PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1049666)

Clipboard (0)
None

Related Articles

1.  Phylogenetic Relationships of the Wolbachia of Nematodes and Arthropods 
PLoS Pathogens  2006;2(10):e94.
Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes.
Synopsis
Filarial nematode worms cause hundreds of millions of cases of disease in humans worldwide. As part of efforts to identify new drug targets in these parasites, the Filarial Genome Project rediscovered that these worms carry within them a symbiotic bacterium, which may be a novel target. Fenn et al. investigated the relationships of these bacteria, from the genus Wolbachia, to those previously identified in arthropods using a new dataset of genome sequence data from the human parasite Onchocerca volvulus. O. volvulus causes river blindness in West Africa. The authors found that the Wolbachia strains found in nematodes are more closely related to each other than they are to the Wolbachia in insects, suggesting that the nematodes and their bacterial partners have been coevolving for some considerable evolutionary time and may indeed be good targets. In addition, the authors identified a fragment of Wolbachia DNA that was inserted in the genome of its nematode host and has subsequently degenerated. The insertion occurred before O. volvulus diverged from another nematode species, O. ochengi, found in cattle.
doi:10.1371/journal.ppat.0020094
PMCID: PMC1599763  PMID: 17040125
2.  Population Genomics of the Wolbachia Endosymbiont in Drosophila melanogaster 
PLoS Genetics  2012;8(12):e1003129.
Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogaster–Wolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology.
Author Summary
Host–microbe interactions play important roles in the physiology, development, and ecology of many organisms. Studying how hosts and their microbial symbionts evolve together over time is crucial for understanding the impact that microbes have on host biology. With the advent of high-throughput sequencing technologies, it is now possible to obtain complete genomic information for hosts and their associated microbes. Here we use whole-genome sequences from ∼300 strains of the fruitfly Drosophila melanogaster to reveal the evolutionary history of this model species and its intracellular bacterial symbiont Wolbachia. The major findings of this study are that Wolbachia in D. melanogaster is inherited strictly through the egg with no evidence of horizontal transfer from other species, that the genealogies of Wolbachia and mitochondrial genomes are virtually the same, and that both Wolbachia and mitochondrial genomes show evidence for a recent incomplete global replacement event, which has left remnant lineages in North America, Europe, and Africa. We also use the fact that Wolbachia and mitochondrial genomes have the same genealogy to estimate the rate of molecular evolution for Wolbachia, which allows us to put dates on key events in the history of this important host–microbe model system.
doi:10.1371/journal.pgen.1003129
PMCID: PMC3527207  PMID: 23284297
3.  The Heme Biosynthetic Pathway of the Obligate Wolbachia Endosymbiont of Brugia malayi as a Potential Anti-filarial Drug Target 
Background
Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.
Methods and Findings
Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP), which targets ferrochelatase (FC, the last step). Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a ∼600-fold difference in drug sensitivities to succinyl acetone (SA) between Wolbachia and human 5′-aminolevulinic acid dehydratase (ALAD, the second step). Similarly, Escherichia coli hemH (FC) deficient strains transformed with human and Wolbachia FC homologues showed significantly different sensitivities to NMMP. This approach enables functional complementation in E. coli heme deficient mutants as an alternative E. coli-based method for drug screening.
Conclusions
Our studies indicate that the heme biosynthetic genes in the Wolbachia of B. malayi (wBm) might be essential for the filarial host survival. In addition, the results suggest they are likely candidate drug targets based upon significant differences in phylogenetic distance, biochemical properties and sensitivities to heme biosynthesis inhibitors, as compared to their human homologues.
Author Summary
Human filarial nematodes are causative agents of elephantiasis and African river blindness, which are among the most debilitating tropical diseases. Currently used drugs mainly affect microfilariae (mf) and have less effect on adult filarial nematodes, which can live in the human host for more than a decade. Filariasis drug control strategy relies on recurrent mass drug administration for many years. Development of novel drugs is also urgently needed due to the threat of drug resistance occurrence. Most filarial worms harbor an obligate endosymbiotic bacterium, Wolbachia, whose presence has been identified as a potential drug target. Comparative genomics had suggested Wolbachia heme biosynthesis as a potential drug target, and we present an analysis of selected enzymes alongside their human homologues from several different aspects—gene phylogenetic analyses, in vitro enzyme kinetic and inhibition assays and heme-deficient E. coli complementation assays. We also conducted ex vivo Brugia malayi viability assays using heme pathway inhibitors. These experiments demonstrate that heme biosynthesis could be critical for filarial worm survival and thus is a potential anti-filarial drug target set.
doi:10.1371/journal.pntd.0000475
PMCID: PMC2703803  PMID: 19597542
4.  Riboflavin Provisioning Underlies Wolbachia’s Fitness Contribution to Its Insect Host 
mBio  2015;6(6):e01732-15.
ABSTRACT
Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host’s fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia’s genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia’s riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections.
IMPORTANCE
Conventionally, Wolbachia has been regarded as a parasitic bacterial endosymbiont that manipulates the host insect’s reproduction in a selfish manner, which tends to affect a host’s fitness negatively. Meanwhile, some theories predict that, at the same time, Wolbachia can directly affect the host’s fitness positively, which may potentially reconcile the negative effect and facilitate spread and stability of the symbiotic association. Here we demonstrate, by using comparative genomic and experimental approaches, that among synthetic pathways for B vitamins, the synthetic pathway for riboflavin (vitamin B2) is exceptionally conserved among diverse insect-associated Wolbachia strains, and Wolbachia’s riboflavin provisioning certainly contributes to growth, survival, and reproduction in an insect. These findings uncover a nutritional mechanism of a Wolbachia-mediated fitness benefit, which provides empirical evidence highlighting a “Jekyll and Hyde” aspect of Wolbachia infection.
doi:10.1128/mBio.01732-15
PMCID: PMC4659472  PMID: 26556278
5.  Palaeosymbiosis Revealed by Genomic Fossils of Wolbachia in a Strongyloidean Nematode 
PLoS Genetics  2014;10(6):e1004397.
Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections.
Author Summary
Bovine lungworms are economically important nematode parasites of cattle. We have sequenced the genome of the bovine lungworm to provide information for drug and vaccine discovery. Within the lungworm genome we found extensive evidence of an ancient association between the lungworm and a bacterium called Wolbachia. The lungworm Wolbachia is now a “fossil” in the genome, but tells of an ancient infection. Association between lungworms, and related nematode worms, and Wolbachia was not known previously. We have used the lungworm Wolbachia sequence to explore the history of nematode-Wolbachia interactions, particularly the jumping of these symbionts between arthropods and nematodes.
doi:10.1371/journal.pgen.1004397
PMCID: PMC4046930  PMID: 24901418
6.  The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode 
PLoS Biology  2005;3(4):e121.
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.
Analysis of this Wolbachia genome, which resides within filarial parasites, offers insight into endosymbiont evolution and the promise of new strategies for the elimination of human filarial disease
doi:10.1371/journal.pbio.0030121
PMCID: PMC1069646  PMID: 15780005
7.  Diversifying selection and host adaptation in two endosymbiont genomes 
Background
The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, wMel and the nematode Brugia malayi, wBm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts.
Results
The prevalence of selection was far greater in wMel than wBm. Genes contributing to DNA metabolism, cofactor biosynthesis, and secretion were positively selected in both lineages. In wMel there was a greater emphasis on DNA repair, cell division, protein stability, and cell envelope synthesis.
Conclusion
Secretion pathways and outer surface protein encoding genes are highly affected by selection in keeping with host:parasite theory. If evidence of selection on various cofactor molecules reflects possible provisioning, then both insect as well as nematode Wolbachia may be providing substances to hosts. Selection on cell envelope synthesis, DNA replication and repair machinery, heat shock, and two component switching suggest strategies insect Wolbachia may employ to cope with diverse host and intra-host environments.
doi:10.1186/1471-2148-7-68
PMCID: PMC1868728  PMID: 17470297
8.  The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods 
BMC Microbiology  2012;12:55.
Background
The maternally inherited α-Proteobacteria Wolbachia pipientis is an obligate endosymbiont of nematodes and arthropods, in which they induce a variety of reproductive alterations, including Cytoplasmic Incompatibility (CI) and feminization. The genome of the feminizing wVulC Wolbachia strain harboured by the isopod Armadillidium vulgare has been sequenced and is now at the final assembly step. It contains an unusually high number of ankyrin motif-containing genes, two of which are homologous to the phage-related pk1 and pk2 genes thought to contribute to the CI phenotype in Culex pipiens. These genes encode putative bacterial effectors mediating Wolbachia-host protein-protein interactions via their ankyrin motifs.
Results
To test whether these Wolbachia homologs are potentially involved in altering terrestrial isopod reproduction, we determined the distribution and expression of both pk1 and pk2 genes in the 3 Wolbachia strains that induce CI and in 5 inducing feminization of their isopod hosts. Aside from the genes being highly conserved, we found a substantial copy number variation among strains, and that is linked to prophage diversity. Transcriptional analyses revealed expression of one pk2 allele (pk2b2) only in the feminizing Wolbachia strains of isopods.
Conclusions
These results reveal the need to investigate the functions of Wolbachia ankyrin gene products, in particular those of Pk2, and their host targets with respect to host sex manipulation.
doi:10.1186/1471-2180-12-55
PMCID: PMC3431249  PMID: 22497736
9.  Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta 
Background
Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta.
Results
Three different Wolbachia (wsp) variants occur within S. invicta, all of which are identical to previously described strains in fire ants. A comparison of the distribution of Wolbachia variants within S. invicta to a phylogeny of mtDNA haplotypes suggests S. invicta has acquired Wolbachia infections on at least three independent occasions. One common Wolbachia variant in S. invicta (wSinvictaB) is associated with two divergent mtDNA haplotype clades. Further, within each of these clades, Wolbachia-infected and uninfected individuals possess virtually identical subsets of mtDNA haplotypes, including both putative derived and ancestral mtDNA haplotypes. The same pattern also holds for wSinvictaA, where at least one and as many as three invasions into S. invicta have occurred. These data suggest that the initial invasions of Wolbachia into host ant populations may be relatively ancient and have been followed by multiple secondary losses of Wolbachia in different infected lineages over time. Finally, our data also provide additional insights into the factors responsible for previously reported variation in Wolbachia prevalence among S. invicta populations.
Conclusion
The history of Wolbachia infections in S. invicta is rather complex and involves multiple invasions or horizontal transmission events of Wolbachia into this species. Although these Wolbachia infections apparently have been present for relatively long time periods, these data clearly indicate that Wolbachia infections frequently have been secondarily lost within different lineages. Importantly, the uncoupled transmission of the Wolbachia and mtDNA genomes suggests that the presumed effects of Wolbachia on mtDNA evolution within S. invicta are less severe than originally predicted. Thus, the common concern that use of mtDNA markers for studying the evolutionary history of insects is confounded by maternally inherited endosymbionts such as Wolbachia may be somewhat unwarranted in the case of S. invicta.
doi:10.1186/1471-2148-5-35
PMCID: PMC1175846  PMID: 15927071
10.  Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila 
BMC Genomics  2011;12:595.
Background
Wolbachia are endosymbiotic bacteria that are frequently found in arthropods and nematodes. These maternally inherited bacteria manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). CI is the most common phenotype induced by Wolbachia and results in the developmental arrest of embryos derived from crosses between Wolbachia-infected males and uninfected females. Although the molecular mechanisms of CI are currently unknown, several studies suggest that host sperm is modified by Wolbachia during spermatogenesis.
Results
We compared the gene expression of Drosophila melanogaster larval testes with and without the wMel strain of Wolbachia to identify candidate genes that could be involved in the interaction between Wolbachia and the insect host. Microarray, quantitative RT-PCR and in situ hybridization analyses were carried out on D. melanogaster larval testes to determine the effect of Wolbachia infection on host gene expression. A total of 296 genes were identified by microarray analysis to have at least a 1.5 fold change [q-value < 5%] in expression. When comparing Wolbachia-infected flies to uninfected flies, 167 genes were up-regulated and 129 genes down-regulated. Differential expression of genes related to metabolism, immunity, reproduction and other functions were observed. Quantitative RT-PCR (qRT-PCR) confirmed 12 genes are differentially expressed in the testes of the 3rd instar larvae of Wolbachia-infected and uninfected flies. In situ hybridization demonstrated that Wolbachia infection changes the expression of several genes putatively associated with spermatogenesis including JH induced protein-26 and Mst84Db, or involved in immune (kenny) or metabolism (CG4988-RA).
Conclusions
Wolbachia change the gene expression of 296 genes in the larval testes of D. melanogaster including genes related to metabolism, immunity and reproduction. Interestingly, most of the genes putatively involved in immunity were up-regulated in the presence of Wolbachia. In contrast, most of the genes putatively associated with reproduction (especially spermatogenesis) were down-regulated in the presence of Wolbachia. These results suggest Wolbachia may activate the immune pathway but inhibit spermatogenesis. Our data provide a significant panel of candidate genes that may be involved in the interaction between Wolbachia and their insect hosts. This forms a basis to help elucidate the underlying mechanisms of Wolbachia-induced CI in Drosophila and the influence of Wolbachia on spermatogenesis.
doi:10.1186/1471-2164-12-595
PMCID: PMC3261232  PMID: 22145623
11.  Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina) 
BMC Microbiology  2012;12(Suppl 1):S3.
Background
Wolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals.
Results
In the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome.
Conclusions
Wolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods.
doi:10.1186/1471-2180-12-S1-S3
PMCID: PMC3287514  PMID: 22376025
12.  Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii 
PLoS Genetics  2012;8(10):e1003012.
Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI–inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. Cardinium lacks known protein secretion systems but encodes a putative phage-derived secretion system distantly related to the antifeeding prophage of the entomopathogen Serratia entomophila. Lastly, while Cardinium and Wolbachia genomes show only a functional overlap of proteins, they show no evidence of laterally transferred elements that would suggest common ancestry of CI in both lineages. Instead, comparative genomics suggests an independent evolution of CI in Cardinium and Wolbachia and provides a novel context for understanding the mechanistic basis of CI.
Author Summary
Many arthropods are infected with bacterial symbionts that are maternally transmitted and have a great impact on their hosts' biology, ecology, and evolution. One of the most common phenotypes of facultative symbionts appears to be cytoplasmic incompatibility (CI), a type of reproductive failure in which bacteria in males modify sperm in a way that reduces the reproductive success of uninfected female mates. In spite of considerable interest, the genetic basis for CI is largely unknown. Cardinium hertigii, a symbiont of tiny parasitic wasps, is the only bacterial group other than the well-studied Wolbachia that is known to cause CI. Analysis of the Cardinium genome indicates that CI evolved independently in Wolbachia and Cardinium. However, a suite of shared proteins was likely involved in mediating host cell interactions, and CI shows functional overlap in both lineages. Our analysis suggests the presence of an unusual phage-derived, putative secretion system and reveals that Cardinium encodes biosynthetic pathways that suggest a potential role in host nutrition. Our findings provide a novel comparative context for understanding the mechanistic basis of CI and substantially increase our knowledge on reproductive manipulator symbionts that do not only severely affect population genetic structure of arthropods but may also serve as powerful tools in pest management.
doi:10.1371/journal.pgen.1003012
PMCID: PMC3486910  PMID: 23133394
13.  The Tripartite Associations between Bacteriophage, Wolbachia, and Arthropods 
PLoS Pathogens  2006;2(5):e43.
By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.
Synopsis
Symbiotic bacteria that are maternally inherited are widespread in terrestrial invertebrates. Such bacteria infect the cells of reproductive tissues and can have important evolutionary and developmental effects on the host. Often these inherited symbionts develop beneficial relationships with their hosts, but some species can also selfishly alter invertebrate reproduction to increase the numbers of infected females (the transmitting sex of the bacteria) in the population. Bacterial-mediated distortions such as male-killing, feminization, parthenogenesis induction, and cytoplasmic incompatibility are collectively known as “reproductive parasitism.” In this article, the investigators show that the associations between the most common reproductive parasite in the biosphere (Wolbachia) and a parasitic wasp host are affected by a mobile element—a temperate bacteriophage of Wolbachia. In contrast to recent reports that suggest bacteriophage WO-B may induce reproductive parasitism, the authors' quantitative and ultrastructural analyses indicate that lytic phage WO-B are lethal and therefore associate with a reduction in both Wolbachia densities and reproductive parasitism. Based on these data, the authors propose a phage density model in which lytic phage development specifically leads to a reduction, rather than induction, of reproductive parisitism. The study is among the first investigations to show that lytic bacteriophage inversely associate with the densities and phenotype of an obligate intracellular bacterium.
doi:10.1371/journal.ppat.0020043
PMCID: PMC1463016  PMID: 16710453
14.  Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. 
Wolbachia are maternally inherited, intracellular, alpha proteobacteria that infect a wide range of arthropods. They cause three kinds of reproductive alterations in their hosts: cytoplasmic incompatibility, parthenogenesis and feminization. There have been many studies of the distribution of Wolbachia in arthropods, but very few crustacean species are known to be infected. We investigated the prevalence of Wolbachia in 85 species from five crustacean orders. Twenty-two isopod species were found to carry these bacteria. The bacteria were found mainly in terrestrial species, suggesting that Wolbachia came from a continental environment. The evolutionary relationships between these Wolbachia strains were determined by sequencing bacterial genes and by interspecific transfers. All the bacteria associated with isopods belonged to the Wolbachia B group, based on 16S rDNA sequence data. All the terrestrial isopod symbionts in this group except one formed an independent clade. The results of interspecific transfers show evidence of specialization of Wolbachia symbionts to their isopod hosts. They also suggest that host species plays a more important role than bacterial phylogeny in determining the phenotype induced by Wolbachia infection.
PMCID: PMC1689171  PMID: 9684374
15.  Transcriptional Regulation of Culex pipiens Mosquitoes by Wolbachia Influences Cytoplasmic Incompatibility 
PLoS Pathogens  2013;9(10):e1003647.
Cytoplasmic incompatibility (CI) induced by the endosymbiont Wolbachia pipientis causes complex patterns of crossing sterility between populations of the Culex pipiens group of mosquitoes. The molecular basis of the phenotype is yet to be defined. In order to investigate what host changes may underlie CI at the molecular level, we examined the transcription of a homolog of the Drosophila melanogaster gene grauzone that encodes a zinc finger protein and acts as a regulator of female meiosis, in which mutations can cause sterility. Upregulation was observed in Wolbachia-infected C. pipiens group individuals relative to Wolbachia-cured lines and the level of upregulation differed between lines that were reproductively incompatible. Knockdown analysis of this gene using RNAi showed an effect on hatch rates in a Wolbachia infected Culex molestus line. Furthermore, in later stages of development an effect on developmental progression in CI embryos occurs in bidirectionally incompatible crosses. The genome of a wPip Wolbachia strain variant from Culex molestus was sequenced and compared with the genome of a wPip variant with which it was incompatible. Three genes in inserted or deleted regions were newly identified in the C. molestus wPip genome, one of which is a transcriptional regulator labelled wtrM. When this gene was transfected into adult Culex mosquitoes, upregulation of the grauzone homolog was observed. These data suggest that Wolbachia-mediated regulation of host gene expression is a component of the mechanism of cytoplasmic incompatibility.
Author Summary
Wolbachia are maternally inherited bacteria that manipulate invertebrate reproduction. Cytoplasmic incompatibility is embryo death that occurs when males carrying Wolbachia mate with females that do not, or that carry a different Wolbachia variant; its mechanism is poorly understood. In Culex mosquitoes, in the presence of Wolbachia a gene related to a Drosophila melanogaster gene, grauzone, which has been shown to act as a regulator of the meiotic cell cycle, showed an elevated level of expression. When lower levels of expression were achieved through RNA interference, embryo hatch rates were affected and the stage of development at which embryo death occurs was altered. To find Wolbachia genes that influence cytoplasmic incompatibility, we compared the genomes of two variants of Wolbachia from Culex that produce cytoplasmic incompatibility with one another. Although most segments of these genomes were very similar, one newly identified gene is predicted to be a regulator of gene transcription. We cloned this gene into a plasmid, expressed it in adult mosquitoes and found higher levels of expression of the Culex grauzone homolog. This suggests that the Wolbachia transcriptional regulator may play an important role in manipulating the host in order to induce cytoplasmic incompatibility.
doi:10.1371/journal.ppat.1003647
PMCID: PMC3814344  PMID: 24204251
16.  Complete WO Phage Sequences Reveal Their Dynamic Evolutionary Trajectories and Putative Functional Elements Required for Integration into the Wolbachia Genome▿ † 
Applied and Environmental Microbiology  2009;75(17):5676-5686.
Wolbachia endosymbionts are ubiquitously found in diverse insects including many medical and hygienic pests, causing a variety of reproductive phenotypes, such as cytoplasmic incompatibility, and thereby efficiently spreading in host insect populations. Recently, Wolbachia-mediated approaches to pest control and management have been proposed, but the application of these approaches has been hindered by the lack of genetic transformation techniques for symbiotic bacteria. Here, we report the genome and structure of active bacteriophages from a Wolbachia endosymbiont. From the Wolbachia strain wCauB infecting the moth Ephestia kuehniella two closely related WO prophages, WOcauB2 of 43,016 bp with 47 open reading frames (ORFs) and WOcauB3 of 45,078 bp with 46 ORFs, were characterized. In each of the prophage genomes, an integrase gene and an attachment site core sequence were identified, which are putatively involved in integration and excision of the mobile genetic elements. The 3′ region of the prophages encoded genes with sequence motifs related to bacterial virulence and protein-protein interactions, which might represent effector molecules that affect cellular processes and functions of their host bacterium and/or insect. Database searches and phylogenetic analyses revealed that the prophage genes have experienced dynamic evolutionary trajectories. Genes similar to the prophage genes were found across divergent bacterial phyla, highlighting the active and mobile nature of the genetic elements. We suggest that the active WO prophage genomes and their constituent sequence elements would provide a clue to development of a genetic transformation vector for Wolbachia endosymbionts.
doi:10.1128/AEM.01172-09
PMCID: PMC2737910  PMID: 19592535
17.  Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies 
Ecology and Evolution  2014;4(13):2714-2737.
Wolbachia is the most prevalent symbiont described in arthropods to date. Wolbachia can manipulate host reproduction, provide nutrition to insect hosts and protect insect hosts from pathogenic viruses. So far, 13 supergroups of Wolbachia have been identified. The whitefly Bemisia tabaci is a complex containing more than 28 morphologically indistinguishable cryptic species. Some cryptic species of this complex are invasive. In this study, we report a comprehensive survey of Wolbachia in B. tabaci and its relative B. afer from 1658 insects representing 54 populations across 13 provinces of China and one state of Australia. Based on the results of PCR or sequencing of the 16S rRNA gene, the overall rates of Wolbachia infection were 79.6% and 0.96% in the indigenous and invasive Bemisia whiteflies, respectively. We detected a new Wolbachia supergroup by sequencing five molecular marker genes including 16S rRNA, groEL, gltA, hcpA, and fbpA genes. Data showed that many protein-coding genes have limitations in detecting and classifying newly identified Wolbachia supergroups and thus raise a challenge to the known Wolbachia MLST standard analysis system. Besides, the other Wolbachia strains detected from whiteflies were clustered into supergroup B. Phylogenetic trees of whitefly mitochondrial cytochrome oxidase subunit I and Wolbachia multiple sequencing typing genes were not congruent. In addition, Wolbachia was also detected outside the special bacteriocytes in two cryptic species by fluorescence in situ hybridization, indicating the horizontal transmission of Wolbachia. Our results indicate that members of Wolbachia are far from well explored.
doi:10.1002/ece3.1126
PMCID: PMC4113295  PMID: 25077022
Bemisia tabaci; FISH; horizontal transmission; multilocus sequence typing; vertical transmission; whiteflies; Wolbachia
18.  Wolbachia Endobacteria in Natural Populations of Culex pipiens of Iran and Its Phylogenetic Congruence 
Background:
Wolbachia are common intracellular bacteria that infect different groups of arthropods including mosquitoes. These bacteria modify host biology and may induce feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI). Recently Wolbachia is being nominated as a bio-agent and paratransgenic candidate to control mosquito borne diseases.
Methods:
Here we report the results of a survey for presence, frequency, and phylogenetic congruence of these endosymbiont bacteria in Culex pipiens populations in Northern, Central, and Southern parts of Iran using nested-PCR amplification of wsp gene.
Results:
Wolbachia DNA were found in 227 (87.3%) out of 260 wild-caught mosquitoes. The rate of infection in adult females ranged from 61.5% to 100%, while in males were from 80% to 100%. The Blast search and phylogenetic analysis of the wsp gene sequence revealed that the Wolbachia strain from Iranian Cx. pipiens was identical to the Wolbachia strains of supergroup B previously reported in members of the Cx. pipiens complex. They had also identical sequence homology with the Wolbachia strains from a group of distinct arthropods including lepidopteran, wasps, flies, damselfly, thrips, and mites from remote geographical areas of the world.
Conclusion:
It is suggested that Wolbachia strains horizontally transfer between unrelated host organisms over evolutionary time. Also results of this study indicates that Wolbachia infections were highly prevalent infecting all Cx. pipiens populations throughout the country, however further study needs to define Wolbachia inter-population reproductive incompatibility pattern and its usefulness as a bio-agent control measure.
PMCID: PMC4906741  PMID: 27308293
Culex pipiens; Wolbachia; Cytoplasmic incompatibility; Nested-PCR; Iran
19.  Phylogenomics and Analysis of Shared Genes Suggest a Single Transition to Mutualism in Wolbachia of Nematodes 
Genome Biology and Evolution  2013;5(9):1668-1674.
Wolbachia, endosymbiotic bacteria of the order Rickettsiales, are widespread in arthropods but also present in nematodes. In arthropods, A and B supergroup Wolbachia are generally associated with distortion of host reproduction. In filarial nematodes, including some human parasites, multiple lines of experimental evidence indicate that C and D supergroup Wolbachia are essential for the survival of the host, and here the symbiotic relationship is considered mutualistic. The origin of this mutualistic endosymbiosis is of interest for both basic and applied reasons: How does a parasite become a mutualist? Could intervention in the mutualism aid in treatment of human disease? Correct rooting and high-quality resolution of Wolbachia relationships are required to resolve this question. However, because of the large genetic distance between Wolbachia and the nearest outgroups, and the limited number of genomes so far available for large-scale analyses, current phylogenies do not provide robust answers. We therefore sequenced the genome of the D supergroup Wolbachia endosymbiont of Litomosoides sigmodontis, revisited the selection of loci for phylogenomic analyses, and performed a phylogenomic analysis including available complete genomes (from isolates in supergroups A, B, C, and D). Using 90 orthologous genes with reliable phylogenetic signals, we obtained a robust phylogenetic reconstruction, including a highly supported root to the Wolbachia phylogeny between a (A + B) clade and a (C + D) clade. Although we currently lack data from several Wolbachia supergroups, notably F, our analysis supports a model wherein the putatively mutualist endosymbiotic relationship between Wolbachia and nematodes originated from a single transition event.
doi:10.1093/gbe/evt125
PMCID: PMC3787677  PMID: 23960254
Wolbachia; phylogenomics; mutualism; Litomosoides sigmodontis; endosymbiosis
20.  Wolbachia-Mediated Antibacterial Protection and Immune Gene Regulation in Drosophila 
PLoS ONE  2011;6(9):e25430.
The outcome of microbial infection of insects is dependent not only on interactions between the host and pathogen, but also on the interactions between microbes that co-infect the host. Recently the maternally inherited endosymbiotic bacteria Wolbachia has been shown to protect insects from a range of microbial and eukaryotic pathogens. Mosquitoes experimentally infected with Wolbachia have upregulated immune responses and are protected from a number of pathogens including viruses, bacteria, Plasmodium and filarial nematodes. It has been hypothesised that immune upregulation underpins Wolbachia-mediated protection. Drosophila is a strong model for understanding host-Wolbachia-pathogen interactions. Wolbachia-mediated antiviral protection in Drosophila has been demonstrated for a number of different Wolbachia strains. In this study we investigate whether Wolbachia-infected flies are also protected against pathogenic bacteria. Drosophila simulans lines infected with five different Wolbachia strains were challenged with the pathogenic bacteria Pseudomonas aeruginosa PA01, Serratia marcescens and Erwinia carotovora and mortality compared to paired lines without Wolbachia. No difference in mortality was observed in the flies with or without Wolbachia. Similarly no antibacterial protection was observed for D. melanogaster infected with Wolbachia. Interestingly, D. melanogaster Oregon RC flies which are naturally infected with Wolbachia showed no upregulation of the antibacterial immune genes TepIV, Defensin, Diptericin B, PGRP-SD, Cecropin A1 and Attacin D compared to paired flies without Wolbachia. Taken together these results indicate that Wolbachia-mediated antibacterial protection is not ubiquitous in insects and furthermore that the mechanisms of antibacterial and antiviral protection are independent. We suggest that the immune priming and antibacterial protection observed in Wolbachia-infected mosquitoes may be a consequence of the recent artificial introduction of the symbiont into insects that normally do not carry Wolbachia and that antibacterial protection is unlikely to be found in insects carrying long-term Wolbachia infections.
doi:10.1371/journal.pone.0025430
PMCID: PMC3183045  PMID: 21980455
21.  Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont 
G3: Genes|Genomes|Genetics  2016;6(7):2113-2123.
Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.
doi:10.1534/g3.116.028449
PMCID: PMC4938664  PMID: 27194801
Trichogramma; gene truncations; symbiosis; genome content; Rickettsiales
22.  Obligatory symbiotic Wolbachia endobacteria are absent from Loa loa 
Filaria Journal  2003;2:10.
Background
Many filarial nematodes harbour Wolbachia endobacteria. These endobacteria are transmitted vertically from one generation to the next. In several filarial species that have been studied to date they are obligatory symbionts of their hosts. Elimination of the endobacteria by antibiotics interrupts the embryogenesis and hence the production of microfilariae. The medical implication of this being that the use of doxycycline for the treatment of human onchocerciasis and bancroftian filariasis leads to elimination of the Wolbachia and hence sterilisation of the female worms. Wolbachia play a role in the immunopathology of patients and may contribute to side effects seen after antifilarial chemotherapy. In several studies Wolbachia were not observed in Loa loa. Since these results have been doubted, and because of the medical significance, several independent methods were applied to search for Wolbachia in L. loa.
Methods
Loa loa and Onchocerca volvulus were studied by electron microscopy, histology with silver staining, and immunohistology using antibodies against WSP, Wolbachia aspartate aminotransferase, and heat shock protein 60. The results achieved with L. loa and O. volvulus were compared. Searching for Wolbachia, genes were amplified by PCR coding for the bacterial 16S rDNA, the FTSZ cell division protein, and WSP.
Results
No Wolbachia endobacteria were discovered by immunohistology in 13 male and 14 female L. loa worms and in numerous L. loa microfilariae. In contrast, endobacteria were found in large numbers in O. volvulus and 14 other filaria species. No intracellular bacteria were seen in electron micrographs of oocytes and young morulae of L. loa in contrast to O. volvulus. In agreement with these results, Wolbachia DNA was not detected by PCR in three male and six female L. loa worms and in two microfilariae samples of L. loa.
Conclusions
Loa loa do not harbour obligatory symbiotic Wolbachia endobacteria in essential numbers to enable their efficient vertical transmission or to play a role in production of microfilariae. Exclusively, the filariae cause the immunopathology of loiasis is patients and the adverse side effects after antifilarial chemotherapy. Doxycycline cannot be used to cure loiais but it probably does not represent a risk for L. loa patients when administered to patients with co-infections of onchocerciasis.
doi:10.1186/1475-2883-2-10
PMCID: PMC161789  PMID: 12801420
23.  Flow cytometric evaluation of the intracellular bacterium, Wolbachia pipientis, in mosquito cells 
Wolbachia is an obligate intracellular bacterium (Anaplasmataceae, Rickettisales) that occurs in arthropods and filarial worms, and spreads by vertical transmission in the oocyte cytoplasm. In insects, reproductive distortions associated with Wolbachia, such as cytoplasmic incompatibility in mosquitoes, have potential value for controlling pests, including species that transmit human, animal and plant diseases. Wolbachia strains that propagate as a persistent infection in insect cell lines provide an important resource for developing the genetic tools that will facilitate these applications. Here I describe conditions for flow cytometric evaluation of Wolbachia growth in persistently infected mosquito cells. Cytometry parameters were established using uninfected mosquito cells and Escherichia coli as a surrogate for Wolbachia, and quantitation was correlated with cell counts determined with a Coulter electronic cell counter and bacterial counts based on optical density. The protocol was validated by showing depletion of Wolbachia in medium containing tetracycline and rifampicin, and sensitivity of Wolbachia to treatment of host cells with paraquat, an oxidizing agent, and lumiflavin, an inhibitor of riboflavin uptake. The Wolbachia peak on the flow cytometry histogram was shown to contain Wolbachia by DNA analysis using the polymerase chain reaction, and by infection of naive recipient cells. This approach will streamline investigation of Wolbachia growth in insect cell lines and facilitate identification of culture conditions that select for Wolbachia-infected cells.
doi:10.1016/j.mimet.2014.09.011
PMCID: PMC4252651  PMID: 25300665
alphaproteobacteria; Wolbachia; intracellular microorganism; mosquito cell line; flow cytometry
24.  Comparing the mitochondrial genomes of Wolbachia-dependent and independent filarial nematode species 
BMC Genomics  2012;13:145.
Background
Many species of filarial nematodes depend on Wolbachia endobacteria to carry out their life cycle. Other species are naturally Wolbachia-free. The biological mechanisms underpinning Wolbachia-dependence and independence in filarial nematodes are not known. Previous studies have indicated that Wolbachia have an impact on mitochondrial gene expression, which may suggest a role in energy metabolism. If Wolbachia can supplement host energy metabolism, reduced mitochondrial function in infected filarial species may account for Wolbachia-dependence. Wolbachia also have a strong influence on mitochondrial evolution due to vertical co-transmission. This could drive alterations in mitochondrial genome sequence in infected species. Comparisons between the mitochondrial genome sequences of Wolbachia-dependent and independent filarial worms may reveal differences indicative of altered mitochondrial function.
Results
The mitochondrial genomes of 5 species of filarial nematodes, Acanthocheilonema viteae, Chandlerella quiscali, Loa loa, Onchocerca flexuosa, and Wuchereria bancrofti, were sequenced, annotated and compared with available mitochondrial genome sequences from Brugia malayi, Dirofilaria immitis, Onchocerca volvulus and Setaria digitata. B. malayi, D. immitis, O. volvulus and W. bancrofti are Wolbachia-dependent while A. viteae, C. quiscali, L. loa, O. flexuosa and S. digitata are Wolbachia-free. The 9 mitochondrial genomes were similar in size and AT content and encoded the same 12 protein-coding genes, 22 tRNAs and 2 rRNAs. Synteny was perfectly preserved in all species except C. quiscali, which had a different order for 5 tRNA genes. Protein-coding genes were expressed at the RNA level in all examined species. In phylogenetic trees based on mitochondrial protein-coding sequences, species did not cluster according to Wolbachia dependence.
Conclusions
Thus far, no discernable differences were detected between the mitochondrial genome sequences of Wolbachia-dependent and independent species. Additional research will be needed to determine whether mitochondria from Wolbachia-dependent filarial species show reduced function in comparison to the mitochondria of Wolbachia-independent species despite their sequence-level similarities.
doi:10.1186/1471-2164-13-145
PMCID: PMC3409033  PMID: 22530989
25.  Evidence against Wolbachia symbiosis in Loa loa 
Filaria Journal  2003;2:9.
Background
The majority of filarial nematode species are host to Wolbachia bacterial endosymbionts, although a few including Acanthocheilonema viteae, Onchocerca flexuosa and Setaria equina have been shown to be free of infection. Comparisons of species with and without symbionts can provide important information on the role of Wolbachia symbiosis in the biology of the nematode hosts and the contribution of the bacteria to the development of disease. Previous studies by electron microscopy and PCR have failed to detect intracellular bacterial infection in Loa loa. Here we use molecular and immunohistological techniques to confirm this finding.
Methods
We have used a combination of PCR amplification of bacterial genes (16S ribosomal DNA [rDNA], ftsZ and Wolbachia surface protein [WSP]) on samples of L. loa adults, third-stage larvae (L3) and microfilariae (mf) and immunohistology on L. loa adults and mf derived from human volunteers to determine the presence or absence of Wolbachia endosymbionts. Samples used in the PCR analysis included 5 adult female worms, 4 adult male worms, 5 mf samples and 2 samples of L3. The quality and purity of nematode DNA was tested by PCR amplification of nematode 5S rDNA and with diagnostic primers from the target species and used to confirm the absence of contamination from Onchocerca sp., Mansonella perstans, M. streptocerca and Wuchereria bancrofti. Immunohistology was carried out by light and electron microscopy on L. loa adults and mf and sections were probed with rabbit antibodies raised to recombinant Brugia malayi Wolbachia WSP. Samples from nematodes known to be infected with Wolbachia (O. volvulus, O. ochengi, Litomosoides sigmodontis and B. malayi) were used as positive controls and A. viteae as a negative control.
Results
Single PCR analysis using primer sets for the bacterial genes 16S rDNA, ftsZ, and WSP were negative for all DNA samples from L. loa. Positive PCR reactions were obtained from DNA samples derived from species known to be infected with Wolbachia, which confirmed the suitability of the primers and PCR conditions. The quality and purity of nematode DNA samples was verified by PCR amplification of 5S rDNA and with nematode diagnostic primers. Additional analysis by 'long PCR' failed to produce any further evidence for Wolbachia symbiosis. Immunohistology of L. loa adults and mf confirmed the results of the PCR with no evidence for Wolbachia symbiosis.
Conclusion
DNA analysis and immunohistology provided no evidence for Wolbachia symbiosis in L. loa.
doi:10.1186/1475-2883-2-9
PMCID: PMC161820  PMID: 12816546

Results 1-25 (1049666)