 1,163 population controls of Korean and Chinese ancestries.
Results
Eleven regions outside the HLA exceeded genome-wide significance (P<5×10−8). A novel SNP-SLE association was identified between FCHSD2 and P2RY2 peaking at rs11235667 (P = 1.0×10−8, odds ratio (OR) = 0.59) on a 33kb haplotype upstream to ATG16L2. Replication for rs11235667 resulted in Pmeta-rep=0.001 and Pmeta-overall=6.67×10−11 (OR=0.63). Within the HLA region, association peaked in the Class II region at rs116727542 with multiple independent effects. Classical HLA allele imputation identified HLA-DRB1*1501 and HLA-DQB1*0602, both highly correlated, as most strongly associated with SLE. We replicated ten previously established SLE risk loci: STAT1-STAT4, TNFSF4, TNFAIP3, IKZF1, HIP1, IRF5, BLK, WDFY4, ETS1 and IRAK1-MECP2. Of these loci, we identified previously unreported independent second effects in TNFAIP3 and TNFSF4 as well as differences in the association for a putative causal variant in the WDFY4 region.
Conclusions
Further studies are needed to identify true SLE risk effects in other suggestive loci and to identify the causal variant(s) in the regions of ATG16L2, FCHSD2, and P2RY2.
doi:10.1002/art.39548
PMCID: PMC4981330  PMID: 26663301
4.  A Comprehensive Analysis of Shared Loci between Systemic Lupus Erythematosus (SLE) and Sixteen Autoimmune Diseases Reveals Limited Genetic Overlap 
PLoS Genetics  2011;7(12):e1002406.
In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02×10−06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn's disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.
Author Summary
It is well known that multiple autoimmune disorders cluster in families. However, all of the genetic variants that explain this clustering have not been discovered, and the specific genetic variants shared between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) are not known. In order to better understand the genetic factors that explain this predisposition to autoimmunity, we performed a comprehensive evaluation of shared autoimmune genetic variants. First we considered results from 17 ADs and compiled a list with 446 significant genetic variants from these studies. We identified some genetic variants extensively shared between ADs, as well as the ADs that share the most variants. The genetic overlap between SLE and other ADs was modest. Next we tested how important all the 446 genetic variants were in our collection with a minimum of 1,500 SLE patients. Among the most significant variants in SLE, the majority had already been identified in previous studies, but we also discovered variants in two important immune genes. In summary, our data identified diseases with common genetic risk factors and novel SLE effects, and this supports a relatively distinct genetic susceptibility for SLE. This study helps delineate the genetic architecture of ADs.
doi:10.1371/journal.pgen.1002406
PMCID: PMC3234215  PMID: 22174698
5.  Meta-analysis and Imputation Identifies a 109 kb Risk Haplotype Spanning TNFAIP3 Associated with Lupus Nephritis and Hematologic Manifestations 
Genes and immunity  2009;10(5):470-477.
TNFAIP3 encodes the ubiquitin modifying enzyme, A20, a key regulator of inflammatory signaling pathways. We previously reported association between TNFAIP3 variants and systemic lupus erythematosus (SLE). In order to further localize the risk variant(s), we performed a meta-analysis using genetic data available from two Caucasian case/control datasets (1453 total cases, 3381 total controls) and 713 SLE trio families. The best result was found at rs5029939 (P = 1.67 × 10−14, OR = 2.09, 95% CI 1.68–2.60). We then imputed SNPs from the CEU Phase II HapMap using genotypes from 431 SLE cases and 2155 controls. Imputation identified eleven SNPs in addition to three observed SNPs, which together, defined a 109 kb SLE risk segment surrounding TNFAIP3. When evaluating whether the rs5029939 risk allele was associated with SLE clinical manifestations, we observed that heterozygous carriers of the TNFAIP3 risk allele at rs5029939 have a two-fold increased risk of developing renal or hematologic manifestations compared to homozygous non-risk subjects. In summary, our study strengthens the genetic evidence that variants in the region of TNFAIP3 influence risk for SLE, particularly in patients with renal and hematologic manifestations, and narrows the risk effect to a 109 kb DNA segment that spans the TNFAIP3 gene.
doi:10.1038/gene.2009.31
PMCID: PMC2714405  PMID: 19387456
systemic lupus erythematosus; TNFAIP3; imputation; meta-analysis
6.  Meta-Analysis of the TNFAIP3 Region in Psoriasis Reveals a Risk Haplotype that is Distinct from Other Autoimmune Diseases 
Genes and immunity  2014;16(2):120-126.
TNFAIP3 encodes aubiquitin-modifying protein, A20, that is a critical regulator of inflammatory responses. TNFAIP3 polymorphisms are associated with susceptibility to multiple autoimmune diseases including psoriasis, systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and celiac disease. In order to refine the TNFAIP3 association signal in psoriasis and identify candidate causal variants, we performed imputation and meta-analysis of the TNFAIP3 region in five European ancestry cohorts totaling 4,704 psoriasis cases and 7,805 controls. We identified 49 variants whose significance exceeded a corrected Bonferroni threshold, with the top variant being rs582757 (P = 6.07 × 10−12, OR = 1.23). Conditional analysis revealed a suggestive independent association at rs6918329 (Pcond = 7.22 × 10−5, OR=1.15). Functional annotation of the top variants identified several with strong evidence of regulatory potential and several within long non-coding RNAs. Analysis of TNFAIP3 haplotypes revealed that the psoriasis risk haplotype is distinct from other autoimmune diseases. Overall, our findings identify novel candidate causal variants of TNFAIP3 in psoriasis and highlight the complex genetic architecture of this locus in autoimmune susceptibility.
doi:10.1038/gene.2014.75
PMCID: PMC4526682  PMID: 25521225
7.  Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study 
Arthritis Research & Therapy  2010;12(5):R174.
Introduction
TNFAIP3 interacting protein 1, TNIP1 (ABIN-1) is involved in inhibition of nuclear factor-κB (NF-κB) activation by interacting with TNF alpha-induced protein 3, A20 (TNFAIP3), an established susceptibility gene to systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recent genome-wide association studies revealed association of TNIP1 with SLE in the Caucasian and Chinese populations. In this study, we investigated whether the association of TNIP1 with SLE was replicated in a Japanese population. In addition, association of TNIP1 with RA was also examined.
Methods
A case-control association study was conducted on the TNIP1 single nucleotide polymorphism (SNP) rs7708392 in 364 Japanese SLE patients, 553 RA patients and 513 healthy controls.
Results
Association of TNIP1 rs7708392C was replicated in Japanese SLE (allele frequency in SLE: 76.5%, control: 69.9%, P = 0.0022, odds ratio [OR] 1.40, 95% confidence interval [CI] 1.13-1.74). Notably, the risk allele frequency in the healthy controls was considerably greater in Japanese (69.9%) than in Caucasians (24.3%). A tendency of stronger association was observed in the SLE patients with renal disorder (P = 0.00065, OR 1.60 [95%CI 1.22-2.10]) than in all SLE patients (P = 0.0022, OR 1.40 [95%CI 1.13-1.74]). Significant association with RA was not observed, regardless of the carriage of human leukocyte antigen DR β1 (HLA-DRB1) shared epitope. Significant gene-gene interaction between TNIP1 and TNFAIP3 was detected neither in SLE nor RA.
Conclusions
Association of TNIP1 with SLE was confirmed in a Japanese population. TNIP1 is a shared SLE susceptibility gene in the Caucasian and Asian populations, but the genetic contribution appeared to be greater in the Japanese and Chinese populations because of the higher risk allele frequency. Taken together with the association of TNFAIP3, these observations underscore the crucial role of NF-κB regulation in the pathogenesis of SLE.
doi:10.1186/ar3134
PMCID: PMC2991001  PMID: 20849588
8.  Gene–Gene Interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in Systemic Lupus Erythematosus 
Arthritis and rheumatism  2012;64(1):222-231.
Objective
Although the number of convincingly established genetic associations with systemic lupus erythematosus (SLE) has increased sharply over the last few years, refinement of these associations is required, and their potential roles in gene–gene interactions need to be further investigated. Recent genome-wide association studies (GWAS) in SLE have produced renewed interest in B cell/T cell responses and the NF-κB signaling pathway. The aim of this study was to search for possible gene–gene interactions based on identified single-nucleotide polymorphisms (SNPs), in using an approach based on the role of signaling pathways.
Methods
The SNPs in BLK, TNFSF4, TRAF1, TNFAIP3, and REL were replicated in order to evaluate genetic associations with SLE. TaqMan genotyping was conducted in 804 Chinese patients with SLE and 722 matched control subjects. A multiple logistic regression model was used to estimate the multiplicative interaction effect of the SNPs, and additive interactions were analyzed by 2 × 2 factorial designs. Data from a previously published GWAS conducted by the International Consortium on the Genetics of Systemic Lupus Erythematosus were derived for comparison and validation.
Results
Single-marker analysis validated the association of BLK rs2736340 (P = 4.25 × 10–6) as well as TNFSF4 rs2205960 (P = 2.82 × 10–5) and TNFAIP3 rs5029939 (P = 1.92 × 10–3) with SLE susceptibility in Chinese. Multiplicative interaction analysis indicated that BLK had an interactive effect with TNFSF4 in Chinese patients with SLE (P = 6.57 × 10–4). Additive interaction analysis revealed interactions between TRAF1 and TNFAIP3 in both Chinese (P = 2.18 × 10–3) and Caucasians (P = 2.86 × 10–4). In addition, multiple tendencies toward interactions were observed, and an additive effect was observed as the number of risk genotypes increased.
Conclusion
The results of this study provide evidence of the possible gene–gene interactions of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in SLE, which may represent a synergic effect of T cells and B cells through the NF-κB pathway in determining immunologic aberration.
doi:10.1002/art.33318
PMCID: PMC3994469  PMID: 21905002
9.  Analysis of Gender Differences in Genetic Risk: Association of TNFAIP3 Polymorphism with Male Childhood-Onset Systemic Lupus Erythematosus in the Japanese Population 
PLoS ONE  2013;8(8):e72551.
Background
Systemic lupus erythematosus (SLE) is a systemic multisystem autoimmune disorder influenced by genetic background and environmental factors. Our aim here was to replicate findings of associations between 7 of the implicated single nucleotide polymorphisms (SNPs) in IRF5, BLK, STAT4, TNFAIP3, SPP1, TNIP1 and ETS1 genes with susceptibility to childhood-onset SLE in the Japanese population. In particular, we focused on gender differences in allelic frequencies.
Methodology/Principal Findings
The 7 SNPs were genotyped using TaqMan assays in 75 patients with childhood-onset SLE and in 190 healthy controls. The relationship between the cumulative number of risk alleles and SLE manifestations was explored in childhood-onset SLE. Logistic regression was used to test the effect of each polymorphism on susceptibility to SLE, and Wilcoxon rank sum testing was used for comparison of total risk alleles. Data on rs7574865 in the STAT4 gene and rs9138 in SPP1 were replicated for associations with SLE when comparing cases and controls (corrected P values ranging from 0.0043 to 0.027). The rs2230926 allele of TNFAIP3 was associated with susceptibility to SLE in males, but after Bonferroni correction there were no significant associations with any of the other four SNPs in IRF5, BLK, TNIP1 and ETS1 genes. The cumulative number of risk alleles was significantly increased in childhood-onset SLE relative to healthy controls (P = 0.0000041). Male SLE patients had a slightly but significantly higher frequency of the TNFAIP3 (rs2230926G) risk allele than female patients (odds ratio [OR] = 4.05, 95% confidence interval [95%CI] = 1.46–11.2 P<0.05).
Conclusions
Associations of polymorphisms in STAT4 and SPP1 with childhood-onset SLE were confirmed in a Japanese population. Although these are preliminary results for a limited number of cases, TNFAIP3 rs2230926G may be an important predictor of disease onset in males. We also replicated findings that the cumulative number of risk alleles was significantly increased in childhood-onset SLE.
doi:10.1371/journal.pone.0072551
PMCID: PMC3758304  PMID: 24023622
10.  Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-κB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility 
Introduction
Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region.
Methods
To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry.
Results
Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region.
Conclusions
Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.
doi:10.1186/ar2650
PMCID: PMC2688189  PMID: 19292917
11.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
12.  Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4 
PLoS Genetics  2013;9(7):e1003554.
We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10−34, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16×10−28, OR = 1.38[1.24–1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex disease in which the body's immune cells cause inflammation in one or more systems to cause the associated morbidity. Hormones, the environment and genes are all causal contributors to SLE and over the past several years the genetic component of SLE has been firmly established. Several genes which are regulators of the immune system are associated with disease risk. We have established one of these, the tumour-necrosis family superfamily member 4 (TNFSF4) gene, as a lupus susceptibility gene in Northern Europeans. A major obstacle in pinpointing the marker(s) at TNFSF4 which best explain the risk of SLE has been the strong correlation (linkage disequilibrium, LD) between adjacent markers across the TNFSF4 region in this population. To address this, we have typed polymorphisms in several populations in addition to the European groups. The mixed ancestry of these populations gives a different LD pattern than that found in Europeans, presenting a method of pinpointing the section of the TNFSF4 region which results in SLE susceptibility. The Non-European populations have allowed identification of a polymorphism likely to regulate expression of TNFSF4 to increase susceptibility to SLE.
doi:10.1371/journal.pgen.1003554
PMCID: PMC3715547  PMID: 23874208
13.  Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G 
Annals of the Rheumatic Diseases  2012;71(5):777-784.
Objectives
Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype.
Methods
A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined.
Results
Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon.
Conclusion
These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and transcriptomic analysis.
doi:10.1136/annrheumdis-2011-200808
PMCID: PMC3329227  PMID: 22233601
14.  Association of TNFAIP3 Polymorphism with Susceptibility to Systemic Lupus Erythematosus in a Japanese Population 
Recent genome-wide association studies demonstrated association of single nucleotide polymorphisms (SNPs) in the TNFAIP3 region at 6q23 with systemic lupus erythematosus (SLE) in European-American populations. In this study, we investigated whether SNPs in the TNFAIP3 region are associated with SLE also in a Japanese population. A case-control association study was performed on the SNPs rs13192841, rs2230926, and rs6922466 in 318 Japanese SLE patients and 444 healthy controls. Association of rs2230926 G allele with SLE was replicated in Japanese (allelic association P = .033, odds ratio [OR] 1.47, recessive model P = .023, OR 8.52). The association was preferentially observed in the SLE patients with nephritis. When the TNFAIP3 mRNA levels of the HapMap samples were examined using GENEVAR database, the presence of TNFAIP3 rs2230926 G allele was associated with lower mRNA expression of TNFAIP3 (P = .013). These results indicated that TNFAIP3 is a susceptibility gene to SLE both in the Caucasian and Asian populations.
doi:10.1155/2010/207578
PMCID: PMC2896654  PMID: 20617138
15.  High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions 
PLoS Genetics  2009;5(10):e1000696.
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.
Author Summary
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and involvement of multiple organ systems. Although the cause of SLE remains unknown, several lines of evidence underscore the importance of genetic factors. As is true for most autoimmune diseases, a substantial genetic contribution to disease risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6. This region of the genome contains a large number of genes that participate in the immune response. However, the full contribution of this genomic region to SLE risk has not yet been defined. In the current study we characterize a large number of SLE patients and family members for approximately 2,000 MHC region variants to identify the specific genes that influence disease risk. Our results, for the first time, implicate four different MHC regions in SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.
doi:10.1371/journal.pgen.1000696
PMCID: PMC2758598  PMID: 19851445
16.  C/EBP β mRNA expression is upregulated and positively correlated with the expression of TNIP1/TNFAIP3 in peripheral blood mononuclear cells from patients with systemic lupus erythematosus 
CCAAT/enhancer-binding protein β (C/EBP β) has important roles in numerous signaling pathways. The expression of the majority of regulators and target gene products of C/EBP β, including tumor necrosis factor α-induced protein 3 (TNFAIP3) and TNFAIP3-interacting protein 1 (TNIP1), are upregulated in patients with systemic lupus erythematosus (SLE). The aim of the present study was to investigate whether C/EBP β expression is associated with SLE pathogenesis and correlates with TNIP1 and TNFAIP3 expression. Quantitative reverse transcription-polymerase chain reaction analysis was used to assess the expression of C/EBP β, TNIP1, and TNFAIP3 mRNA in peripheral blood mononuclear cells (PBMC) from 20 patients with SLE and 20 healthy controls. Spearman's rank test was used to determine the correlation between C/EBP β expression and SLE disease activity, and that between C/EBP β expression and TNIP1/TNFAIP3 expression in PBMCs from patients with SLE. C/EBP β mRNA expression was markedly increased in patients with SLE compared with healthy controls. The expression of C/EBP β was positively correlated with the SLE disease activity index and negatively correlated with the serum level of complement components C3 and C4. In addition, C/EBP β mRNA expression was increased in PBMCs from SLE patients that were positive for antinuclear, anti-Smith and anti-nRNP antibodies, compared with the antibody negative SLE patients. Furthermore, the mRNA expression levels of C/EBP β in patients with SLE was positively correlated with TNIP1 and TNFAIP3 expression. The results of the current study suggest that the increased expression of C/EBP β in PBMCs and the interaction between C/EBP β and TNIP1/TNFAIP3 may be involved in the pathogenesis of SLE.
doi:10.3892/etm.2016.3612
PMCID: PMC5038459  PMID: 27698734
CCAAT/enhancer-binding protein β; systemic lupus erythematosus; tumor necrosis factor α-induced protein 3; tumor necrosis factor α-induced protein 3-interacting protein 1
17.  Association of the polymorphisms of TRAF1 (rs10818488) and TNFAIP3 (rs2230926) with rheumatoid arthritis and systemic lupus erythematosus and their relationship to disease activity among Egyptian patients 
Aim of the study
Recent studies demonstrated the association of tumor necrosis factor α-induced protein 3 (TNFAIP3) (rs2230926) and tumor necrosis factor receptor associated factor 1 (TRAF1) (rs10818488) with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in different populations. We aimed at determining whether they confer susceptibility to SLE and RA in Egyptian population and if there is any relation to disease activity and auto-antibodies profile.
Material and methods
A case-control study involving 105 individuals with RA, 90 with SLE and 75 healthy controls was performed using TaqMan genotyping assay for two SNPs that showed the best evidence of association in the previous Caucasian studies.
Results
We detected significant differences in G allele frequency of TNFAIP3 (rs2230926) with SLE (p = 0.017*) and RA (OR = 2.333; 95% CI: 1.103-4.935, p = 0.023*) and association with RA disease activity (< 0.001). The A allele of TRAF1 was significantly increased in RA compared to controls(p = 0.049) and with RA activity (p = 0.001), while TRAF1 polymorphism did not exhibit any significant difference in the frequencies of genotypes or alleles in SLE and control (p = 0.280).
Conclusions
TNFAIP3 is a susceptibility gene to SLE and RA in the Egyptian population and is correlated to disease activity and the presence of autoantibodies while TRAF1 polymorphisms increase the risk of RA but not to SLE in Egyptian populations.
doi:10.5114/ceji.2016.60991
PMCID: PMC4967658  PMID: 27536202
rheumatoid arthritis; systemic lupus erythematosus; TNFAIP3 gene; TRAF1
18.  Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population 
Arthritis Research & Therapy  2011;13(6):R186.
Introduction
Recent genome-wide and candidate gene association studies in large numbers of systemic lupus erythematosus (SLE) patients have suggested approximately 30 susceptibility genes. These genes are involved in three types of biological processes, including immune complex processing, toll-like receptor function and type I interferon production, and immune signal transduction in lymphocytes, and they may contribute to the pathogenesis of SLE. To better understand the genetic risk factors of SLE, we investigated the associations of seven SLE susceptibility genes in a Chinese population, including FCGR3A, FCGR2A, TNFAIP3, TLR9, TREX1, ETS1 and TNIP1.
Methods
A total of 20 SNPs spanning the seven SLE susceptibility genes were genotyped in a sample of 564 unrelated SLE patients and 504 unrelated healthy controls recruited from Yunnan, southwestern China. The associations of SNPs with SLE were assessed by statistical analysis.
Results
Five SNPs in two genes (TNFAIP3 and ETS1) were significantly associated with SLE (corrected P values ranging from 0.03 to 5.5 × 10-7). Through stratified analysis, TNFAIP3 and ETS1 showed significant associations with multiple SLE subphenotypes (such as malar rash, arthritis, hematologic disorder and antinuclear antibody) while TNIP1 just showed relatively weak association with onset age. The associations of the SNPs in the other four genes were not replicated.
Conclusions
The replication analysis indicates that TNFAIP3, ETS1 and TNIP1 are probably common susceptibility genes for SLE in Chinese populations, and they may contribute to the pathogenesis of multiple SLE subphenotypes.
doi:10.1186/ar3514
PMCID: PMC3334635  PMID: 22087647
19.  Two Independent Functional Risk Haplotypes in TNIP1 are Associated with Systemic Lupus Erythematosus 
Arthritis and rheumatism  2012;64(11):3695-3705.
Objective
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and altered type I interferon expression. Genetic surveys and genome-wide association studies have identified more than 30 SLE susceptibility genes. One of these genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting the NF-κB signaling. In order to better understand the genetic factors that influence association with SLE in genes that regulate the NF-κB pathway, we analyzed a dense set of genetic markers spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog, TNIP2, in case-control sets of diverse ethnic origins.
Methods
We fine-mapped TNIP1, TNIP2, and TAX1BP1 in a total of 8372 SLE cases and 7492 healthy controls from European-ancestry, African-American, Hispanic, East Asian, and African-American Gullah populations. Levels of TNIP1 mRNA and ABIN1 protein were analyzed using quantitative RT-PCR and Western blotting, respectively, in EBV-transformed human B cell lines.
Results
We found significant associations between genetic variants within TNIP1 and SLE but not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified two independent risk haplotypes within TNIP1 in individuals of European-ancestry that were also present in African-American and Hispanic populations. These risk haplotypes produced lower levels of TNIP1 mRNA and ABIN1 protein suggesting they harbor hypomorphic functional variants that influence susceptibility to SLE by restricting ABIN1 expression.
Conclusion
Our results confirmed the association signals between SLE and TNIP1 variants in multiple populations and provide new insight into the mechanism by which TNIP1 variants may contribute to SLE pathogenesis.
doi:10.1002/art.34642
PMCID: PMC3485412  PMID: 22833143
20.  Let-7 miRNAs Modulate the Activation of NF-κB by Targeting TNFAIP3 and Are Involved in the Pathogenesis of Lupus Nephritis 
PLoS ONE  2015;10(6):e0121256.
TNFAIP3 is a ubiquitin-editing enzyme that negatively regulates multiple NF-κB signaling pathways and dysregulation of TNFAIP3 is related to systemic lupus erythematosus (SLE). Although there exists evidence indicating that microRNAs (miRNAs) modulate the expression of TNFAIP3, whether and how miRNAs regulate TNFAIP3 and contribute to lupus nephritis (LN) is still not well understood. In this study, we screened eleven selected miRNAs that potentially regulated TNFAIP3 expression by dual luciferase assay and found that Let-7 miRNAs repressed TNFAIP3 expression by targeting the 3′UTR of TNFAIP3 mRNA. Overexpression of Let-7 miRNAs led to increased phosphorylation and sustained degradation of IκBα and enhanced phosphorylation of p65 following TNFα stimulation and promoted SeV-induced production of cytokines in HEK293T cells. In addition, the expression of Let-7 miRNAs was significantly up-regulated, and TNFAIP3 level was remarkably down-regulated in samples from LN patients compared control samples. Our findings have uncovered Let-7-TNFAIP3-NF-κB pathway that is involved in LN and thus provided a potential target for therapeutic intervention.
doi:10.1371/journal.pone.0121256
PMCID: PMC4482407  PMID: 26110642
21.  Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus 
PLoS Genetics  2008;4(5):e1000084.
Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. A polymorphism in the STAT4 gene has recently been established as a risk factor for SLE, but the relationship with specific SLE subphenotypes has not been studied. We studied 137 SNPs in the STAT4 region genotyped in 4 independent SLE case series (total n = 1398) and 2560 healthy controls, along with clinical data for the cases. Using conditional testing, we confirmed the most significant STAT4 haplotype for SLE risk. We then studied a SNP marking this haplotype for association with specific SLE subphenotypes, including autoantibody production, nephritis, arthritis, mucocutaneous manifestations, and age at diagnosis. To prevent possible type-I errors from population stratification, we reanalyzed the data using a subset of subjects determined to be most homogeneous based on principal components analysis of genome-wide data. We confirmed that four SNPs in very high LD (r2 = 0.94 to 0.99) were most strongly associated with SLE, and there was no compelling evidence for additional SLE risk loci in the STAT4 region. SNP rs7574865 marking this haplotype had a minor allele frequency (MAF) = 31.1% in SLE cases compared with 22.5% in controls (OR = 1.56, p = 10−16). This SNP was more strongly associated with SLE characterized by double-stranded DNA autoantibodies (MAF = 35.1%, OR = 1.86, p<10−19), nephritis (MAF = 34.3%, OR = 1.80, p<10−11), and age at diagnosis<30 years (MAF = 33.8%, OR = 1.77, p<10−13). An association with severe nephritis was even more striking (MAF = 39.2%, OR = 2.35, p<10−4 in the homogeneous subset of subjects). In contrast, STAT4 was less strongly associated with oral ulcers, a manifestation associated with milder disease. We conclude that this common polymorphism of STAT4 contributes to the phenotypic heterogeneity of SLE, predisposing specifically to more severe disease.
Author Summary
Systemic lupus erythematosus is a chronic disabling autoimmune disease, most commonly striking women in their thirties or forties. It can cause a wide variety of clinical manifestations, including kidney disease, arthritis, and skin disorders. Prognosis varies greatly depending on these clinical features, with kidney disease and related characteristics leading to greater morbidity and mortality. It is also complex genetically; while lupus runs in families, genes increase one’s risk for lupus but do not fully determine the outcome. It is thought that the interactions of multiple genes and/or interactions between genes and environmental factors may cause lupus, but the causes and disease pathways of this very heterogeneous disease are not well understood. By examining relationships between subtypes of lupus and specific genes, we hope to better understand how lupus is triggered and by what biological pathways it progresses. We show in this work that the STAT4 gene, very recently identified as a lupus risk gene, predisposes specifically to severe manifestations of lupus, including kidney disease.
doi:10.1371/journal.pgen.1000084
PMCID: PMC2377340  PMID: 18516230
22.  Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus 
Nature genetics  2015;47(12):1457-1464.
Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE.
doi:10.1038/ng.3434
PMCID: PMC4668589  PMID: 26502338
23.  Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries 
Annals of the rheumatic diseases  2012;71(11):1809-1814.
Objective
Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.
Methods
The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.
Results
The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).
Conclusion
These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.
doi:10.1136/annrheumdis-2011-201110
PMCID: PMC3466387  PMID: 22523428
24.  Variants in TNFAIP3, STAT4 and c12orf30 loci associated with multiple auto-immune diseases are also associated with Juvenile Idiopathic Arthritis 
Arthritis and rheumatism  2009;60(7):2124-2130.
Objectives
Subtypes of juvenile idiopathic arthritis (JIA) share phenotypic features with other autoimmune disorders. We investigated several genetic variants associated with rheumatoid arthritis (RA) and other autoimmune disorders for association with JIA, to test the hypothesis that clinically distinct phenotypes share common genetic susceptibility factors.
Methods
Cases were 445 children with JIA, and controls were 643 healthy adults. Eight single nucleotide polymorphisms (SNPs) in 7 loci [TNFAIP3 (rs10499194 and rs6920220), RSBN1 (rs6679677), C12ORF30 (rs17696736), TRAF1 (rs3761847), IL2RA (rs2104286), PTPN2 (rs2542151), and STAT4 (rs7574865)] were genotyped by the TaqMan assay. Alleles and genotypes were analyzed for association with JIA and JIA subtypes. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated.
Results
The strongest associations were observed for TNFAIP3 variants rs10499194 (OR: 0.74 (0.61-0.91); p <0.004), and TNFAIP3 rs6920220 (OR: 1.3 (1.05-1.61); p <0.02). We also observed associations between JIA and STAT4 (OR: 1.24 (1.02-1.51); p <0.03) and C12ORF30 (OR: 1.2 (1.01-1.43); p <0.04) variants. The PTPN2 variant rs2542151 deviated from Hardy-Weinberg equilibrium and was excluded from analyses. Variants in IL2RA, TRAF1, and RSBN1 were not associated with JIA. After stratification by JIA subtype, TNFAIP3 and C12ORF30 variants were associated with oligoarticular JIA, while the STAT4 variant was associated primarily with polyarticular JIA.
Conclusions
We have demonstrated associations between JIA and variants in TNFAIP3, STAT4 and C12ORF30 regions that have previously shown associations with other autoimmune diseases, including RA and systemic lupus erythematosus. Our results suggest that clinically distinct autoimmune phenotypes share common genetic susceptibility factors.
doi:10.1002/art.24618
PMCID: PMC3104295  PMID: 19565500
JRA; genetics; autoimmune; association; juvenile idiopathic arthritis; rheumatoid arthritis
25.  MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus 
PLoS Genetics  2013;9(2):e1003336.
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Author Summary
Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease contributed to by excessive innate immune activation involving toll-like receptors (TLRs, particularly TLR7/8/9) and type I interferon (IFN) signaling pathways. TLR7 responds against RNA–containing nuclear antigens and activates IFN-α pathway, playing a pivotal role in the development of SLE. While a genomic duplication of Tlr7 promotes lupus-like disease in the Y-linked autoimmune accelerator (Yaa) murine model, the lack of common copy number variations at TLR7 in humans led us to identify a functional single nucleotide polymorphism (SNP), rs3853839 at 3′ UTR of the TLR7 gene, associated with SLE susceptibility in Eastern Asians. In this study, we fine-mapped the TLR7-TLR8 region and confirmed rs3853839 exhibiting the strongest association with SLE in European Americans, African Americans, and Amerindian/Hispanics. Individuals carrying the risk G allele of rs3853839 exhibited increased TLR7 expression at the both mRNA and protein level and decreased transcript degradation. MicroRNA-3148 (miR-3148) downregulated the expression of non-risk allele (C) containing transcripts preferentially, suggesting a likely mechanism for increased TLR7 levels in risk-allele carriers. This trans-ancestral mapping provides evidence for the global association with SLE risk at rs3853839, which resides in a microRNA–gene regulatory site affecting TLR7 expression.
doi:10.1371/journal.pgen.1003336
PMCID: PMC3585142  PMID: 23468661

Results 1-25 (1323976)