Search tips
Search criteria

Results 1-25 (1185228)

Clipboard (0)

Related Articles

1.  Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups 
PLoS Genetics  2010;6(4):e1000916.
Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
Author Summary
Genome-wide association studies (GWAS) have successfully contributed to the detection of genetic variants involved in body-weight regulation. We jointly analysed two GWAS for early-onset extreme obesity in 2,258 individuals of European origin and followed-up the findings in 3,141 individuals. Evidence for association of markers in two new genetic loci was shown (SDCCAG8 on chromosome 1q43–q44 and between TNKS/MSRA on chromosome 8p23.1). We also re-identified variants in or near FTO, MC4R, and TMEM18 to be associated with extreme obesity. In addition, we assessed the effect of the markers in 31,182 obese, lean, normal weight, and unselected individuals from population-based samples and showed that the variants near FTO, MC4R, TMEM18, and SDCCAG8 were consistently associated with obesity. For variants of TNKS/MSRA, the obesity association was limited to children and adolescents. In summary, we detected two new obesity loci and confirmed that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
PMCID: PMC2858696  PMID: 20421936
2.  Genome-Wide Association for Abdominal Subcutaneous and Visceral Adipose Reveals a Novel Locus for Visceral Fat in Women 
PLoS Genetics  2012;8(5):e1002695.
Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover novel loci for body fat distribution among participants of European ancestry. Subcutaneous and visceral fat were quantified in 5,560 women and 4,997 men from 4 population-based studies. Genome-wide genotyping was performed using standard arrays and imputed to ∼2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), VAT adjusted for body mass index, and VAT/SAT ratio (a metric of the propensity to store fat viscerally as compared to subcutaneously) in the overall sample and in women and men separately. A weighted z-score meta-analysis was conducted. For the VAT/SAT ratio, our most significant p-value was rs11118316 at LYPLAL1 gene (p = 3.1×10E-09), previously identified in association with waist–hip ratio. For SAT, the most significant SNP was in the FTO gene (p = 5.9×10E-08). Given the known gender differences in body fat distribution, we performed sex-specific analyses. Our most significant finding was for VAT in women, rs1659258 near THNSL2 (p = 1.6×10-08), but not men (p = 0.75). Validation of this SNP in the GIANT consortium data demonstrated a similar sex-specific pattern, with observed significance in women (p = 0.006) but not men (p = 0.24) for BMI and waist circumference (p = 0.04 [women], p = 0.49 [men]). Finally, we interrogated our data for the 14 recently published loci for body fat distribution (measured by waist–hip ratio adjusted for BMI); associations were observed at 7 of these loci. In contrast, we observed associations at only 7/32 loci previously identified in association with BMI; the majority of overlap was observed with SAT. Genome-wide association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body composition and fat distribution can detect new loci not previously uncovered in large-scale GWAS of anthropometric traits.
Author Summary
Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover novel loci for body fat distribution among participants of European ancestry. We quantified subcutaneous and visceral fat in more than 10,000 women and men who also had genome-wide association data available. Given the known gender differences in body fat distribution, we performed sex-specific analyses. Our most significant finding was for VAT in women, near the THNSL2 gene. These findings were not observed in men. We also interrogated our data for the 14 recently published loci for body fat distribution (measured by waist–hip ratio adjusted for BMI); associations were observed for 7 of these loci, most notably for VAT/SAT ratio. We conclude that genome-wide association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body composition and fat distribution can detect new loci not uncovered in large-scale GWAS of anthropometric traits.
PMCID: PMC3349734  PMID: 22589738
3.  Implications of Central Obesity-Related Variants in LYPLAL1, NRXN3, MSRA, and TFAP2B on Quantitative Metabolic Traits in Adult Danes 
PLoS ONE  2011;6(6):e20640.
Two meta-analyses of genome-wide association studies (GWAS) have suggested that four variants: rs2605100 in lysophospholipase-like 1 (LYPLAL1), rs10146997 in neuroxin 3 (NRXN3), rs545854 in methionine sulfoxide reductase A (MSRA), and rs987237 in transcription factor activating enhancer-binding protein 2 beta (TFAP2B) associate with measures of central obesity.
To elucidate potential underlying phenotypes we aimed to investigate whether these variants associated with: 1) quantitative metabolic traits, 2) anthropometric measures (waist circumference (WC), waist-hip ratio, and BMI), or 3) type 2 diabetes, and central and general overweight and obesity.
Methodology/Principal Findings
The four variants were genotyped in Danish individuals using KASPar®. Quantitative metabolic traits were examined in a population-based sample (n = 6,038) and WC and BMI were furthermore analyzed in a combined study sample (n = 13,507). Case-control studies of diabetes and adiposity included 15,326 individuals. The major G-allele of LYPLAL1 rs2605100 associated with increased fasting serum triglyceride concentrations (per allele effect (β) = 3%(1;5(95%CI)), padditive = 2.7×10−3), an association driven by the male gender (pinteraction = 0.02). The same allele associated with increased fasting serum insulin concentrations (β = 3%(1;5), padditive = 2.5×10−3) and increased insulin resistance (HOMA-IR) (β = 4%(1;6), padditive = 1.5×10−3). The minor G-allele of rs10146997 in NRXN3 associated with increased WC among women (β = 0.55cm (0.20;0.89), padditive = 1.7×10−3, pinteraction = 1.0×10−3), but showed no associations with obesity related metabolic traits. The MSRA rs545854 and TFAP2B rs987237 showed nominal associations with central obesity; however, no underlying metabolic phenotypes became obvious, when investigating quantitative metabolic traits. None of the variants influenced the prevalence of type 2 diabetes.
We demonstrate that several of the central obesity-associated variants in LYPLAL1, NRXN3, MSRA, and TFAP2B associate with metabolic and anthropometric traits in Danish adults. However, analyses were made without adjusting for multiple testing, and further studies are needed to confirm the putative role of LYPLAL1, NRXN3, MSRA, and TFAP2B in the pathophysiology of obesity.
PMCID: PMC3107232  PMID: 21674055
4.  Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation 
Horikoshi, Momoko | Mӓgi, Reedik | van de Bunt, Martijn | Surakka, Ida | Sarin, Antti-Pekka | Mahajan, Anubha | Marullo, Letizia | Thorleifsson, Gudmar | Hӓgg, Sara | Hottenga, Jouke-Jan | Ladenvall, Claes | Ried, Janina S. | Winkler, Thomas W. | Willems, Sara M. | Pervjakova, Natalia | Esko, Tõnu | Beekman, Marian | Nelson, Christopher P. | Willenborg, Christina | Wiltshire, Steven | Ferreira, Teresa | Fernandez, Juan | Gaulton, Kyle J. | Steinthorsdottir, Valgerdur | Hamsten, Anders | Magnusson, Patrik K. E. | Willemsen, Gonneke | Milaneschi, Yuri | Robertson, Neil R. | Groves, Christopher J. | Bennett, Amanda J. | Lehtimӓki, Terho | Viikari, Jorma S. | Rung, Johan | Lyssenko, Valeriya | Perola, Markus | Heid, Iris M. | Herder, Christian | Grallert, Harald | Müller-Nurasyid, Martina | Roden, Michael | Hypponen, Elina | Isaacs, Aaron | van Leeuwen, Elisabeth M. | Karssen, Lennart C. | Mihailov, Evelin | Houwing-Duistermaat, Jeanine J. | de Craen, Anton J. M. | Deelen, Joris | Havulinna, Aki S. | Blades, Matthew | Hengstenberg, Christian | Erdmann, Jeanette | Schunkert, Heribert | Kaprio, Jaakko | Tobin, Martin D. | Samani, Nilesh J. | Lind, Lars | Salomaa, Veikko | Lindgren, Cecilia M. | Slagboom, P. Eline | Metspalu, Andres | van Duijn, Cornelia M. | Eriksson, Johan G. | Peters, Annette | Gieger, Christian | Jula, Antti | Groop, Leif | Raitakari, Olli T. | Power, Chris | Penninx, Brenda W. J. H. | de Geus, Eco | Smit, Johannes H. | Boomsma, Dorret I. | Pedersen, Nancy L. | Ingelsson, Erik | Thorsteinsdottir, Unnur | Stefansson, Kari | Ripatti, Samuli | Prokopenko, Inga | McCarthy, Mark I. | Morris, Andrew P.
PLoS Genetics  2015;11(7):e1005230.
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.
Author Summary
Human genetic studies have demonstrated that quantitative human anthropometric and metabolic traits, including body mass index, waist-hip ratio, and plasma concentrations of glucose and insulin, are highly heritable, and are established risk factors for type 2 diabetes and cardiovascular diseases. Although many regions of the genome have been associated with these traits, the specific genes responsible have not yet been identified. By making use of advanced statistical “imputation” techniques applied to more than 87,000 individuals of European ancestry, and publicly available “reference panels” of more than 37 million genetic variants, we have been able to identify novel regions of the genome associated with these glycaemic and obesity-related traits and localise genes within these regions that are most likely to be causal. This improved understanding of the biological mechanisms underlying glycaemic and obesity-related traits is extremely important because it may advance drug development for downstream disease endpoints, ultimately leading to public health benefits.
PMCID: PMC4488845  PMID: 26132169
5.  Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci 
Liu, Ching-Ti | Monda, Keri L. | Taylor, Kira C. | Lange, Leslie | Demerath, Ellen W. | Palmas, Walter | Wojczynski, Mary K. | Ellis, Jaclyn C. | Vitolins, Mara Z. | Liu, Simin | Papanicolaou, George J. | Irvin, Marguerite R. | Xue, Luting | Griffin, Paula J. | Nalls, Michael A. | Adeyemo, Adebowale | Liu, Jiankang | Li, Guo | Ruiz-Narvaez, Edward A. | Chen, Wei-Min | Chen, Fang | Henderson, Brian E. | Millikan, Robert C. | Ambrosone, Christine B. | Strom, Sara S. | Guo, Xiuqing | Andrews, Jeanette S. | Sun, Yan V. | Mosley, Thomas H. | Yanek, Lisa R. | Shriner, Daniel | Haritunians, Talin | Rotter, Jerome I. | Speliotes, Elizabeth K. | Smith, Megan | Rosenberg, Lynn | Mychaleckyj, Josyf | Nayak, Uma | Spruill, Ida | Garvey, W. Timothy | Pettaway, Curtis | Nyante, Sarah | Bandera, Elisa V. | Britton, Angela F. | Zonderman, Alan B. | Rasmussen-Torvik, Laura J. | Chen, Yii-Der Ida | Ding, Jingzhong | Lohman, Kurt | Kritchevsky, Stephen B. | Zhao, Wei | Peyser, Patricia A. | Kardia, Sharon L. R. | Kabagambe, Edmond | Broeckel, Ulrich | Chen, Guanjie | Zhou, Jie | Wassertheil-Smoller, Sylvia | Neuhouser, Marian L. | Rampersaud, Evadnie | Psaty, Bruce | Kooperberg, Charles | Manson, JoAnn E. | Kuller, Lewis H. | Ochs-Balcom, Heather M. | Johnson, Karen C. | Sucheston, Lara | Ordovas, Jose M. | Palmer, Julie R. | Haiman, Christopher A. | McKnight, Barbara | Howard, Barbara V. | Becker, Diane M. | Bielak, Lawrence F. | Liu, Yongmei | Allison, Matthew A. | Grant, Struan F. A. | Burke, Gregory L. | Patel, Sanjay R. | Schreiner, Pamela J. | Borecki, Ingrid B. | Evans, Michele K. | Taylor, Herman | Sale, Michele M. | Howard, Virginia | Carlson, Christopher S. | Rotimi, Charles N. | Cushman, Mary | Harris, Tamara B. | Reiner, Alexander P. | Cupples, L. Adrienne | North, Kari E. | Fox, Caroline S.
PLoS Genetics  2013;9(8):e1003681.
Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.
Author Summary
Central obesity is a marker of body fat distribution and is known to have a genetic underpinning. Few studies have reported genome-wide association study (GWAS) results among individuals of predominantly African ancestry (AA). We performed a collaborative meta-analysis in order to identify genetic loci associated with body fat distribution in AA individuals using waist circumference (WC) and waist to hip ratio (WHR) as measures of fat distribution, with and without adjustment for body mass index (BMI). We uncovered 2 genetic loci potentially associated with fat distribution: LHX2 in association with WC-adjusted-for-BMI and at RREB1 for WHR-adjusted-for-BMI. Six of fourteen previously reported loci for waist in EA populations were significant in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). These findings reinforce the concept that there are loci for body fat distribution that are independent of generalized adiposity.
PMCID: PMC3744443  PMID: 23966867
6.  Appetite regulation genes are associated with body mass index in black South African adolescents: a genetic association study 
BMJ Open  2012;2(3):e000873.
Obesity is a complex trait with both environmental and genetic contributors. Genome-wide association studies have identified several variants that are robustly associated with obesity and body mass index (BMI), many of which are found within genes involved in appetite regulation. Currently, genetic association data for obesity are lacking in Africans—a single genome-wide association study and a few replication studies have been published in West Africa, but none have been performed in a South African population.
To assess the association of candidate loci with BMI in black South Africans. The authors focused on single nucleotide polymorphisms (SNPs) in the FTO, LEP, LEPR, MC4R, NPY2R and POMC genes.
A genetic association study.
990 randomly selected individuals from the larger Birth to Twenty cohort (a longitudinal birth cohort study of health and development in Africans).
The authors genotyped 44 SNPs within the six candidate genes that included known BMI-associated SNPs and tagSNPs based on linkage disequilibrium in an African population for FTO, LEP and NPY2R. To assess population substructure, the authors included 18 ancestry informative markers. Weight, height, sex, sex-specific pubertal stage and exact age collected during adolescence (13 years) were used to identify loci that predispose to obesity early in life.
Sex, sex-specific pubertal stage and exact age together explain 14.3% of the variation in log(BMI) at age 13. After adjustment for these factors, four SNPs were individually significantly associated with BMI: FTO rs17817449 (p=0.022), LEP rs10954174 (p=0.0004), LEP rs6966536 (p=0.012) and MC4R rs17782313 (p=0.045). Together the four SNPs account for 2.1% of the variation in log(BMI). Each risk allele was associated with an estimated average increase of 2.5% in BMI.
The study highlighted SNPs in FTO and MC4R as potential genetic markers of obesity risk in South Africans. The association with two SNPs in the 3′ untranslated region of the LEP gene is novel.
Article summary
Article focus
This is a replication study aiming to reproduce BMI association findings from European cohorts in a South African population.
This study focused on genes linked to appetite control that were previously reported to show association with BMI or obesity and included FTO, LEP, LEPR, MC4R, NPY2R and POMC.
Adolescent data were used to facilitate the identification of genetic loci that predispose to obesity early in life, as it is known that overweight/obese children have an elevated risk of becoming obese adults.
Key messages
We found four SNPs were individually significantly associated with BMI: FTO rs17817449 (p=0.022), LEP rs10954174 (p=0.0004), LEP rs6966536 (p=0.012) and MC4R rs17782313 (p=0.045).
Together the four SNPs account for 2.1% of the variation in log(BMI).
We also demonstrated that an accumulation of risk alleles is linked to a significant increase in BMI—individuals with seven risk alleles had an 11.0% increase in median BMI compared with those with two risk alleles.
Strengths and limitations of this study
This study provides the first preliminary evidence of the role of genetic variants in obesity risk in an adolescent black South African population.
This study was only moderately powered to detect association with BMI, and not all genes were exhaustively investigated.
TagSNP selection would have been enhanced if South African data were available for this approach.
PMCID: PMC3358621  PMID: 22614171
7.  Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk 
BMC Medical Genetics  2008;9:59.
Recent genome-wide association (GWA) studies have identified several unsuspected genes associated with type 2 diabetes (T2D) with previously unknown functions. In this investigation, we have examined the role of 9 most significant SNPs reported in GWA studies: [peroxisome proliferator-activated receptor gamma 2 (PPARG2; rs 1801282); insulin-like growth factor two binding protein 2 (IGF2BP2; rs 4402960); cyclin-dependent kinase 5, a regulatory subunit-associated protein1-like 1 (CDK5; rs7754840); a zinc transporter and member of solute carrier family 30 (SLC30A8; rs13266634); a variant found near cyclin-dependent kinase inhibitor 2A (CDKN2A; rs10811661); hematopoietically expressed homeobox (HHEX; rs 1111875); transcription factor-7-like 2 (TCF7L2; rs 10885409); potassium inwardly rectifying channel subfamily J member 11(KCNJ11; rs 5219); and fat mass obesity-associated gene (FTO; rs 9939609)].
We genotyped these SNPs in a case-control sample of 918 individuals consisting of 532 T2D cases and 386 normal glucose tolerant (NGT) subjects of an Asian Sikh community from North India. We tested the association between T2D and each SNP using unconditional logistic regression before and after adjusting for age, gender, and other covariates. We also examined the impact of these variants on body mass index (BMI), waist to hip ratio (WHR), fasting insulin, and glucose and lipid levels using multiple linear regression analysis.
Four of the nine SNPs revealed a significant association with T2D; PPARG2 (Pro12Ala) [odds ratio (OR) 0.12; 95% confidence interval (CI) (0.03–0.52); p = 0.005], IGF2BP2 [OR 1.37; 95% CI (1.04–1.82); p = 0.027], TCF7L2 [OR 1.64; 95% CI (1.20–2.24); p = 0.001] and FTO [OR 1.46; 95% CI (1.11–1.93); p = 0.007] after adjusting for age, sex and BMI. Multiple linear regression analysis revealed significant association of two of nine investigated loci with diabetes-related quantitative traits. The 'C' (risk) allele of CDK5 (rs 7754840) was significantly associated with decreased HDL-cholesterol levels in both NGT (p = 0.005) and combined (NGT and T2D) (0.005) groups. The less common 'C' (risk) allele of TCF7L2 (rs 10885409) was associated with increased LDL-cholesterol (p = 0.010) in NGT and total and LDL-cholesterol levels (p = 0.008; p = 0.003, respectively) in combined cohort.
To our knowledge, this is first study reporting the role of some recently emerged loci with T2D in a high risk population of Asian Indian origin. Further investigations are warranted to understand the pathway-based functional implications of these important loci in T2D pathophysiology in different ethnicities.
PMCID: PMC2481250  PMID: 18598350
8.  Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study 
PLoS Medicine  2010;7(8):e1000332.
Shengxu Li and colleagues use data from a large prospective observational cohort to examine the extent to which a genetic predisposition toward obesity may be modified by living a physically active lifestyle.
We have previously shown that multiple genetic loci identified by genome-wide association studies (GWAS) increase the susceptibility to obesity in a cumulative manner. It is, however, not known whether and to what extent this genetic susceptibility may be attenuated by a physically active lifestyle. We aimed to assess the influence of a physically active lifestyle on the genetic predisposition to obesity in a large population-based study.
Methods and Findings
We genotyped 12 SNPs in obesity-susceptibility loci in a population-based sample of 20,430 individuals (aged 39–79 y) from the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort with an average follow-up period of 3.6 y. A genetic predisposition score was calculated for each individual by adding the body mass index (BMI)-increasing alleles across the 12 SNPs. Physical activity was assessed using a self-administered questionnaire. Linear and logistic regression models were used to examine main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time, assuming an additive effect for each additional BMI-increasing allele carried. Each additional BMI-increasing allele was associated with 0.154 (standard error [SE] 0.012) kg/m2 (p = 6.73×10−37) increase in BMI (equivalent to 445 g in body weight for a person 1.70 m tall). This association was significantly (pinteraction = 0.005) more pronounced in inactive people (0.205 [SE 0.024] kg/m2 [p = 3.62×10−18; 592 g in weight]) than in active people (0.131 [SE 0.014] kg/m2 [p = 7.97×10−21; 379 g in weight]). Similarly, each additional BMI-increasing allele increased the risk of obesity 1.116-fold (95% confidence interval [CI] 1.093–1.139, p = 3.37×10−26) in the whole population, but significantly (pinteraction = 0.015) more in inactive individuals (odds ratio [OR] = 1.158 [95% CI 1.118–1.199; p = 1.93×10−16]) than in active individuals (OR = 1.095 (95% CI 1.068–1.123; p = 1.15×10−12]). Consistent with the cross-sectional observations, physical activity modified the association between the genetic predisposition score and change in BMI during follow-up (pinteraction = 0.028).
Our study shows that living a physically active lifestyle is associated with a 40% reduction in the genetic predisposition to common obesity, as estimated by the number of risk alleles carried for any of the 12 recently GWAS-identified loci.
Please see later in the article for the Editors' Summary
Editors' Summary
In the past few decades, the global incidence of obesity—defined as a body mass index (BMI, a simple index of weight-for-height that uses the weight in kilograms divided by the square of the height in meters) of 30 and over, has increased so much that this growing public health concern is now commonly referred to as the “obesity epidemic.” Once considered prevalent only in high-income countries, obesity is an increasing health problem in low- and middle-income countries, particularly in urban settings. In 2005, at least 400 million adults world-wide were obese, and the projected figure for 2015 is a substantial increase of 300 million to around 700 million. Childhood obesity is also a growing concern. Contributing factors to the obesity epidemic are a shift in diet to an increased intake of energy-dense foods that are high in fat and sugars and a trend towards decreased physical activity due to increasingly sedentary lifestyles.
However, genetics are also thought to play a critical role as genetically predisposed individuals may be more prone to obesity if they live in an environment that has abundant access to energy-dense food and labor-saving devices.
Why Was This Study Done?
Although recent genetic studies (genome-wide association studies) have identified 12 alleles (a DNA variant that is located at a specific position on a specific chromosome) associated with increased BMI, there has been no convincing evidence of the interaction between genetics and lifestyle. In this study the researchers examined the possibility of such an interaction by assessing whether individuals with a genetic predisposition to increased obesity risk could modify this risk by increasing their daily physical activity.
What Did the Researchers Do and Find?
The researchers used a population-based cohort study of 25,631 people living in Norwich, UK (The EPIC-Norfolk study) and identified individuals who were 39 to 79 years old during a health check between 1993 and 1997. The researchers invited these people to a second health examination. In total, 20,430 individuals had baseline data available, of which 11,936 had BMI data at the second health check. The researchers used genotyping methods and then calculated a genetic predisposition score for each individual and their occupational and leisure-time physical activities were assessed by using a validated self-administered questionnaire. Then, the researchers used modeling techniques to examine the main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time. The researchers found that each additional BMI-increasing allele was associated with an increase in BMI equivalent to 445 g in body weight for a person 1.70 m tall and that the size of this effect was greater in inactive people than in active people. In individuals who have a physically active lifestyle, this increase was only 379 g/allele, or 36% lower than in physically inactive individuals in whom the increase was 592 g/allele. Furthermore, in the total sample each additional obesity-susceptibility allele increased the odds of obesity by 1.116-fold. However, the increased odds per allele for obesity risk were 40% lower in physically active individuals (1.095 odds/allele) compared to physically inactive individuals (1.158 odds/allele).
What Do These Findings Mean?
The findings of this study indicate that the genetic predisposition to obesity can be reduced by approximately 40% by having a physically active lifestyle. The findings of this study suggest that, while the whole population benefits from increased physical activity levels, individuals who are genetically predisposed to obesity would benefit more than genetically protected individuals. Furthermore, these findings challenge the deterministic view of the genetic predisposition to obesity that is often held by the public, as they show that even the most genetically predisposed individuals will benefit from adopting a healthy lifestyle. The results are limited by participants self-reporting their physical activity levels, which is less accurate than objective measures of physical activity.
Additional Information
Please access these Web sites via the online version of this summary at
This study relies on the results of previous genome-wide association studies The National Human Genome Research Institute provides an easy-to-follow guide to understanding such studies
The International Association for the Study of Obesity aims to improve global health by promoting the understanding of obesity and weight-related diseases through scientific research and dialogue
The International Obesity Taskforce is the research-led think tank and advocacy arm of the International Association for the Study of Obesity
The Global Alliance for the Prevention of Obesity and Related Chronic Disease is a global action program that addresses the issues surrounding the prevention of obesity
The National Institutes of Health has its own obesity task force, which includes 26 institutes
PMCID: PMC2930873  PMID: 20824172
9.  Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits 
PLoS Genetics  2007;3(7):e115.
The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 ×10−7), hip circumference (p = 3.4 × 10−8), and weight (p = 9.1 × 10−7). In Sardinia, homozygotes for the rare “G” allele of this SNP (minor allele frequency = 0.46) were 1.3 BMI units heavier than homozygotes for the common “A” allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 × 10−6). Homozygotes for the rare “A” allele of this SNP (minor allele frequency = 0.12) were 1.8 BMI units heavier than homozygotes for the common “G” allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496) and in Hispanic Americans (N = 839), we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001), weight (p = 0.001), and hip circumference (p = 0.0005). We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare “A” allele were, on average, 1.0–3.0 BMI units heavier than homozygotes for the more common “G” allele. In summary, we have completed a whole genome–association scan for three obesity-related quantitative traits and report that common genetic variants in the FTO gene are associated with substantial changes in BMI, hip circumference, and body weight. These changes could have a significant impact on the risk of obesity-related morbidity in the general population.
Author Summary
Although twin and family studies have clearly shown that genes play a role in obesity, it has proven quite difficult to identify the specific genetic variants involved. Here, we take advantage of recent technical and methodological advances to examine the role of common genetic variants on several obesity-related traits. By examining >4,000 Sardinians, we show that a specific genetic variant, rs9930506, and other nearby variants on human Chromosome 16 are associated with body mass index, hip circumference, and total body weight. The variants overlap FTO, a gene with poorly understood function. Further studies of the region may implicate new biological pathways affecting susceptibility to obesity. We also show that the association is not restricted to Sardinia but is also seen in independent samples of European Americans and Hispanic Americans. This finding is particularly important because obesity is associated with increased risk of cardiovascular disease and diabetes.
PMCID: PMC1934391  PMID: 17658951
10.  The INSIG2 rs7566605 genetic variant does not play a major role in obesity in a sample of 24,722 individuals from four cohorts 
BMC Medical Genetics  2009;10:56.
In a genome-wide association study performed in the Framingham Offspring Cohort, individuals homozygous for the rs7566605 C allele located upstream of insulin-induced gene 2 (INSIG2) were reported to incur an increased risk of obesity. This finding was later replicated in four out of five populations examined. The goal of the study reported here was to assess the role of the INSIG2 single nucleotide polymorphism (SNP) in susceptibility to obesity in the prospective longitudinal Atherosclerosis Risk in Communities (ARIC) study (n = 14,566) and in three other cohorts: the Coronary Artery Risk Development in Young Adults (CARDIA) study (n = 3,888), the Genetic Epidemiology Network of Arteriopathy (GENOA) study (n = 4,766), and extremely obese and lean individuals ascertained at the University of Ottawa (n = 1,502). The combined study sample is comprised of 24,722 white, African-American, and Mexican-American participants.
Differences in mean body mass index (BMI) and other anthropometric measures including weight, waist circumference, and waist-to-hip ratio were assessed by a general linear model in individuals categorized by INSIG2 rs7566605 genotype. Multivariable logistic regression was used to predict the risk of obesity (BMI ≥ 30 kg/m2).
There was no discernable variation in the frequencies of the three INSIG2 SNP genotypes observed between white, Hispanic, and African-American obese individuals and non-obese study subjects. When the relationship between rs7566605 and BMI considered either as a categorical variable or a continuous variable was examined, no significant association with obesity was found for participants in any of the four study populations or in a combined analysis (p = 0.38) under a recessive genetic model. There was also no association between the INSIG2 polymorphism and the obesity-related quantitative traits except for a reduced waist-to-hip ratio in white ARIC study participants homozygous for the C allele, and an increased waist-to-hip ratio in African-Americans in the ARIC cohort with the same genotype (p = 0.04 and p = 0.01, respectively). An association with waist-to-hip ratio was not seen when the combined study sample was analyzed (p = 0.74).
These results suggest that the INSIG2 rs7566605 variant does not play a major role in determining obesity risk in a racially and ethnically diverse sample of 24,722 individuals from four cohorts.
PMCID: PMC2706232  PMID: 19523229
11.  Evaluation of common genetic variants identified by GWAS for early onset and morbid obesity in population-based samples 
Meta-analysis of case-control genome wide association studies (GWAS) for early onset and morbid obesity identified four variants in/near the PRL, PTER, MAF and NPC1 genes.
We aimed to validate association of these variants with obesity-related traits in population-based samples.
Genotypes and anthropometric traits were available in up to 31 083 adults from the Fenland, EPIC-Norfolk, Whitehall II, Ely and Hertfordshire studies and in 2 042 children and adolescents from the European Youth Heart Study. In each study, we tested associations of rs4712652 (near-PRL), rs10508503 (near-PTER), rs1424233 (near-MAF) and rs1805081 (NPC1), or proxy variants (r2>0.8), with the odds of being overweight and obese, as well as with BMI, percentage body fat (%BF) and waist circumference (WC). Associations were adjusted for sex, age and age2 in adults and for sex, age, age-group, country and maturity in children and adolescents. Summary statistics were combined using fixed effects meta-analysis methods.
We had 80% power to detect ORs of 1.046 to 1.092 for overweight and 1.067 to 1.136 for obesity. Variants near PRL, PTER and MAF were not associated with the odds of being overweight or obese, or with BMI, %BF or WC after meta-analysis (P > 0.15). The NPC1 variant rs1805081 showed some evidence of association with %BF (beta=0.013 SD/allele, P =0.040), but not with any of the remaining obesity-related traits (P >0.3).
Overall, these variants, which were identified in a GWAS for early onset and morbid obesity, do not seem to influence obesity-related traits in the general population.
PMCID: PMC3680864  PMID: 22430306
Obesity-susceptibility loci; genome-wide association; morbid; early-onset; anthropometric traits; children and adolescents; population-based
12.  Genome Wide Association (GWA) Study for Early Onset Extreme Obesity Supports the Role of Fat Mass and Obesity Associated Gene (FTO) Variants 
PLoS ONE  2007;2(12):e1361.
Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.
Methodology/Principal Findings
a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.
Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.
PMCID: PMC2137937  PMID: 18159244
13.  Replication of genetic variants from genome-wide association studies with metabolic traits in an island population of the Adriatic coast of Croatia 
Twenty-two single-nucleotide polymorphisms (SNPs) in 10 gene regions previously identified in obesity and type 2 diabetes (T2D) genome-wide association studies (GWAS) were evaluated for association with metabolic traits in a sample from an island population of European descent. We performed a population-based study using 18 anthropometric and biochemical traits considered as continuous variables in a sample of 843 unrelated subjects (360 men and 483 women) aged 18–80 years old from the island of Hvar on the eastern Adriatic coast of Croatia. All eight GWAS SNPs in FTO were significantly associated with weight, body mass index, waist circumference and hip circumference; 20 of the 32 nominal P-values remained significant after permutation testing for multiple corrections. The strongest associations were found between the two TCF7L2 GWAS SNPs with fasting plasma glucose and HbA1c levels, all four P-values remained significant after permutation tests. Nominally significant associations were found between several SNPs and other metabolic traits; however, the significance did not hold after permutation tests. Although the sample size was modest, our study strongly replicated the association of FTO variants with obesity-related measures and TCF7L2 variants with T2D-related traits. The estimated effect sizes of these variants were larger or comparable to published studies. This is likely attributable to the homogenous genetic background of the relatively isolated study population.
PMCID: PMC3061997  PMID: 21150882
genetic association; obesity; type 2 diabetes; FTO; TCF7L2; isolated population
14.  Genome-wide association study of anthropometric traits and evidence of interactions with age and study year in Filipino women 
Obesity (Silver Spring, Md.)  2010;19(5):1019-1027.
Increased values of multiple adiposity-related anthropometric traits are important risk factors for many common complex diseases. We performed a genome-wide association (GWA) study for four quantitative traits related to body size and adiposity (body mass index [BMI], weight, waist circumference, and height) in a cohort of 1,792 adult Filipino women from the Cebu Longitudinal Health and Nutrition Survey. This is the first GWA study of anthropometric traits in Filipinos, a population experiencing a rapid transition into a more obesogenic environment. In addition to identifying suggestive evidence of additional SNP association signals (P < 10−5), we replicated (P < 0.05, same direction of additive effect) associations previously reported in European populations of both BMI and weight with MC4R and FTO, of BMI with BDNF, and of height with EFEMP1, ZBTB38, and NPPC, but none with waist circumference. We also replicated loci reported in Japanese or Korean populations as associated with BMI (OTOL1) and height (HIST1H1PS2, C14orf145, GPC5). A difference in local linkage disequilibrium between European and Asian populations suggests a narrowed association region for BDNF, while still including a proposed functional non-synonymous amino acid substitution variant (rs6265, Val66Met). Finally, we observed significant evidence (P < 0.0042) for age-by-genotype interactions influencing BMI for rs17782313 (MC4R) and rs9939609 (FTO), and for a study year-by-genotype interaction for rs4923461 (BDNF). Our results show that several genetic risk factors are associated with anthropometric traits in Filipinos and provide further insight into the effects of BDNF, FTO, and MC4R on BMI.
PMCID: PMC3046220  PMID: 20966902
15.  EMR-linked GWAS study: investigation of variation landscape of loci for body mass index in children 
Frontiers in Genetics  2013;4:268.
Common variations at the loci harboring the fat mass and obesity gene (FTO), MC4R, and TMEM18 are consistently reported as being associated with obesity and body mass index (BMI) especially in adult population. In order to confirm this effect in pediatric population five European ancestry cohorts from pediatric eMERGE-II network (CCHMC-BCH) were evaluated.
Method: Data on 5049 samples of European ancestry were obtained from the Electronic Medical Records (EMRs) of two large academic centers in five different genotyped cohorts. For all available samples, gender, age, height, and weight were collected and BMI was calculated. To account for age and sex differences in BMI, BMI z-scores were generated using 2000 Centers of Disease Control and Prevention (CDC) growth charts. A Genome-wide association study (GWAS) was performed with BMI z-score. After removing missing data and outliers based on principal components (PC) analyses, 2860 samples were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and BMI was tested using linear regression adjusting for age, gender, and PC by cohort. The effects of SNPs were modeled assuming additive, recessive, and dominant effects of the minor allele. Meta-analysis was conducted using a weighted z-score approach.
Results: The mean age of subjects was 9.8 years (range 2–19). The proportion of male subjects was 56%. In these cohorts, 14% of samples had a BMI ≥95 and 28 ≥ 85%. Meta analyses produced a signal at 16q12 genomic region with the best result of p = 1.43 × 10-7 [p(rec) = 7.34 × 10-8) for the SNP rs8050136 at the first intron of FTO gene (z = 5.26) and with no heterogeneity between cohorts (p = 0.77). Under a recessive model, another published SNP at this locus, rs1421085, generates the best result [z = 5.782, p(rec) = 8.21 × 10-9]. Imputation in this region using dense 1000-Genome and Hapmap CEU samples revealed 71 SNPs with p < 10-6, all at the first intron of FTO locus. When hetero-geneity was permitted between cohorts, signals were also obtained in other previously identified loci, including MC4R (rs12964056, p = 6.87 × 10-7, z = -4.98), cholecystokinin CCK (rs8192472, p = 1.33 × 10-6, z = -4.85), Interleukin 15 (rs2099884, p = 1.27 × 10-5, z = 4.34), low density lipoprotein receptor-related protein 1B [LRP1B (rs7583748, p = 0.00013, z = -3.81)] and near transmembrane protein 18 (TMEM18) (rs7561317, p = 0.001, z = -3.17). We also detected a novel locus at chromosome 3 at COL6A5 [best SNP = rs1542829, minor allele frequency (MAF) of 5% p = 4.35 × 10-9, z = 5.89].
Conclusion: An EMR linked cohort study demonstrates that the BMI-Z measurements can be successfully extracted and linked to genomic data with meaningful confirmatory results. We verified the high prevalence of childhood rate of overweight and obesity in our cohort (28%). In addition, our data indicate that genetic variants in the first intron of FTO, a known adult genetic risk factor for BMI, are also robustly associated with BMI in pediatric population.
PMCID: PMC3847941  PMID: 24348519
BMI; obesity; polymorphism; GWAS
16.  Association of Obesity-related Genetic Variants With Endometrial Cancer Risk: A Report From the Shanghai Endometrial Cancer Genetics Study 
American Journal of Epidemiology  2011;174(10):1115-1126.
Obesity is a well-established risk factor for endometrial cancer, the most common gynecologic malignancy. Recent genome-wide association studies (GWAS) have identified multiple genetic markers for obesity. The authors evaluated the association of obesity-related single nucleotide polymorphisms (SNPs) with endometrial cancer using GWAS data from their recently completed study, the Shanghai Endometrial Cancer Genetics Study, which comprised 832 endometrial cancer cases and 2,049 controls (1996–2005). Thirty-five SNPs previously associated with obesity or body mass index (BMI; weight (kg)/height (m)2) at a minimum significance level of ≤5 × 10−7 in the US National Human Genome Research Institute's GWAS catalog ( and representing 26 unique loci were evaluated by either direct genotyping or imputation. The authors found that for 22 of the 26 unique loci tested (84.6%), the BMI-associated risk variants were present at a higher frequency in cases than in population controls (P = 0.0003). Multiple regression analysis showed that 9 of 35 BMI-associated variants, representing 7 loci, were significantly associated (P ≤ 0.05) with the risk of endometrial cancer; for all but 1 SNP, the direction of association was consistent with that found for BMI. For consistent SNPs, the allelic odds ratios ranged from 1.15 to 1.29. These 7 loci are in the SEC16B/RASAL, TMEM18, MSRA, SOX6, MTCH2, FTO, and MC4R genes. The associations persisted after adjustment for BMI, suggesting that genetic markers of obesity provide value in addition to BMI in predicting endometrial cancer risk.
PMCID: PMC3246689  PMID: 21976109
body mass index; endometrial neoplasms; genetics; genome-wide association study; obesity; risk factors
17.  Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes 
PLoS Genetics  2012;8(2):e1002505.
Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response–related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10−4). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS–related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10−4); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10−4) and BMI–adjusted waist-to-hip ratio (P = 2.4×10−4). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.
Author Summary
Metabolic Syndrome (MetS) is a highly prevalent disorder with considerable public health concern, but its underlying genetic factors remain elusive. Given that most cellular components exert their functions through interactions with other cellular components, even the largest of genome-wide association (GWA) studies may often not detect their effects, nor necessarily provide insight into the complex molecular mechanisms of the disease. Rather than focusing on individual genes, the analysis of coexpression networks can be used for finding clusters (modules) of correlated expression levels across samples. In this study, we used a gene network–based approach for integrating clinical MetS, genotypic, and gene expression data from abdominal and gluteal adipose tissue and whole blood. We identified modules of genes related to MetS significantly enriched for immune response and oxidative phosphorylation pathways. We tested SNPs for association with MetS–associated expression (eSNPs), and tested prioritised eSNPs for association with MetS–related phenotypes in two large-scale GWA datasets. We identified two loci, neither of which had reached genome-wide significance levels in GWAs, associated with expression levels of RARRES2 and HLA-DRB1 and with MetS–related phenotypes, demonstrating that the integrated analysis of genotype and expression data from relevant multiple tissues can identify novel associations with complex traits such as MetS.
PMCID: PMC3285582  PMID: 22383892
18.  Associations of Six Single Nucleotide Polymorphisms in Obesity-Related Genes With BMI and Risk of Obesity in Chinese Children 
Diabetes  2010;59(12):3085-3089.
Childhood obesity strongly predisposes to some adult diseases. Recently, genome-wide association (GWA) studies in Caucasians identified multiple single nucleotide polymorphisms (SNPs) associated with BMI and obesity. The associations of those SNPs with BMI and obesity among other ethnicities are not fully described, especially in children. Among those previously identified SNPs, we selected six (rs7138803, rs1805081, rs6499640, rs17782313, rs6265, and rs10938397, in or near obesity-related genes FAIM2, NPC1, FTO, MC4R, BDNF, and GNPDA2, respectively) because of the relatively high minor allele frequencies in Chinese individuals and tested the associations of the SNPs with BMI and obesity in Chinese children.
We investigated the associations of these SNPs with BMI and obesity in school-aged children. A total of 3,503 children participated in the study, including 1,229 obese, 655 overweight, and 1,619 normal-weight children (diagnosed by the Chinese age- and sex-specific BMI cutoffs).
After age and sex adjustment and correction for multiple testing, the SNPs rs17782313, rs6265, and rs10938397 were associated with BMI (P = 1.0 × 10−5, 0.038, and 0.00093, respectively) and also obesity (P = 5.0 × 10−6, 0.043, and 0.00085, respectively) in the Chinese children. The SNPs rs17782313 and rs10938397 were also significantly associated with waist circumference, waist-to-height ratio, and fat mass percentage.
Results of this study support obesity-related genes in adults as important genes for BMI variation in children and suggest that some SNPs identified by GWA studies in Caucasians also confer risk for obesity in Chinese children.
PMCID: PMC2992769  PMID: 20843981
19.  Genome wide association study identifies KCNMA1 contributing to human obesity 
BMC Medical Genomics  2011;4:51.
Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population. Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity.
We performed a GWA analysis in 164 morbidly obese subjects (BMI:body mass index > 40 kg/m2) and 163 Swedish subjects (> 45 years) who had always been lean. The 700 SNPs displaying the strongest association with obesity in the GWA were analyzed in a second cohort comprising 460 morbidly obese subjects and 247 consistently lean Swedish adults. 23 SNPs remained significantly associated with obesity (nominal P< 0.05) and were in a step-wise manner followed up in five additional cohorts from Sweden, France, and Germany together comprising 4214 obese and 5417 lean or population-based control individuals. Three samples, n = 4133, were used to investigate the population-based associations with BMI. Gene expression in abdominal subcutaneous adipose tissue in relation to obesity was investigated for14 adults.
Potassium channel, calcium activated, large conductance, subfamily M, alpha member (KCNMA1) rs2116830*G and BDNF rs988712*G were associated with obesity in five of six investigated case-control cohorts. In meta-analysis of 4838 obese and 5827 control subjects we obtained genome-wide significant allelic association with obesity for KCNMA1 rs2116830*G with P = 2.82 × 10-10 and an odds ratio (OR) based on cases vs controls of 1.26 [95% C.I. 1.12-1.41] and for BDNF rs988712*G with P = 5.2 × 10-17and an OR of 1.36 [95% C.I. 1.20-1.55]. KCNMA1 rs2116830*G was not associated with BMI in the population-based samples. Adipose tissue (P = 0.0001) and fat cell (P = 0.04) expression of KCNMA1 was increased in obesity.
We have identified KCNMA1 as a new susceptibility locus for obesity, and confirmed the association of the BDNF locus at the genome-wide significant level.
PMCID: PMC3148553  PMID: 21708048
20.  Genome-wide linkage and peak-wide association study of obesity-related quantitative traits in Caribbean Hispanics 
Human genetics  2010;129(2):209-219.
Although obesity is more prevalent in Hispanics than non-Hispanic whites in the United States, little is known about the genetic etiology of the related traits in this population. To identify genetic loci influencing obesity in non-Mexican Hispanics, we performed a genome-wide linkage scan in 1,390 subjects from 100 Caribbean Hispanic families on six obesity-related quantitative traits: body mass index (BMI), body weight, waist circumference, waist-to-hip ratio, abdominal and average triceps skinfold thickness after adjusting for significant demographic and lifestyle factors. We then carried out an association analysis of the linkage peaks and the FTO gene in an independent community-based Hispanic subcohort (N = 652, 64% Caribbean Hispanics) from the Northern Manhattan Study. Evidence of linkage was strongest on 1q43 with multipoint LOD score of 2.45 (p = 0.0004) for body weight. Suggestive linkage evidence of LOD > 2.0 was also identified on 1q43 for BMI (LOD = 2.03), 14q32 for abdominal skinfold thickness (LOD = 2.17), 16p12 for BMI (LOD = 2.27) and weight (LOD = 2.26), and 16q23–24 for average triceps skinfold thickness (LOD = 2.32). In the association analysis of 6,440 single nucleotide polymorphisms (SNPs) under 1-LOD unit down regions of our linkage peaks on chromosome 1q43 and 16p12 as well as in the FTO gene, we found that two SNPs (rs6665519 and rs669231) on 1q43 and one FTO SNP (rs12447427) were significantly associated with BMI or body weight after adjustment for multiple testing. Our results suggest that in addition to FTO, multiple genetic loci, particularly those on 1q43 region, may contribute to the variations in obesity-related quantitative traits in Caribbean Hispanics.
PMCID: PMC4101466  PMID: 21104097
21.  Development and Evaluation of a Genetic Risk Score for Obesity 
Biodemography and social biology  2013;59(1):10.1080/19485565.2013.774628.
Results from genome-wide association studies (GWAS) represent a potential resource for etiological and treatment research. GWAS of obesity-related phenotypes have been especially successful. To translate this success into a research tool, we developed and tested a “genetic risk score” (GRS) that summarizes an individual’s genetic predisposition to obesity.
Different GWAS of obesity-related phenotypes report different sets of single nucleotide polymorphisms (SNPs) as the best genomic markers of obesity risk. Therefore, we applied a 3-stage approach that pooled results from multiple GWAS to select SNPs to include in our GRS: The 3 stages are (1) Extraction. SNPs with evidence of association are compiled from published GWAS; (2) Clustering. SNPs are grouped according to patterns of linkage disequilibrium; (3) Selection. Tag SNPs are selected from clusters that meet specific criteria. We applied this 3-stage approach to results from 16 GWAS of obesity-related phenotypes in European-descent samples to create a GRS. We then tested the GRS in the Atherosclerosis Risk in the Communities (ARIC) Study cohort (N=10,745, 55% female, 77% white, 23% African American).
Our 32-locus GRS was a statistically significant predictor of body mass index (BMI) and obesity among ARIC whites (for BMI, r=0.13, p<1×10−30; for obesity, area under the receiver operating characteristic curve (AUC)=0.57 [95% CI 0.55–0.58]). The GRS improved prediction of obesity (as measured by delta-AUC and integrated discrimination index) when added to models that included demographic and geographic information. FTO- and MC4R-linked SNPs, and a non-genetic risk assessment consisting of a socioeconomic index (p<0.01 for all comparisons). The GRS also predicted increased mortality risk over 17 years of follow-up. The GRS performed less well among African Americans.
The obesity GRS derived using our 3-stage approach is not useful for clinical risk prediction, but may have value as a tool for etiological and treatment research.
PMCID: PMC3671353  PMID: 23701538
22.  FTO and INSIG2 Genotyping Combined with Metabolic and Anthropometric Phenotyping of Morbidly Obese Patients 
Molecular Syndromology  2013;4(6):273-279.
Obesity is a major health problem worldwide. Associations of obesity with common variants of the fat mass- and obesity-associated gene (FTO) and insulin-induced gene 2 (INSIG2) have been reported in various studies. We aimed to further investigate the association of 2 single nucleotide polymorphisms (SNPs), rs9939609 in FTO and rs7566605 in INSIG2, with body mass index (BMI) and other anthropometric and metabolic parameters in subjects with morbid obesity (BMI ≥40). SNPs rs9939609 and rs7566605 were genotyped in 124 unrelated morbidly obese patients (mean BMI = 50, range 40.1-77.1) from Mainz, Germany, and in 253 normal controls without a history of morbid obesity. Metabolic and anthropometric parameters were analyzed in 109 of the 124 patients, and associations with the genotype data were examined. The high-risk AA genotype for FTO rs9939609 was observed in 32.3% of patients versus 15.8% of controls (p = 0.0004) and was associated with an increased obesity risk [odds ratio (OR) = 2.54, 95% confidence interval (CI) = 1.53-4.21]. The intermediate-risk AT genotype was found in patients and controls at similar frequencies (48.4 vs. 48.6%, OR = 0.99). The low-risk TT genotype for rs9939609 was found in 19.4% of patients (35.5% of controls; p = 0.0013) and was associated with a decreased risk for morbid obesity (OR = 0.43, CI = 0.26-0.73). In contrast, INSIG2 rs7566605 showed no association with obesity in our patients. Evaluation of metabolic data indicated associations between the high-risk FTO genotype (rs9939609_AA) and increased levels of serum glutamic oxaloacetic transaminase (GOT) and between the high-risk INSIG2 genotype (rs7566605_CC) and lower waist-to-hip ratio and lower hemoglobin A1c (HbA1c) levels. Our results confirm an association of the FTO SNP with extreme obesity. However, we found no association of the potential obesity risk allele of INSIG2 in our sample and thus cannot confirm an association of the INSIG2 CC genotype with obesity. We identified an association between the high-risk FTO genotype (rs9939609_AA) and higher GOT levels, which could possibly reflect the increased frequency of nonalcoholic steatohepatitis with obesity. We also detected associations of the high-risk INSIG2 genotype (rs7566605_CC) with lower waist-to-hip ratios and lower HbA1c levels, which may indicate amelioration of impaired glucose tolerance and type 2 diabetes for patients with this genotype after bariatric surgery.
PMCID: PMC3776395  PMID: 24167462
Association; FTO; INSIG2; Metabolic and anthropometric phenotyping; Morbid obesity; SNPs
23.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
PMCID: PMC3692470  PMID: 23824655
24.  Non-replication of an association of CTNNBL1 polymorphisms and obesity in a population of Central European ancestry 
BMC Medical Genetics  2009;10:14.
A recent genome-wide association (GWA) study of U.S. Caucasians suggested that eight single nucleotide polymorphisms (SNPs) in CTNNBL1 are associated with obesity and increased fat mass. We analysed the respective SNPs in data from our previously published GWA for early onset obesity (case-control design), in GWA data from a population-based cohort of adults, and in an independent family-based obesity study. We investigated whether variants in CTNNBL1 (including rs6013029) and in three other genes (SH3PXD2B, SLIT3 and FLJ42133,) were associated with obesity.
The GWA studies were carried out using Affymetrix® SNP Chips with approximately 500,000 markers each. In the families, SNP rs6013029 was genotyped using the TaqMan® allelic discrimination assay. The German case-control GWA included 487 extremely obese children and adolescents and 442 healthy lean individuals. The adult GWA included 1,644 individuals from a German population-based study (KORA). The 775 independent German families consisted of extremely obese children and adolescents and their parents.
We found no evidence for an association of the reported variants in CTNNBL1 with early onset obesity or increased BMI. Further, in our family-based study we found no evidence for over-transmission of the rs6013029 risk-allele T to obese children. Additionally, we found no evidence for an association of SH3PXD2B, SLIT3 and FLJ42133 variants in our two GWA samples.
We detected no confirmation of the recent association of variants in CTNNBL1 with obesity in a population of Central European ancestry.
PMCID: PMC2669797  PMID: 19228371
25.  A genome wide association study of plasma uric acid levels in obese cases and never-overweight controls 
Obesity (Silver Spring, Md.)  2013;21(9):E490-E494.
To identify plasma uric acid related genes in extremely obese and normal weight individuals using genome wide association studies (GWAS).
Design and Methods
Using genotypes from a GWAS focusing on obesity and thinness, we performed quantitative trait association analyses (PLINK) for plasma uric acid levels in 1,060 extremely obese individuals [body mass index (BMI) >35 kg/m2] and normal-weight controls (BMI<25kg/m2). In 961 samples with uric acid data, 924 were females.
Significant associations were found in SLC2A9 gene SNPs and plasma uric acid levels (rs6449213, P=3.15×10−12). DIP2C gene SNP rs877282 also reached genome wide significance(P=4,56×10−8). Weaker associations (P<1×10−5) were found in F5, PXDNL, FRAS1, LCORL, and MICAL2genes. Besides SLC2A9, 3 previously identified uric acid related genes ABCG2 (rs2622605, P=0.0026), SLC17A1 (rs3799344, P=0.0017), and RREB1 (rs1615495, P =0.00055) received marginal support in our study.
Two genes/chromosome regions reached genome wide association significance (P< 1× 10−7, 550K SNPs) in our GWAS : SLC2A9, the chromosome 2 60.1 Mb region (rs6723995), and the DIP2C gene region. Five other genes (F5, PXDNL, FRAS1, LCORL, and MICAL2) yielded P<1× 10−5. Four previous reported associations were replicated in our study, including SLC2A9, ABCG2, RREB, and SLC17A1.
PMCID: PMC3762924  PMID: 23703922
uric acid; genome wide association study; obesity

Results 1-25 (1185228)