PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (734807)

Clipboard (0)
None

Related Articles

1.  Genetic relationships among seven sections of genus Arachis studied by using SSR markers 
BMC Plant Biology  2010;10:15.
Background
The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis.
Results
The average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea.
Conclusion
A set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences among species. The present study provides strong support based on both genomic and genic markers, probably for the first time, on relationships of A. monticola and A. hypogaea as well as on the most probable donor of A and B-genomes of cultivated groundnut.
doi:10.1186/1471-2229-10-15
PMCID: PMC2826335  PMID: 20089171
2.  Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome 
BMC Plant Biology  2004;4:11.
Background
The genus Arachis is native to a region that includes Central Brazil and neighboring countries. Little is known about the genetic variability of the Brazilian cultivated peanut (Arachis hypogaea, genome AABB) germplasm collection at the DNA level. The understanding of the genetic diversity of cultivated and wild species of peanut (Arachis spp.) is essential to develop strategies of collection, conservation and use of the germplasm in variety development. The identity of the ancestor progenitor species of cultivated peanut has also been of great interest. Several species have been suggested as putative AA and BB genome donors to allotetraploid A. hypogaea. Microsatellite or SSR (Simple Sequence Repeat) markers are co-dominant, multiallelic, and highly polymorphic genetic markers, appropriate for genetic diversity studies. Microsatellite markers may also, to some extent, support phylogenetic inferences. Here we report the use of a set of microsatellite markers, including newly developed ones, for phylogenetic inferences and the analysis of genetic variation of accessions of A. hypogea and its wild relatives.
Results
A total of 67 new microsatellite markers (mainly TTG motif) were developed for Arachis. Only three of these markers, however, were polymorphic in cultivated peanut. These three new markers plus five other markers characterized previously were evaluated for number of alleles per locus and gene diversity using 60 accessions of A. hypogaea. Genetic relationships among these 60 accessions and a sample of 36 wild accessions representative of section Arachis were estimated using allelic variation observed in a selected set of 12 SSR markers. Results showed that the Brazilian peanut germplasm collection has considerable levels of genetic diversity detected by SSR markers. Similarity groups for A. hypogaea accessions were established, which is a useful criteria for selecting parental plants for crop improvement. Microsatellite marker transferability was up to 76% for species of the section Arachis, but only 45% for species from the other eight Arachis sections tested. A new marker (Ah-041) presented a 100% transferability and could be used to classify the peanut accessions in AA and non-AA genome carriers.
Conclusion
The level of polymorphism observed among accessions of A. hypogaea analyzed with newly developed microsatellite markers was low, corroborating the accumulated data which show that cultivated peanut presents a relatively reduced variation at the DNA level. A selected panel of SSR markers allowed the classification of A. hypogaea accessions into two major groups. The identification of similarity groups will be useful for the selection of parental plants to be used in breeding programs. Marker transferability is relatively high between accessions of section Arachis. The possibility of using microsatellite markers developed for one species in genetic evaluation of other species greatly reduces the cost of the analysis, since the development of microsatellite markers is still expensive and time consuming. The SSR markers developed in this study could be very useful for genetic analysis of wild species of Arachis, including comparative genome mapping, population genetic structure and phylogenetic inferences among species.
doi:10.1186/1471-2229-4-11
PMCID: PMC491793  PMID: 15253775
3.  A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers 
Annals of Botany  2012;111(1):113-126.
Background and Aims
The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components.
Methods
Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses.
Key Results
Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3–2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general.
Conclusions
The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis.
doi:10.1093/aob/mcs237
PMCID: PMC3523650  PMID: 23131301
Arachis; peanut; groundnut; intron sequences; single-copy genes; molecular phylogeny; microsatellites; genetic relationships; speciation rates; genome donors; molecular dating
4.  An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes 
BMC Genomics  2009;10:45.
Background
Most agriculturally important legumes fall within two sub-clades of the Papilionoid legumes: the Phaseoloids and Galegoids, which diverged about 50 Mya. The Phaseoloids are mostly tropical and include crops such as common bean and soybean. The Galegoids are mostly temperate and include clover, fava bean and the model legumes Lotus and Medicago (both with substantially sequenced genomes). In contrast, peanut (Arachis hypogaea) falls in the Dalbergioid clade which is more basal in its divergence within the Papilionoids. The aim of this work was to integrate the genetic map of Arachis with Lotus and Medicago and improve our understanding of the Arachis genome and legume genomes in general. To do this we placed on the Arachis map, comparative anchor markers defined using a previously described bioinformatics pipeline. Also we investigated the possible role of transposons in the patterns of synteny that were observed.
Results
The Arachis genetic map was substantially aligned with Lotus and Medicago with most synteny blocks presenting a single main affinity to each genome. This indicates that the last common whole genome duplication within the Papilionoid legumes predated the divergence of Arachis from the Galegoids and Phaseoloids sufficiently that the common ancestral genome was substantially diploidized. The Arachis and model legume genomes comparison made here, together with a previously published comparison of Lotus and Medicago allowed all possible Arachis-Lotus-Medicago species by species comparisons to be made and genome syntenies observed. Distinct conserved synteny blocks and non-conserved regions were present in all genome comparisons, implying that certain legume genomic regions are consistently more stable during evolution than others. We found that in Medicago and possibly also in Lotus, retrotransposons tend to be more frequent in the variable regions. Furthermore, while these variable regions generally have lower densities of single copy genes than the more conserved regions, some harbor high densities of the fast evolving disease resistance genes.
Conclusion
We suggest that gene space in Papilionoids may be divided into two broadly defined components: more conserved regions which tend to have low retrotransposon densities and are relatively stable during evolution; and variable regions that tend to have high retrotransposon densities, and whose frequent restructuring may fuel the evolution of some gene families.
doi:10.1186/1471-2164-10-45
PMCID: PMC2656529  PMID: 19166586
5.  Identification of candidate genome regions controlling disease resistance in Arachis 
BMC Plant Biology  2009;9:112.
Background
Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.
Results
In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.
Conclusion
Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.
doi:10.1186/1471-2229-9-112
PMCID: PMC2739205  PMID: 19698131
6.  A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome 
BMC Plant Biology  2009;9:40.
Background
Arachis hypogaea (peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for A. hypogaea is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of Arachis, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability.
Results
In this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of Arachis, and produced an entire framework for the tetraploid genome. This map is based on an F2 population of 93 individuals obtained from the cross between the diploid A. ipaënsis (K30076) and the closely related A. magna (K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other Arachis species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes.
Conclusion
The development of genetic maps for Arachis diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for Arachis. Additionally, we were able to identify affinities of some Arachis linkage groups with Medicago truncatula, which will allow the transfer of information from the nearly-complete genome sequences of this model legume to the peanut crop.
doi:10.1186/1471-2229-9-40
PMCID: PMC2674605  PMID: 19351409
7.  Characterization of Brazilian accessions of wild Arachis species of section Arachis (Fabaceae) using heterochromatin detection and fluorescence in situ hybridization (FISH) 
Genetics and Molecular Biology  2013;36(3):364-370.
The cytogenetic characterization of Arachis species is useful for assessing the genomes present in this genus, for establishing the relationship among their representatives and for understanding the variability in the available germplasm. In this study, we used fluorescence in situ hybridization (FISH) to examine the distribution patterns of heterochromatin and rDNA genes in 12 Brazilian accessions of five species of the taxonomic section Arachis. The heterochromatic pattern varied considerably among the species: complements with centromeric bands in all of the chromosomes (A. hoehnei) and complements completely devoid of heterochromatin (A. gregoryi, A. magna) were observed. The number of 45S rDNA loci ranged from two (A. gregoryi) to eight (A. glandulifera), while the number of 5S rDNA loci was more conserved and varied from two (in most species) to four (A. hoehnei). In some species one pair of 5S rDNA loci was observed adjacent to 45S rDNA loci. The chromosomal markers revealed polymorphism in the three species with more than one accession (A. gregoryi, A. magna and A. valida) that were tested. The previous genome assignment for each of the species studied was confirmed, except for A. hoehnei. The intraspecific variability observed here suggests that an exhaustive cytogenetic and taxonomic analysis is still needed for some Arachis species.
doi:10.1590/S1415-47572013000300011
PMCID: PMC3795162  PMID: 24130444
Crop wild relatives; groundnut; rDNA loci; Brazil
8.  Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers 
Genetics and Molecular Biology  2010;33(1):109-118.
Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections.
doi:10.1590/S1415-47572010005000001
PMCID: PMC3036074  PMID: 21637613
Arachis; genetic diversity; germplasm; microsatellites; molecular markers
9.  Integrated Consensus Map of Cultivated Peanut and Wild Relatives Reveals Structures of the A and B Genomes of Arachis and Divergence of the Legume Genomes 
The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)4×, were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.
doi:10.1093/dnares/dss042
PMCID: PMC3628447  PMID: 23315685
Arachis spp.; comparative genomics; genetic linkage map; integrated consensus map; legume genome
10.  Abundant Microsatellite Diversity and Oil Content in Wild Arachis Species 
PLoS ONE  2012;7(11):e50002.
The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.
doi:10.1371/journal.pone.0050002
PMCID: PMC3502184  PMID: 23185514
11.  Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea) 
BMC Plant Biology  2007;7:9.
Background
The genus Arachis includes Arachis hypogaea (cultivated peanut) and wild species that are used in peanut breeding or as forage. Molecular markers have been employed in several studies of this genus, but microsatellite markers have only been used in few investigations. Microsatellites are very informative and are useful to assess genetic variability, analyze mating systems and in genetic mapping. The objectives of this study were to develop A. hypogaea microsatellite loci and to evaluate the transferability of these markers to other Arachis species.
Results
Thirteen loci were isolated and characterized using 16 accessions of A. hypogaea. The level of variation found in A. hypogaea using microsatellites was higher than with other markers. Cross-transferability of the markers was also high. Sequencing of the fragments amplified using the primer pair Ah11 from 17 wild Arachis species showed that almost all wild species had similar repeated sequence to the one observed in A. hypogaea. Sequence data suggested that there is no correlation between taxonomic relationship of a wild species to A. hypogaea and the number of repeats found in its microsatellite loci.
Conclusion
These results show that microsatellite primer pairs from A. hypogaea have multiple uses. A higher level of variation among A. hypogaea accessions can be detected using microsatellite markers in comparison to other markers, such as RFLP, RAPD and AFLP. The microsatellite primers of A. hypogaea showed a very high rate of transferability to other species of the genus. These primer pairs provide important tools to evaluate the genetic variability and to assess the mating system in Arachis species.
doi:10.1186/1471-2229-7-9
PMCID: PMC1829157  PMID: 17326826
12.  Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection 
BMC Genomics  2012;13:387.
Background
Cultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development.
Results
Transcriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 105 raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR.
Conclusions
This study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to biological processes such as fungal diseases and water limited stress. Moreover, it will also facilitate basic and applied research on the genetics of peanut through the development of new molecular markers and the study of adaptive variation across the genus.
doi:10.1186/1471-2164-13-387
PMCID: PMC3496627  PMID: 22888963
13.  A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut 
BMC Genomics  2012;13:469.
Background
Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea.
Results
More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago and Glycine revealed significant stretches of conserved gene clusters spread across the peanut genome. A higher level of colinearity was detected between A. duranensis and Glycine than with Medicago.
Conclusions
The first high-density, gene-based linkage map for A. duranensis was generated that can serve as a reference map for both wild and cultivated Arachis species. The markers developed here are valuable resources for the peanut, and more broadly, to the legume research community. The A-genome map will have utility for fine mapping in other peanut species and has already had application for mapping a nematode resistance gene that was introgressed into A. hypogaea from A. cardenasii.
doi:10.1186/1471-2164-13-469
PMCID: PMC3542255  PMID: 22967170
14.  Alternaria redefined 
Studies in Mycology  2013;75(1):171-212.
Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNA-based studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions. Our data reveal a Pleospora/Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria. Embellisia annulata is synonymised with Dendryphiella salina, and together with Dendryphiella arenariae, are placed in the new genus Paradendryphiella. The sexual genera Clathrospora and Comoclathris, which were previously associated with Alternaria, cluster within the Pleosporaceae, outside Alternaria s. str., whereas Alternariaster, a genus formerly seen as part of Alternaria, clusters within the Leptosphaeriaceae. Paradendryphiella is newly described, the generic circumscription of Alternaria is emended, and 32 new combinations and 10 new names are proposed. A further 10 names are resurrected, while descriptions are provided for 16 new Alternaria sections.
Taxonomic novelties:
New combinations - Alternaria abundans (E.G. Simmons) Woudenb. & Crous, Alternaria alternariae (Cooke) Woudenb. & Crous, Alternaria atra (Preuss) Woudenb. & Crous, Alternaria bornmuelleri (Magnus) Woudenb. & Crous, Alternaria botrytis (Preuss) Woudenb. & Crous, Alternaria caespitosa (de Hoog & C. Rubio) Woudenb. & Crous, Alternaria cantlous (Yong Wang bis & X.G. Zhang) Woudenb. & Crous, Alternaria caricis (E.G. Simmons) Woudenb. & Crous, Alternaria cinerea (Baucom & Creamer) Woudenb. & Crous, Alternaria didymospora (Munt.-Cvetk.) Woudenb. & Crous, Alternaria fulva (Baucom & Creamer) Woudenb. & Crous, Alternaria hyacinthi (de Hoog & P.J. Mull. bis) Woudenb. & Crous, Alternaria indefessa (E.G. Simmons) Woudenberg & Crous, Alternaria leptinellae (E.G. Simmons & C.F. Hill) Woudenb. & Crous, Alternaria lolii (E.G. Simmons & C.F. Hill) Woudenb. & Crous, Alternaria multiformis (E.G. Simmons) Woudenb. & Crous, Alternaria obclavata (Crous & U. Braun) Woudenb. & Crous, Alternaria obovoidea (E.G. Simmons) Woudenb. & Crous, Alternaria oudemansii (E.G. Simmons) Woudenb. & Crous, Alternaria oxytropis (Q. Wang, Nagao & Kakish.) Woudenb. & Crous, Alternaria penicillata (Corda) Woudenb. & Crous, Alternaria planifunda (E.G. Simmons) Woudenb. & Crous, Alternaria proteae (E.G. Simmons) Woudenb. & Crous, Alternaria scirpinfestans (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria scirpivora (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria septospora (Preuss) Woudenb. & Crous, Alternaria slovaca (Svob.-Pol., L. Chmel & Bojan.) Woudenb. & Crous, Alternaria subcucurbitae (Yong Wang bis & X.G. Zhang) Woudenb. & Crous, Alternaria tellustris (E.G. Simmons) Woudenb. & Crous, Alternaria tumida (E.G. Simmons) Woudenb. & Crous, Paradendryphiella salina (G.K. Sutherl.) Woudenb. & Crous, Paradendryphiella arenariae (Nicot) Woudenb. & Crous. New names - Alternaria aspera Woudenb. & Crous, Alternaria botryospora Woudenb. & Crous, Alternaria brassicae-pekinensis Woudenb. & Crous, Alternaria breviramosa Woudenb. & Crous, Alternaria chlamydosporigena Woudenb. & Crous, Alternaria concatenata Woudenb. & Crous, Alternaria embellisia Woudenb. & Crous, Alternaria heterospora Woudenb. & Crous, Alternaria papavericola Woudenb. & Crous, Alternaria terricola Woudenb. & Crous. Resurrected names - Alternaria cetera E.G. Simmons, Alternaria chartarum Preuss, Alternaria consortialis (Thüm.) J.W. Groves & S. Hughes, Alternaria cucurbitae Letendre & Roum., Alternaria dennisii M.B. Ellis, Alternaria eureka E.G. Simmons, Alternaria gomphrenae Togashi, Alternaria malorum (Ruehle) U. Braun, Crous & Dugan, Alternaria phragmospora Emden, Alternaria scirpicola (Fuckel) Sivan. New sections, all in Alternaria - sect. Chalastospora Woudenb. & Crous, sect. Cheiranthus Woudenb. & Crous, sect. Crivellia Woudenb. & Crous, sect. Dianthicola Woudenb. & Crous, sect. Embellisia Woudenb. & Crous, sect. Embellisioides Woudenb. & Crous, sect. Eureka Woudenb. & Crous, sect. Infectoriae Woudenb. & Crous, sect. Japonicae Woudenb. & Crous, sect. Nimbya Woudenb. & Crous, sect. Phragmosporae Woudenb. & Crous, sect. Pseudoulocladium Woudenb. & Crous, sect. Teretispora Woudenb. & Crous, sect. Ulocladioides Woudenb. & Crous, sect. Ulocladium Woudenb. & Crous, sect. Undifilum Woudenb. & Crous. New genus - Paradendryphiella Woudenb. & Crous.
doi:10.3114/sim0015
PMCID: PMC3713888  PMID: 24014900
Allewia; Chalastospora; Crivellia; Embellisia; Lewia; Nimbya; Paradendryphiella; Sinomyces; systematics; Teretispora; Ulocladium; Undifilum
15.  Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae 
Background
Recent phylogenetic studies have revealed that the mitochondrial genome of the angiosperm Silene noctiflora (Caryophyllaceae) has experienced a massive mutation-driven acceleration in substitution rate, placing it among the fastest evolving eukaryotic genomes ever identified. To date, it appears that other species within Silene have maintained more typical substitution rates, suggesting that the acceleration in S. noctiflora is a recent and isolated evolutionary event. This assessment, however, is based on a very limited sampling of taxa within this diverse genus.
Results
We analyzed the substitution rates in 4 mitochondrial genes (atp1, atp9, cox3 and nad9) across a broad sample of 74 species within Silene and related genera in the tribe Sileneae. We found that S. noctiflora shares its history of elevated mitochondrial substitution rate with the closely related species S. turkestanica. Another section of the genus (Conoimorpha) has experienced an acceleration of comparable magnitude. The phylogenetic data remain ambiguous as to whether the accelerations in these two clades represent independent evolutionary events or a single ancestral change. Rate variation among genes was equally dramatic. Most of the genus exhibited elevated rates for atp9 such that the average tree-wide substitution rate for this gene approached the values for the fastest evolving branches in the other three genes. In addition, some species exhibited major accelerations in atp1 and/or cox3 with no correlated change in other genes. Rates of non-synonymous substitution did not increase proportionally with synonymous rates but instead remained low and relatively invariant.
Conclusion
The patterns of phylogenetic divergence within Sileneae suggest enormous variability in plant mitochondrial mutation rates and reveal a complex interaction of gene and species effects. The variation in rates across genomic and phylogenetic scales raises questions about the mechanisms responsible for the evolution of mutation rates in plant mitochondrial genomes.
doi:10.1186/1471-2148-9-260
PMCID: PMC2777880  PMID: 19878576
16.  Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut 
BMC Genomics  2012;13:608.
Background
Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut.
Results
A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A- and B-genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution.
Conclusions
Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut.
doi:10.1186/1471-2164-13-608
PMCID: PMC3532320  PMID: 23140574
Peanut (Arachis hypogaea); SSR; Genetic linkage map; Intraspecific cross; EST
17.  Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae) 
BMC Biology  2007;5:55.
Background
The genus Cuscuta L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context.
Results
Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species.
Conclusion
Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.
doi:10.1186/1741-7007-5-55
PMCID: PMC2242782  PMID: 18078516
18.  Two new aflatoxin producing species, and an overview of Aspergillus section Flavi 
Studies in Mycology  2011;69(1):57-80.
Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented.
doi:10.3114/sim.2011.69.05
PMCID: PMC3161756  PMID: 21892243
aflatoxin; Ascomycetes; Aspergillus section Flavi; β-tubulin; calmodulin; extrolites; ITS; polyphasic taxonomy
19.  An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella 
Studies in Mycology  2011;68:79-113.
A comprehensive phylogenetic reassessment of the ascomycete genus Cosmospora (Hypocreales, Nectriaceae) is undertaken using fresh isolates and historical strains, sequences of two protein encoding genes, the second largest subunit of RNA polymerase II (rpb2), and a new phylogenetic marker, the larger subunit of ATP citrate lyase (acl1). The result is an extensive revision of taxonomic concepts, typification, and nomenclatural details of many anamorph- and teleomorph-typified genera of the Nectriaceae, most notably Cosmospora and Fusarium. The combined phylogenetic analysis shows that the present concept of Fusarium is not monophyletic and that the genus divides into two large groups, one basal in the family, the other terminal, separated by a large group of species classified in genera such as Calonectria, Neonectria, and Volutella. All accepted genera received high statistical support in the phylogenetic analyses. Preliminary polythetic morphological descriptions are presented for each genus, providing details of perithecia, micro- and/or macro-conidial synanamorphs, cultural characters, and ecological traits. Eight species are included in our restricted concept of Cosmospora, two of which have previously documented teleomorphs and all of which have Acremonium-like microconidial anamorphs. A key is provided to the three anamorphic species recognised in Atractium, which is removed from synonymy with Fusarium and epitypified for two macroconidial synnematous species and one sporodochial species associated with waterlogged wood. Dialonectria is recognised as distinct from Cosmospora and two species with teleomorph, macroconidia and microconidia are accepted, including the new species D. ullevolea. Seven species, one with a known teleomorph, are classified in Fusicolla, formerly considered a synonym of Fusarium including members of the F. aquaeductuum and F. merismoides species complex, with several former varieties raised to species rank. Originally a section of Nectria, Macroconia is raised to generic rank for five species, all producing a teleomorph and macroconidial anamorph. A new species of the Verticillium-like anamorphic genus Mariannaea is described as M. samuelsii. Microcera is recognised as distinct from Fusarium and a key is included for four macroconidial species, that are usually parasites of scale insects, two of them with teleomorphs. The four accepted species of Stylonectria each produce a teleomorph and micro- and macroconidial synanamorphs. The Volutella species sampled fall into three clades. Pseudonectria is accepted for a perithecial and sporodochial species that occurs on Buxus. Volutella s. str. also includes perithecial and/or sporodochial species and is revised to include a synnematous species formerly included in Stilbella. The third Volutella-like clade remains unnamed. All fungi in this paper are named using a single name system that gives priority to the oldest generic names and species epithets, irrespective of whether they are originally based on anamorph or teleomorph structures. The rationale behind this is discussed.
doi:10.3114/sim.2011.68.04
PMCID: PMC3065986  PMID: 21523190
Article 59; Buxus; codon model; holomorph concept; unitary nomenclature; synnematous hyphomycetes
20.  An Earthworm Riddle: Systematics and Phylogeography of the Spanish Lumbricid Postandrilus 
PLoS ONE  2011;6(11):e28153.
Background
As currently defined, the genus Postandrilus Qui and Bouché, 1998, (Lumbricidae) includes six earthworm species, five occurring in Majorca (Baleares Islands, western Mediterranean) and another in Galicia (NW Spain). This disjunct and restricted distribution raises some interesting phylogeographic questions: (1) Is Postandrilus distribution the result of the separation of the Baleares-Kabylies (BK) microplate from the proto-Iberian Peninsula in the Late Oligocene (30–28 Mya) – vicariant hypothesis? (2) Did Postandrilus diversify in Spain and then colonize the Baleares during the Messinian salinity crisis (MSC) 5.96–5.33 Mya – dispersal hypothesis? (3) Is the distribution the result of a two-step process – vicariance with subsequent dispersal?
Methodology/Principal Findings
To answer these questions and assess Postandrilus evolutionary relationships and systematics, we collected all of the six Postandrilus species (46 specimens – 16 locations) and used Aporrectodea morenoe and three Prosellodrilus and two Cataladrilus species as the outgroup. Regions of the nuclear 28S rDNA and mitochondrial 16S rDNA, 12S rDNA, ND1, COII and tRNA genes (4,666 bp) were sequenced and analyzed using maximum likelihood and Bayesian methods of phylogenetic and divergence time estimation. The resulting trees revealed six new Postandrilus species in Majorca that clustered with the other five species already described. This Majorcan clade was sister to an Iberian clade including A. morenoe (outgroup) and Postandrilus bertae. Our phylogeny and divergence time estimates indicated that the split between the Iberian and Majorcan Postandrilus clades took place 30.1 Mya, in concordance with the break of the BK microplate from the proto-Iberian Peninsula, and that the present Majorcan clade diversified 5.7 Mya, during the MSC.
Conclusions
Postandrilus is highly diverse including multiple cryptic species in Majorca. The genus is not monophyletic and invalid as currently defined. Postandrilus is of vicariant origin and its radiation began in the Late Oligocene.
doi:10.1371/journal.pone.0028153
PMCID: PMC3226679  PMID: 22140529
21.  Phylogeny and Classification of Paris (Melanthiaceae) Inferred from DNA Sequence Data 
Annals of Botany  2006;98(1):245-256.
• Background and Aims Paris (Melanthiaceae) is a temperate genus of about 24 perennial herbaceous species distributed from Europe to eastern Asia. The delimitation of the genus and its subdivisions are unresolved questions in the taxonomy of Paris. The objective of this study is to test the generic and infrageneric circumscription of Paris with DNA sequence data.
• Methods Phylogenetic analysis of 21 species of Paris based on nuclear ITS and plastid psbA-trnH and trnL-trnF DNA sequence data, alone and in combination, was employed to assess previous classifications.
• Key Results Paris is monophyletic in all analyses. Neither of the two traditionally recognized subgenera (Paris and Daiswa) are monophyletic. Sections Axiparis, Kinugasa, Paris and Thibeticae are monophyletic in only some of the analyses. Species of sections Dunnianae, Fargesianae and Marmoratae are consistently intercalated among species of section Euthyra in all analyses. Strong discordance between nuclear and plastid lineages is detected.
• Conclusions The data support the classification of Paris as a single genus rather than as three genera (Daiswa, Kinugasa and Paris sensu stricto). They provide justification for the transfer of section Axiparis from subgenus Paris to subgenus Daiswa and for the combination of sections Dunnianae, Fargesianae and Marmoratae into section Euthyra. The nuclear-plastid discordance is interpreted as the result of interspecific hybridization among sympatric species.
doi:10.1093/aob/mcl095
PMCID: PMC2803534  PMID: 16704998
Classification; ITS; Melanthiaceae; nuclear-plastid incongruence; Parideae; Paris; phylogeny; psbA-trnH; trnL-trnF
22.  Phylogeny of Penicillium and the segregation of Trichocomaceae into three families 
Studies in Mycology  2011;70(1):1-51.
Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit. Thermoascus and Paecilomyces, both members of Thermoascaceae, also form ascospores lacking a furrow or slit, but are differentiated from Trichocomaceae by the production of asci from croziers and their thermotolerant or thermophilic nature. Phylogenetic analysis shows that Penicillium is polyphyletic. The genus is re-defined and a monophyletic genus for both anamorphs and teleomorphs is created (Penicillium sensu stricto). The genera Thysanophora, Eupenicillium, Chromocleista, Hemicarpenteles and Torulomyces belong in Penicillium s. str. and new combinations for the species belonging to these genera are proposed. Analysis of Penicillium below genus rank revealed the presence of 25 clades. A new classification system including both anamorph and teleomorph species is proposed and these 25 clades are treated here as sections. An overview of species belonging to each section is presented.
Taxonomic novelties:
New sections, all in Penicillium: sect. Sclerotiora Houbraken & Samson, sect. Charlesia Houbraken & Samson, sect. Thysanophora Houbraken & Samson,sect. Ochrosalmonea Houbraken & Samson, sect. Cinnamopurpurea Houbraken & Samson, Fracta Houbraken & Samson, sect. Stolkia Houbraken & Samson, sect. Gracilenta Houbraken & Samson, sect. Citrina Houbraken & Samson, sect. Turbata Houbraken & Samson, sect. Paradoxa Houbraken & Samson, sect. Canescentia Houbraken & Samson.
New combinations: Penicillium asymmetricum (Subramanian & Sudha) Houbraken & Samson, P. bovifimosum (Tuthill & Frisvad) Houbraken & Samson, P. glaucoalbidum (Desmazières) Houbraken & Samson, P. laeve (K. Ando & Manoch) Houbraken & Samson, P. longisporum (Kendrick) Houbraken & Samson, P. malachiteum (Yaguchi & Udagawa) Houbraken & Samson, P. ovatum (K. Ando & Nawawi) Houbraken & Samson, P. parviverrucosum (K. Ando & Pitt) Houbraken & Samson, P. saturniforme (Wang & Zhuang) Houbraken & Samson, P. taiwanense (Matsushima) Houbraken & Samson.
New names: Penicillium coniferophilum Houbraken & Samson, P. hennebertii Houbraken & Samson, P. melanostipe Houbraken & Samson, P. porphyreum Houbraken & Samson.
doi:10.3114/sim.2011.70.01
PMCID: PMC3233907  PMID: 22308045
Aspergillus; Eupenicillium; nomenclature; Penicillium; Talaromyces; taxonomy.
23.  FIDEL—a retrovirus-like retrotransposon and its distinct evolutionary histories in the A- and B-genome components of cultivated peanut 
Chromosome Research  2010;18(2):227-246.
In this paper, we describe a Ty3-gypsy retrotransposon from allotetraploid peanut (Arachis hypogaea) and its putative diploid ancestors Arachis duranensis (A-genome) and Arachis ipaënsis (B-genome). The consensus sequence is 11,223 bp. The element, named FIDEL (Fairly long Inter-Dispersed Euchromatic LTR retrotransposon), is more frequent in the A- than in the B-genome, with copy numbers of about 3,000 (±950, A. duranensis), 820 (±480, A. ipaënsis), and 3,900 (±1,500, A. hypogaea) per haploid genome. Phylogenetic analysis of reverse transcriptase sequences showed distinct evolution of FIDEL in the ancestor species. Fluorescent in situ hybridization revealed disperse distribution in euchromatin and absence from centromeres, telomeric regions, and the nucleolar organizer region. Using paired sequences from bacterial artificial chromosomes, we showed that elements appear less likely to insert near conserved ancestral genes than near the fast evolving disease resistance gene homologs. Within the Ty3-gypsy elements, FIDEL is most closely related with the Athila/Calypso group of retrovirus-like retrotransposons. Putative transmembrane domains were identified, supporting the presence of a vestigial envelope gene. The results emphasize the importance of FIDEL in the evolution and divergence of different Arachis genomes and also may serve as an example of the role of retrotransposons in the evolution of legume genomes in general.
Electronic supplementary material
The online version of this article (doi:10.1007/s10577-009-9109-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s10577-009-9109-z
PMCID: PMC2844528  PMID: 20127167
peanut; Arachis; retrotransposon; retrovirus-like; fluorescent in situ hybridization
24.  Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. 
Molecular Breeding  2011;30(1):125-138.
Large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed in peanut (Arachis hypogaea L.) to obtain more informative genetic markers. A total of 10,102 potential non-redundant EST sequences, including 3,445 contigs and 6,657 singletons, were generated from cDNA libraries of the gynophore, roots, leaves and seedlings. A total of 3,187 primer pairs were designed on flanking regions of SSRs, some of which allowed one and two base mismatches. Among the 3,187 markers generated, 2,540 (80%) were trinucleotide repeats, 302 (9%) were dinucleotide repeats, and 345 (11%) were tetranucleotide repeats. Pre-polymorphic analyses of 24 Arachis accessions were performed using 10% polyacrylamide gels. A total of 1,571 EST-SSR markers showing clear polymorphisms were selected for further polymorphic analysis with a Fluoro-fragment Analyzer. The 16 Arachis accessions examined included cultivated peanut varieties as well as diploid species with the A or B genome. Altogether 1,281 (81.5%) of the 1,571 markers were polymorphic among the 16 accessions, and 366 (23.3%) were polymorphic among the 12 cultivated varieties. Diversity analysis was performed and the genotypes of all 16 Arachis accessions showed similarity coefficients ranging from 0.37 to 0.97.
Electronic supplementary material
The online version of this article (doi:10.1007/s11032-011-9604-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s11032-011-9604-8
PMCID: PMC3362703  PMID: 22707912
Arachis spp.; EST-SSR marker; Polymorphic analysis; Genetic diversity
25.  Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages 
Background
Tribe Fabeae comprises about 380 legume species, including some of the most ancient and important crops like lentil, pea, and broad bean. Breeding efforts in legume crops rely on a detailed knowledge of closest wild relatives and geographic origin. Relationships within the tribe, however, are incompletely known and previous molecular results conflicted with the traditional morphology-based classification. Here we analyse the systematics, biogeography, and character evolution in the tribe based on plastid and nuclear DNA sequences.
Results
Phylogenetic analyses including c. 70% of the species in the tribe show that the genera Vicia and Lathyrus in their current circumscription are not monophyletic: Pisum and Vavilovia are nested in Lathyrus, the genus Lens is nested in Vicia. A small, well-supported clade including Vicia hirsuta, V. sylvatica, and some Mediterranean endemics, is the sister group to all remaining species in the tribe. Fabeae originated in the East Mediterranean region in the Miocene (23–16 million years ago (Ma)) and spread at least 39 times into Eurasia, seven times to the Americas, twice to tropical Africa and four times to Macaronesia. Broad bean (V. faba) and its sister V. paucijuga originated in Asia and might be sister to V. oroboides. Lentil (Lens culinaris ssp. culinaris) is of Mediterranean origin and together with eight very close relatives forms a clade that is nested in the core Vicia, where it evolved c. 14 Ma. The Pisum clade is nested in Lathyrus in a grade with the Mediterranean L. gloeosperma, L. neurolobus, and L. nissolia. The extinct Azorean endemic V. dennesiana belongs in section Cracca and is nested among Mediterranean species. According to our ancestral character state reconstruction results, ancestors of Fabeae had a basic chromosome number of 2n=14, an annual life form, and evenly hairy, dorsiventrally compressed styles.
Conclusions
Fabeae evolved in the Eastern Mediterranean in the middle Miocene and spread from there across Eurasia, into Tropical Africa, and at least seven times to the Americas. The middle-Atlantic islands were colonized four times but apparently did not serve as stepping-stones for Atlantic crossings. Long-distance dispersal events are relatively common in Fabeae (seven per ten million years). Current generic and infrageneric circumscriptions in Fabeae do not reflect monophyletic groups and should be revised. Suggestions for generic level delimitation are offered.
doi:10.1186/1471-2148-12-250
PMCID: PMC3547781  PMID: 23267563
Lathyrus; Legumes; Lentil; Long-distance dispersal; Macaronesia; Pea; Pisum; Vicia

Results 1-25 (734807)