Search tips
Search criteria

Results 1-25 (919082)

Clipboard (0)

Related Articles

1.  Harmonization of Regulatory Approaches for Evaluating Therapeutic Equivalence and Interchangeability of Multisource Drug Products: Workshop Summary Report 
The AAPS Journal  2011;13(4):556-564.
Regulatory approaches for evaluating therapeutic equivalence of multisource (or generic) drug products vary among different countries and/or regions. Harmonization of these approaches may decrease the number of in vivo bioequivalence studies and avoid unnecessary drug exposure to humans. Global harmonization for regulatory requirements may be promoted by a better understanding of factors underlying product performance and expectations from different regulatory authorities. This workshop provided an opportunity for pharmaceutical scientists from academia, industry and regulatory agencies to have open discussions on current regulatory issues and industry practices, facilitating harmonization of regulatory approaches for establishing therapeutic equivalence and interchangeability of multisource drug products.
PMCID: PMC3231855  PMID: 21845486
bioequivalence; harmonization; interchangeability; regulatory standards; therapeutic equivalence
2.  Assuring quality and performance of sustained and controlled release parenterals: EUFEPS workshop report 
AAPS PharmSci  2004;6(1):100-111.
This is a summary report of the workshop, organized by the European Federation of Pharmaceutical Scientists in association with the American Association of Pharmaceutical Scientists, the European Agency for the Evaluation of Medicinal Products, the European Pharmacopoeia, the US Food and Drug Administration and the United States Pharmacopoeia, on “Assuring Quality and Performance of Sustained and Controlled Release Parenterals” held in Basel, Switzerland, February 2003. Experts from the pharmaceutical industry, regulatory authorities and academia participated in this workshop to review, discuss and debate formulation, processing and manufacture of sustained and controlled release parenterals, and identify critical process parameters and their control. This workshop was a follow-up workshop to a previous workshop on Assuring Quality and Performance of Sustained and Controlled Release Parenterals that was held in Washington, DC in April 2001. This report reflects the outcome of the Basel 2003 meeting and the advances in the field since the Washington, DC meeting in 2001. As necessary, the reader is referred to the report on the 2001 meeting. Areas were identified at the 2003 Basel meeting where research is needed in order to understand the performance of these drug delivery systems and to assist in the development of appropriate testing procedures. Recommendations were made for future workshops and meetings.
PMCID: PMC2750946  PMID: 18465263
3.  Tobacco Company Efforts to Influence the Food and Drug Administration-Commissioned Institute of Medicine Report Clearing the Smoke: An Analysis of Documents Released through Litigation 
PLoS Medicine  2013;10(5):e1001450.
Stanton Glantz and colleagues investigate efforts by tobacco companies to influence Clearing the Smoke, a 2001 Institute of Medicine report on harm reduction tobacco products.
Please see later in the article for the Editors' Summary
Spurred by the creation of potential modified risk tobacco products, the US Food and Drug Administration (FDA) commissioned the Institute of Medicine (IOM) to assess the science base for tobacco “harm reduction,” leading to the 2001 IOM report Clearing the Smoke. The objective of this study was to determine how the tobacco industry organized to try to influence the IOM committee that prepared the report.
Methods and Findings
We analyzed previously secret tobacco industry documents in the University of California, San Francisco Legacy Tobacco Documents Library, and IOM public access files. (A limitation of this method includes the fact that the tobacco companies have withheld some possibly relevant documents.) Tobacco companies considered the IOM report to have high-stakes regulatory implications. They developed and implemented strategies with consulting and legal firms to access the IOM proceedings. When the IOM study staff invited the companies to provide information on exposure and disease markers, clinical trial design for safety and efficacy, and implications for initiation and cessation, tobacco company lawyers, consultants, and in-house regulatory staff shaped presentations from company scientists. Although the available evidence does not permit drawing cause-and-effect conclusions, and the IOM may have come to the same conclusions without the influence of the tobacco industry, the companies were pleased with the final report, particularly the recommendations for a tiered claims system (with separate tiers for exposure and risk, which they believed would ease the process of qualifying for a claim) and license to sell products comparable to existing conventional cigarettes (“substantial equivalence”) without prior regulatory approval. Some principles from the IOM report, including elements of the substantial equivalence recommendation, appear in the 2009 Family Smoking Prevention and Tobacco Control Act.
Tobacco companies strategically interacted with the IOM to win several favored scientific and regulatory recommendations.
Please see later in the article for the Editors' Summary
Editors' Summary
Up to half of tobacco users will die of cancer, lung disease, heart disease, stroke, or another tobacco-related disease. Cigarettes and other tobacco products cause disease because they expose their users to nicotine and numerous other toxic chemicals. Tobacco companies have been working to develop a “safe” cigarette for more than half a century. Initially, their attention focused on cigarettes that produced lower tar and nicotine yields in machine-smoking tests. These products were perceived as “safer” products by the public and scientists for many years, but it is now known that the use of low-yield cigarettes can actually expose smokers to higher levels of toxins than standard cigarettes. More recently, the tobacco companies have developed other products (for example, products that heat aerosols of nicotine, rather than burning the tobacco) that claim to reduce harm and the risk of tobacco-related disease, but they can only market these modified risk tobacco products in the US after obtaining Food and Drug Administration (FDA) approval. In 1999, the FDA commissioned the US Institute of Medicine (IOM, an influential source of independent expert advice on medical issues) to assess the science base for tobacco “harm reduction.” In 2001, the IOM published its report Clearing the Smoke: Assessing the Science Base for Tobacco Harm and Reduction, which, although controversial, set the tone for the development and regulation of tobacco products in the US, particularly those claiming to be less dangerous, in subsequent years.
Why Was This Study Done?
Tobacco companies have a long history of working to shape scientific discussions and agendas. For example, they have produced research results designed to “create controversy” about the dangers of smoking and secondhand smoke. In this study, the researchers investigate how tobacco companies organized to try to influence the IOM committee that prepared the Clearing the Smoke report on modified risk tobacco products by analyzing tobacco industry and IOM documents.
What Did the Researchers Do and Find?
The researchers searched the Legacy Tobacco Documents Library (a collection of internal tobacco industry documents released as a result of US litigation cases) for documents outlining how tobacco companies tried to influence the IOM Committee to Assess the Science Base for Tobacco Harm Reduction and created a timeline of events from the 1,000 or so documents they retrieved. They confirmed and supplemented this timeline using information in 80 files that detailed written interactions between the tobacco companies and the IOM committee, which they obtained through a public records access request. Analysis of these documents indicates that the tobacco companies considered the IOM report to have important regulatory implications, that they developed and implemented strategies with consulting and legal firms to access the IOM proceedings, and that tobacco company lawyers, consultants, and regulatory staff shaped presentations to the IOM committee by company scientists on various aspects of tobacco harm reduction products. The analysis also shows that tobacco companies were pleased with the final report, particularly its recommendation that tobacco products can be marketed with exposure or risk reduction claims provided the products substantially reduce exposure and provided the behavioral and health consequences of these products are determined in post-marketing surveillance and epidemiological studies (“tiered testing”) and its recommendation that, provided no claim of reduced exposure or risk is made, new products comparable to existing conventional cigarettes (“substantial equivalence”) can be marketed without prior regulatory approval.
What Do These Findings Mean?
These findings suggest that tobacco companies used their legal and regulatory staff to access the IOM committee that advised the FDA on modified risk tobacco products and that they used this access to deliver specific, carefully formulated messages designed to serve their business interests. Although these findings provide no evidence that the efforts of tobacco companies influenced the IOM committee in any way, they show that the companies were satisfied with the final IOM report and its recommendations, some of which have policy implications that continue to reverberate today. The researchers therefore call for the FDA and other regulatory bodies to remember that they are dealing with companies with a long history of intentionally misleading the public when assessing the information presented by tobacco companies as part of the regulatory process and to actively protect their public-health policies from the commercial interests of the tobacco industry.
Additional Information
Please access these Web sites via the online version of this summary at
This study is further discussed in a PLOS Medicine Perspective by Thomas Novotny
The World Health Organization provides information about the dangers of tobacco (in several languages); for information about the tobacco industry's influence on policy, see the 2009 World Health Organization report Tobacco interference with tobacco control
A PLOS Medicine Research Article by Heide Weishaar and colleagues describes tobacco company efforts to undermine the Framework Convention on Tobacco Control, an international instrument for tobacco control
Wikipedia has a page on tobacco harm reduction (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The IOM report Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction is available to read online
The Legacy Tobacco Documents Library is a public, searchable database of tobacco company internal documents detailing their advertising, manufacturing, marketing, sales, and scientific activities
The University of California, San Francisco Center for Tobacco Control Research and Education is the focal point for University of California, San Francisco (UCSF) scientists in disciplines ranging from the molecular biology of nicotine addiction through political science who combine their efforts to eradicate the use of tobacco and tobacco-induced cancer and other diseases worldwide
SmokeFree, a website provided by the UK National Health Service, offers advice on quitting smoking and includes personal stories from people who have stopped smoking, from the US National Cancer Institute, offers online tools and resources to help people quit smoking
PMCID: PMC3665841  PMID: 23723740
4.  Guidelines, Editors, Pharma And The Biological Paradigm Shift 
Mens Sana Monographs  2007;5(1):27-30.
Private investment in biomedical research has increased over the last few decades. At most places it has been welcomed as the next best thing to technology itself. Much of the intellectual talent from academic institutions is getting absorbed in lucrative positions in industry. Applied research finds willing collaborators in venture capital funded industry, so a symbiotic growth is ensured for both.
There are significant costs involved too. As academia interacts with industry, major areas of conflict of interest especially applicable to biomedical research have arisen. They are related to disputes over patents and royalty, hostile encounters between academia and industry, as also between public and private enterprise, legal tangles, research misconduct of various types, antagonistic press and patient-advocate lobbies and a general atmosphere in which commercial interest get precedence over patient welfare.
Pharma image stinks because of a number of errors of omission and commission. A recent example is suppression of negative findings about Bayer's Trasylol (Aprotinin) and the marketing maneuvers of Eli Lilly's Xigris (rhAPC). Whenever there is a conflict between patient vulnerability and profit motives, pharma often tends to tilt towards the latter. Moreover there are documents that bring to light how companies frequently cross the line between patient welfare and profit seeking behaviour.
A voluntary moratorium over pharma spending to pamper drug prescribers is necessary. A code of conduct adopted recently by OPPI in India to limit pharma company expenses over junkets and trinkets is a welcome step.
Clinical practice guidelines (CPG) are considered important as they guide the diagnostic/therapeutic regimen of a large number of medical professionals and hospitals and provide recommendations on drugs, their dosages and criteria for selection. Along with clinical trials, they are another area of growing influence by the pharmaceutical industry. For example, in a relatively recent survey of 2002, it was found that about 60% of 192 authors of clinical practice guidelines reported they had financial connections with the companies whose drugs were under consideration. There is a strong case for making CPGs based not just on effectivity but cost effectivity. The various ramifications of this need to be spelt out. Work of bodies like the Appraisal of Guidelines Research and Evaluation (AGREE) Collaboration and Guidelines Advisory Committee (GAC) are also worth a close look.
Even the actions of Foundations that work for disease amelioration have come under scrutiny. The process of setting up ‘Best Practices’ Guidelines for interactions between the pharmaceutical industry and clinicians has already begun and can have important consequences for patient care. Similarly, Good Publication Practice (GPP) for pharmaceutical companies have also been set up aimed at improving the behaviour of drug companies while reporting drug trials
The rapidly increasing trend toward influence and control by industry has become a concern for many. It is of such importance that the Association of American Medical Colleges has issued two relatively new documents - one, in 2001, on how to deal with individual conflicts of interest; and the other, in 2002, on how to deal with institutional conflicts of interest in the conduct of clinical research. Academic Medical Centers (AMCs), as also medical education and research institutions at other places, have to adopt means that minimize their conflicts of interest.
Both medical associations and research journal editors are getting concerned with individual and institutional conflicts of interest in the conduct of clinical research and documents are now available which address these issues. The 2001 ICMJE revision calls for full disclosure of the sponsor's role in research, as well as assurance that the investigators are independent of the sponsor, are fully accountable for the design and conduct of the trial, have independent access to all trial data and control all editorial and publication decisions. However the findings of a 2002 study suggest that academic institutions routinely participate in clinical research that does not adhere to ICMJE standards of accountability, access to data and control of publication.
There is an inevitable slant to produce not necessarily useful but marketable products which ensure the profitability of industry and research grants outflow to academia. Industry supports new, not traditional, therapies, irrespective of what is effective. Whatever traditional therapy is supported is most probably because the company concerned has a product with a big stake there, which has remained a ‘gold standard’ or which that player thinks has still some ‘juice’ left.
Industry sponsorship is mainly for potential medications, not for trying to determine whether there may be non-pharmacological interventions that may be equally good, if not better. In the paradigm shift towards biological psychiatry, the role of industry sponsorship is not overt but probably more pervasive than many have realised, or the right thinking may consider good, for the health of the branch in the long run.
An issue of major concern is protection of the interests of research subjects. Patients agree to become research subjects not only for personal medical benefit but, as an extension, to benefit the rest of the patient population and also advance medical research.
We all accept that industry profits have to be made, and investment in research and development by the pharma industry is massive. However, we must also accept there is a fundamental difference between marketing strategies for other entities and those for drugs.
The ultimate barometer is patient welfare and no drug that compromises it can stand the test of time. So, how does it make even commercial sense in the long term to market substandard products? The greatest mistake long-term players in industry may make is try to adopt the shady techniques of the upstart new entrant. Secrecy of marketing/sales tactics, of the process of manufacture, of other strategies and plans of business expansion, of strategies to tackle competition are fine business tactics. But it is critical that secrecy as a tactic not extend to reporting of research findings, especially those contrary to one's product.
Pharma has no option but to make a quality product, do comprehensive adverse reaction profiles, and market it only if it passes both tests.
Why does pharma adopt questionable tactics? The reasons are essentially two:
What with all the constraints, a drug comes to the pharmacy after huge investments. There are crippling overheads and infrastructure costs to be recovered. And there are massive profit margins to be maintained. If these were to be dependent only on genuine drug discoveries, that would be taking too great a risk.Industry players have to strike the right balance between profit making and credibility. In profit making, the marketing champions play their role. In credibility ratings, researchers and paid spokes-persons play their role. All is hunky dory till marketing is based on credibility. When there is nothing available to make for credibility, something is projected as one and marketing carried out, in the calculated hope that profits can accrue, since profit making must continue endlessly. That is what makes pharma adopt even questionable means to make profits.
Essentially, there are four types of drugs. First, drugs that work and have minimal side-effects; second, drugs which work but have serious side-effects; third, drugs that do not work and have minimal side-effects; and fourth, drugs which work minimally but have serious side-effects. It is the second and fourth types that create major hassles for industry. Often, industry may try to project the fourth type as the second to escape censure.
The major cat and mouse game being played by conscientious researchers is in exposing the third and fourth for what they are and not allowing industry to palm them off as the first and second type respectively. The other major game is in preventing the second type from being projected as the first. The third type are essentially harmless, so they attract censure all right and some merriment at the antics to market them. But they escape anything more than a light rap on the knuckles, except when they are projected as the first type.
What is necessary for industry captains and long-term players is to realise:
Their major propelling force can only be producing the first type. 2. They accept the second type only till they can lay their hands on the first. 3. The third type can be occasionally played around with to shore up profits, but never by projecting them as the first type. 4. The fourth type are the laggards, real threat to credibility and therefore do not deserve any market hype or promotion.
In finding out why most pharma indulges in questionable tactics, we are lead to some interesting solutions to prevent such tactics with the least amount of hassles for all concerned, even as both profits and credibility are kept intact.
PMCID: PMC3192391  PMID: 22058616
Academia; Pharmaceutical Industry; Clinical Practice Guidelines; Best Practice Guidelines; Academic Medical Centers; Medical Associations; Research Journals; Clinical Research; Public Welfare; Pharma Image; Corporate Welfare; Biological Psychiatry; Law Suits Against Industry
5.  FDA Critical Path Initiatives: Opportunities for Generic Drug Development 
The AAPS Journal  2008;10(1):103-109.
FDA’s critical path initiative documents have focused on the challenges involved in the development of new drugs. Some of the focus areas identified apply equally to the production of generic drugs. However, there are scientific challenges unique to the development of generic drugs as well. In May 2007, FDA released a document “Critical Path Opportunities for Generic Drugs” that identified some of the specific challenges in the development of generic drugs. The key steps in generic product development are usually characterization of the reference product, design of a pharmaceutically equivalent and bioequivalent product, design of a consistent manufacturing process and conduct of the pivotal bioequivalence study. There are several areas of opportunity where scientific progress could accelerate the development and approval of generic products and expand the range of products for which generic versions are available, while maintaining high standards for quality, safety, and efficacy. These areas include the use of quality by design to develop bioequivalent products, more efficient bioequivalence methods for systemically acting drugs (expansion of BCS waivers, highly variable drugs), and development of new bioequivalence methods for locally acting drugs.
PMCID: PMC2751455  PMID: 18446510
bioequivalence; critical path initiative; generic drugs
6.  Power, expertise and the limits of representative democracy: genetics as scientific progress or political legitimation in carcinogenic risk assessment of pharmaceuticals? 
Journal of Community Genetics  2011;3(2):91-103.
In modern ‘representative’ democratic states, the legitimacy of governments’ actions rests on their publicly declared commitment to protect the interests of their citizens. Regarding the pharmaceutical sector in most democracies, new drug products are developed and marketed by a capitalist industry, whose member firms, via shareholders, have commercial interests in expanding product sales. In those democracies, states have established government agencies to regulate the pharmaceutical industry on behalf of citizens. State legislatures, such as the US Congress and European Parliaments, have charged government drug regulatory agencies with the legal responsibility to protect public health. Yet, this paper argues that government drug regulatory agencies in the EU, Japan, and USA have permitted the pharmaceutical industry to reshape the regulatory guidance for carcinogenic risk assessment of pharmaceuticals in ways that are not techno-scientifically defensible as bases for improved, or even equivalent, protection of public health, compared with the previous techno-regulatory standards. By adopting the industry’s agenda of streamlining carcinogenicity testing in order to accelerate drug development and regulatory review, it is contended that these regulatory agencies have allowed the techno-regulatory standards for carcinogenic risk assessment to be loosened in ways that are presented as scientific progress resulting from new genetics, but for which there is little evidence of progress in public health protection.
PMCID: PMC3312948  PMID: 22109906
7.  Summary Workshop Report: Facilitating Oral Product Development and Reducing Regulatory Burden Through Novel Approaches to Assess Bioavailability/Bioequivalence 
The AAPS Journal  2012;14(3):627-638.
This summary workshop report highlights presentations and over-arching themes from an October 2011 workshop. Discussions focused on best practices in the application of biopharmaceutics in oral drug product development and evolving bioequivalence approaches. Best practices leverage biopharmaceutic data and other drug, formulation, and patient/disease data to identify drug development challenges in yielding a successfully performing product. Quality by design and product developability paradigms were discussed. Development tools include early development strategies to identify critical absorption factors and oral absorption modeling. An ongoing theme was the desire to comprehensively and systematically assess risk of product failure via the quality target product profile and root cause and risk analysis. However, a parallel need is reduced timelines and fewer resources. Several presentations discussed applying Biopharmaceutics Classification System (BCS) and in vitro–in vivo correlations in development and in post-development and discussed both resource savings and best scientific practices. The workshop also focused on evolving bioequivalence approaches, with emphasis on highly variable products (HVDP), as well as specialized modified-release products. In USA, two bioequivalence approaches for HVDP are the reference-scaled average bioequivalence approach and the two-stage group-sequential design. An adaptive sequential design approach is also acceptable in Canada. In European Union, two approaches for HVDP are a two-stage design and an approach to widen Cmax acceptance limits. For some specialized modified-release products, FDA now requests partial area under the curve. Rationale and limitations of such metrics were discussed (e.g., zolpidem and methylphenidate). A common theme was the benefit of the scientific and regulatory community developing, validating, and harmonizing newer bioequivalence methodologies (e.g., BCS-based waivers and HVDP trial designs).
PMCID: PMC3385831  PMID: 22684402
8.  Assuring quality and performance of sustained and controlled release parenterals: Workshop report 
AAPS PharmSci  2002;4(2):13-23.
This is a summary report of the American Association of Pharmaceutical Scientists, the Food and Drug Administration and the United States Pharmacopoeia cosponsored workshop on “Assuring Quality and Performance of Sustained and Controlled Release Parenterals.” Experts from the pharmaceutical industry, the regulatory authorities and academia participated in this workshop to review, discuss and debate formulation, processing and manufacture of sustained and controlled release parenterals and identify critical process parameters and their control. Areas were identified where research is needed in order to understand the performance of these drug delivery systems and to assist in the development of appropriate testing procedures. Recommendations were made for future workshops, meetings and working groups in this area.
PMCID: PMC2751292  PMID: 12141269
9.  Number of Patients Studied Prior to Approval of New Medicines: A Database Analysis 
PLoS Medicine  2013;10(3):e1001407.
In an evaluation of medicines approved by the European Medicines Agency 2000 to 2010, Ruben Duijnhoven and colleagues find that the number of patients evaluated for medicines approved for chronic use are inadequate for evaluation of safety or long-term efficacy.
At the time of approval of a new medicine, there are few long-term data on the medicine's benefit–risk balance. Clinical trials are designed to demonstrate efficacy, but have major limitations with regard to safety in terms of patient exposure and length of follow-up. This study of the number of patients who had been administered medicines at the time of medicine approval by the European Medicines Agency aimed to determine the total number of patients studied, as well as the number of patients studied long term for chronic medication use, compared with the International Conference on Harmonisation's E1 guideline recommendations.
Methods and Findings
All medicines containing new molecular entities approved between 2000 and 2010 were included in the study, including orphan medicines as a separate category. The total number of patients studied before approval was extracted (main outcome). In addition, the number of patients with long-term use (6 or 12 mo) was determined for chronic medication. 200 unique new medicines were identified: 161 standard and 39 orphan medicines. The median total number of patients studied before approval was 1,708 (interquartile range [IQR] 968–3,195) for standard medicines and 438 (IQR 132–915) for orphan medicines. On average, chronic medication was studied in a larger number of patients (median 2,338, IQR 1,462–4,135) than medication for intermediate (878, IQR 513–1,559) or short-term use (1,315, IQR 609–2,420). Safety and efficacy of chronic use was studied in fewer than 1,000 patients for at least 6 and 12 mo in 46.4% and 58.3% of new medicines, respectively. Among the 84 medicines intended for chronic use, 68 (82.1%) met the guideline recommendations for 6-mo use (at least 300 participants studied for 6 mo and at least 1,000 participants studied for any length of time), whereas 67 (79.8%) of the medicines met the criteria for 12-mo patient exposure (at least 100 participants studied for 12 mo).
For medicines intended for chronic use, the number of patients studied before marketing is insufficient to evaluate safety and long-term efficacy. Both safety and efficacy require continued study after approval. New epidemiologic tools and legislative actions necessitate a review of the requirements for the number of patients studied prior to approval, particularly for chronic use, and adequate use of post-marketing studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Before any new medicine is marketed for the treatment of a human disease, it has to go through extensive laboratory and clinical research. In the laboratory, scientists investigate the causes of diseases, identify potential new treatments, and test these interventions in disease models, some of which involve animals. The safety and efficacy of potential new interventions is then investigated in a series of clinical trials—studies in which the new treatment is tested in selected groups of patients under strictly controlled conditions, first to determine whether the drug is tolerated by humans and then to assess its efficacy. Finally, the results of these trials are reviewed by the government body responsible for drug approval; in the US, this body is the Food and Drug Administration, and in the European Union, the European Medicines Agency (EMA) is responsible for the scientific evaluation and approval of new medicines.
Why Was This Study Done?
Clinical trials are primarily designed to test the efficacy—the ability to produce the desired therapeutic effect—of new medicines. The number of patients needed to establish efficacy determines the size of a clinical trial, and the indications for which efficacy must be shown determine the trial's duration. However, identifying adverse effects of drugs generally requires the drug to be taken by more patients than are required to show efficacy, so the information about adverse effects is often relatively limited at the end of clinical testing. Consequently, when new medicines are approved, their benefit–risk ratios are often poorly defined, even though physicians need this information to decide which treatment to recommend to their patients. For the evaluation of risk or adverse effects of medicines being developed for chronic (long-term) treatment of non-life-threatening diseases, current guidelines recommend that at least 1,000–1,500 patients are exposed to the new drug and that 300 and 100 patients use the drug for six and twelve months, respectively, before approval. But are these guidelines being followed? In this database analysis, the researchers use data collected by the EMA to determine how many patients are exposed to new medicines before approval in the European Union and how many are exposed for extended periods of time to medicines intended for chronic use.
What Did the Researchers Do and Find?
Using the European Commission's Community Register of Medicinal Products, the researchers identified 161 standard medicines and 39 orphan medicines (medicines to treat or prevent rare life-threatening diseases) that contained new active substances and that were approved in the European Union between 2000 and 2010. They extracted information on the total number of patients studied and on the number exposed to the medicines for six months and twelve months before approval of each medicine from EMA's European public assessment reports. The average number of patients studied before approval was 1,708 for standard medicines and 438 for orphan medicines (marketing approval is easier to obtain for orphan medicines than for standard medicines to encourage drug companies to develop medicines that might otherwise be unprofitable). On average, medicines for chronic use (for example, asthma medications) were studied in more patients (2,338) than those for intermediate use such as anticancer drugs (878), or short-term use such as antibiotics (1,315). The safety and efficacy of chronic use was studied in fewer than 1,000 patients for at least six and twelve months in 46.4% and 58.4% of new medicines, respectively. Finally, among the 84 medicines intended for chronic use, 72 were studied in at least 300 patients for six months, and 70 were studied in at least 100 patients for twelve months.
What Do These Findings Mean?
These findings suggest that although the number of patients studied before approval is sufficient to determine the short-term efficacy of new medicines, it is insufficient to determine safety or long-term efficacy. Any move by drug approval bodies to require pharmaceutical companies to increase the total number of patients exposed to a drug, or the number exposed for extended periods of time to drugs intended for chronic use, would inevitably delay the entry of new products into the market, which likely would be unacceptable to patients and healthcare providers. Nevertheless, the researchers suggest that a reevaluation of the study size and long-term data requirements that need to be met for the approval of new medicines, particularly those designed for long-term use, is merited. They also stress the need for continued study of both the safety and efficacy of new medicines after approval and the importance of post-marketing studies that actively examine safety issues.
Additional Information
Please access these websites via the online version of this summary at
The European Medicines Agency (EMA) provides information about all aspects of the scientific evaluation and approval of new medicines in the European Union; its European public assessment reports are publicly available
The European Commission's Community Register of Medicinal Products is a publicly searchable database of medicinal products approved for human use in the European Union
The US Food and Drug Administration provides information about drug approval in the US for consumers and for health professionals
The US National Institutes of Health provides information (including personal stories) about clinical trials
PMCID: PMC3601954  PMID: 23526887
10.  The Connection Between Academia and Industry 
Mens Sana Monographs  2005;3(1):5-35.
The growing commercialization of research with its effect on the ethical conduct of researchers, and the advancement of scientific knowledge with its effect on the welfare or otherwise of patients, are areas of pressing concern today and need a serious, thorough study. Biomedical research, and its forward march, is becoming increasingly dependent on industry-academia proximity, both commercial and geographic. A realization of the commercial value of academic biomedical research coupled with its rapid and efficient utilization by industry is the major propelling force here. A number of well-intentioned writers in the field look to the whole development with optimism. But this partnership is a double-edged sword, for it carries with it the potential of an exciting future as much as the prospect of misappropriation and malevolence. Moreover, such partnerships have sometimes eroded public trust in the research enterprise itself.
Connected to the growing clout of industry in institutions is concern about thecommercialization of research and resolving the ‘patient or product’ loyalty.
There is ambivalence about industry funding and influence in academia, and a consequent ‘approach-avoidance’ conflict. If academia has to provide the patients and research talent, industry necessarily has to provide the finances and other facilities based on it. This is an invariable and essential agreement between the two parties that they can walk out of only at their own peril. The profound ethical concerns that industry funded research has brought center-stage need a close look, especially as they impact patients, research subjects, public trust, marketability of products, and research and professional credibility.
How can the intermediate goal of industry (patient welfare) serve the purpose of the final goal of academia is the basic struggle for conscientious research institutions /associations. And how best the goal of maximizing profits can be best served, albeit suitably camouflaged as patient welfare throughout, is the concern of the pharmaceutical industry.
A very great potential conflict of interest lies in the fact that academia needs the sophisticated instruments that only big funding can provide, while at the same time resists the attempts of the fund provider to set the agenda of research, protocol, design, publication, the works. Conflicts arise at many steps and levels of functioning, and are related to the expectations, competing interests, and conflicting priorities of the different entities involved, whether they are the academic medical centers, the funding agencies, the patients and their families, or the investors and venture capitalists.
The public expects access to new treatments. Its appetite for innovation has been bolstered by the constant attention given by the press to new treatments and by the implicit promise from researchers of continuing advances. Similarly, patients demand privacy and control over information about themselves.
It makes greater sense for genuine researchers to associate with large long-term industry players who have a track record of genuine hard-core discoveries, even if the process is slow (maybe), and the funding less (may not be).
The element of control venture capitalists exert over the pharmaceutical industry is an under researched area for obvious reasons. But it needs further probing, for that will lay bare the pulls and pressures under which industry works.
It makes sense for ethically minded researchers and institutions not to fall in the trap of stocks and equity investments in industry, howsoever attractive they appear, and get rid of them as soon as possible if they have them. If at all they want, it makes more sense to own stocks of larger well established concerns, for the stock upheavals being less, the pressure of the market-place, and of venture sharks, is likely to be lower too.
While active participation by the researcher in the commercialization process may be greatly desired by industry, ostensibly in the name of creating value, academia must realize it is a bait it might find hard to swallow in the long run. It makes more sense for the researcher and institution to forego such temptations and/or walk out of such investments as soon as possible.
While mainstream medicine and research are booming, as is connected industry, concerns about professional commitment to patient welfare are growing too. Increasing corporate influence is challenging certain long held and fundamental values of patient care, which will have far reaching implications for biomedical care and the future progress of mainstream medicine.
PMCID: PMC3369181  PMID: 22679346
Academia; Pharmaceutical Industry; Academia-Industry Proximity; Biomedical Research; Commercialization of Research; Pharmaceutical Funding; Public Accountability and Academic Freedom of Universities
11.  Summary Workshop Report: Bioequivalence, Biopharmaceutics Classification System, and Beyond 
The AAPS Journal  2008;10(2):373-379.
The workshop “Bioequivalence, Biopharmaceutics Classification System, and Beyond” was held May 21–23, 2007 in North Bethesda, MD, USA. This workshop provided an opportunity for pharmaceutical scientists to discuss the FDA guidance on the Biopharmaceutics Classification System (BCS), bioequivalence of oral products, and related FDA initiatives such as the FDA Critical Path Initiative. The objective of this Summary Workshop Report is to document the main points from this workshop. Key highlights of the workshop were (a) the described granting of over a dozen BCS-based biowaivers by the FDA for Class I drugs whose formulations exhibit rapid dissolution, (b) continued scientific support for biowaivers for Class III compounds whose formulations exhibit very rapid dissolution, (c) scientific support for a number of permeability methodologies to assess BCS permeability class, (d) utilization of BCS in pharmaceutical research and development, and (e) scientific progress in in vitro dissolution methods to predict dosage form performance.
PMCID: PMC2751390  PMID: 18679807
bioavailability; bioequivalence; biopharmaceutics classification system (BCS); oral absorption; permeability; regulatory science; solubility
12.  Performance Properties of the Population Bioequivalence Approach for In Vitro Delivered Dose for Orally Inhaled Respiratory Products 
The AAPS Journal  2013;16(1):89-100.
Regulatory agencies, industry, and academia have acknowledged that in vitro assessments serve a role in establishing bioequivalence for second-entry drug product approvals as well as innovator post-approval drug product changes. For orally inhaled respiratory products (OIPs), the issues of correctly analyzing in vitro data and interpreting the results within the broader context of therapeutic equivalence have garnered significant attention. One of the recommended statistical tests for in vitro data is the population bioequivalence method (PBE). The current literature for assessing the PBE statistical approach for in vitro data assumes a log normal distribution. This paper focuses on an assessment of that assumption for in vitro delivered dose. Concepts in development of a statistical model are presented. The PBE criterion and hypotheses are written for the case when data follows a normal distribution, rather than log normal. Results of a simulation study are reported, characterizing the performance of the PBE approach when data are expected to be normally distributed, rather than log normal. In these cases, decisions using the PBE approach are not consistent for the same absolute mean difference that the test product is from the reference product. A conclusion of inequivalency will occur more often if the test product dose is lower than the reference product for the same deviation from target. These features suggest that more research is needed for statistical equivalency approaches for in vitro data.
PMCID: PMC3889535  PMID: 24249218
in vitro delivered dose; population bioequivalence approach; simulations; statistical model
13.  Public Welfare Agenda or Corporate Research Agenda? 
Mens Sana Monographs  2005;3(1):41-80.
As things stand today, whether we like it or not, industry funding is on the upswing. The whole enterprise of medicine in booming, and it makes sense for industry to invest more and more of one's millions into it. The pharmaceutical industry has become the single largest direct funding agency of medical research in countries like Canada, the United Kingdom and the United States.
Since the goals of industry and academia differ, it seems that conflicts of interest are inevitable at times. The crucial decision is whether the public welfare agenda of academia, or the corporate research agenda of industry, should occupy center stage when they conflict.
There is enough evidence to show that funding by industry is very systematic, and results that are supportive of the safety and efficacy of sponsor's products alone get the funds. It is no surprise, therefore, that one finds very few negative drug trials reports published, and whatever are, are likely to be by rival companies to serve their commercial interests.
Renewed and continued funding by industry decides the future prospects of many academic researchers. At the same time there is now evidence that pharmaceutical companies attempt suppression of research findings, may be selective in publishing results, and may delay or stymie publication of unfavourable results. This is a major area of concern for all conscientious researchers and industry watchers.
Industry commonly decides which clinical research/trial gets done, not academia, much though the latter may wish to believe otherwise. It finds willing researchers to carry this out. This can be one area of concern. Another area of pressing concern is when industry decides to both design and control publication of research.
It makes sense for researchers to refuse to allow commercial interests to rule research reporting. Research having been reported, the commercial implications of such reporting is industry's concern. But, doctoring of findings to suit commerce is to be resisted at all costs. In this even pliant researchers need have no fear, for if they indeed publish what will work, the concerned sponsor will benefit in the long run. The only decision academia has to make is refuse to comply with predestined conclusions of sponsors for the ‘thirty pieces of silver’. Instead do genuine research and make sixty for themselves.
The useful rule of thumb is: Keep the critical antenna on, especially with regard to drug trials, and more especially their methodology, and study closely the conflict of interest disclosed, and if possible undisclosed, before you jump on the band wagon to herald the next great wonder drug.
There are three important lessons to be learnt by academia in all academia-industry relationships:
i)Lesson number one: incorporate the right to publish contrary findings in the research contract itself. Which means, it makes great sense for academia to concentrate on the language and contractual provisions of sponsored research, to read the fine print very closely, and protect their research interests in case of conflict.ii)Lesson number two: a number of lawsuits successfully brought up against industry recently reflect earnest attempts by patient welfare bodies and others to remedy the tilt. It will result in a newfound confidence in academia that augurs well for academia industry relationship in the long run. Hence the second lesson for academia: do not get browbeaten by threats of legal actioniii)Lesson number three: Academia should keep itself involved right from inception of the clinical trial through to ultimate publication. And this must be an integral part of the written contract.
The time to repeat cliches about the exciting future of the academia-industry connect is past. A concerted effort to lay a strong foundation of the relationship on practical ethical grounds has become mandatory.
PMCID: PMC3369180  PMID: 22679348
Public Welfare or Corporate Research Agenda; The Olivieri Case; Doctoring of Research Findings; Selective publishing; Delay and Under reporting; Complete Disclosure; Multi-centred Trials; Ghost writing; Duplicate Publication; Access to Data; Control over Publication; Negative Drug Trials; The Porcupine Dance; Law Suits Against Industry; Design and Control of Publication; Connection between Funding and Positive Findings
14.  Designing concept maps for a precise and objective description of pharmaceutical innovations 
When a new drug is launched onto the market, information about the new manufactured product is contained in its monograph and evaluation report published by national drug agencies. Health professionals need to be able to determine rapidly and easily whether the new manufactured product is potentially useful for their practice. There is therefore a need to identify the best way to group together and visualize the main items of information describing the nature and potential impact of the new drug. The objective of this study was to identify these items of information and to bring them together in a model that could serve as the standard for presenting the main features of new manufactured product.
We developed a preliminary conceptual model of pharmaceutical innovations, based on the knowledge of the authors. We then refined this model, using a random sample of 40 new manufactured drugs recently approved by the national drug regulatory authorities in France and covering a broad spectrum of innovations and therapeutic areas. Finally, we used another sample of 20 new manufactured drugs to determine whether the model was sufficiently comprehensive.
The results of our modeling led to three sub models described as conceptual maps representingi) the medical context for use of the new drug (indications, type of effect, therapeutical arsenal for the same indications), ii) the nature of the novelty of the new drug (new molecule, new mechanism of action, new combination, new dosage, etc.), and iii) the impact of the drug in terms of efficacy, safety and ease of use, compared with other drugs with the same indications.
Our model can help to standardize information about new drugs released onto the market. It is potentially useful to the pharmaceutical industry, medical journals, editors of drug databases and medical software, and national or international drug regulation agencies, as a means of describing the main properties of new pharmaceutical products. It could also used as a guide for the writing of comprehensive and objective texts summarizing the nature and interest of new manufactured product.
PMCID: PMC3560234  PMID: 23331768
15.  Bioequivalence of generic aerosol bronchodilators: what are the issues? 
I have attempted to address some critical issues relating to the introduction of generic aerosol bronchodilators in Canada. I approached Genpharm to obtain information on the data submitted to the HPB, including the number of subjects involved, but the company refused to divulge this information because it was concerned about the use of such information by its competitors. In addition to the in-vitro testing conducted by the HPB, should a single pharmacodynamic study be sufficient to demonstrate the safety and efficacy of a drug that serves such a critical role in the prevention of serious illness and possibly death? If so, what will constitute the minimum requirements for the design of such a study? In general, what should be the minimum standards required for safety, efficacy and bioequivalence of aerosol bronchodilators? The next phase rests with the provincial governments. What criteria will they use to determine whether a generic aerosol bronchodilator will be considered bioequivalent? It is essential that the criteria for bioequivalence be developed by experts, and ideally those criteria should be agreed upon and accepted by federal and provincial regulatory bodies before a product is given the status of bioequivalence. Unless such a step is taken it will be difficult to have confidence that products can be considered interchangeable. The issue of interchangeability of aerosol bronchodilators demands immediate attention. Regulatory agencies are caught between those groups with vested interests on both sides. Since patients will either benefit or suffer as a consequence of regulatory decisions, action must be taken to ensure that the best decisions are made. Scientists, clinicians and government officials should convene as soon as possible to formulate a satisfactory approach to this problem of interchangeability. The medical and pharmaceutical professions need reliable information, and patients should not be denied less expensive generic drugs if it can be determined that they are comparable to the innovator's product.
PMCID: PMC1451469  PMID: 2804845
16.  Information from Pharmaceutical Companies and the Quality, Quantity, and Cost of Physicians' Prescribing: A Systematic Review 
PLoS Medicine  2010;7(10):e1000352.
Geoff Spurling and colleagues report findings of a systematic review looking at the relationship between exposure to promotional material from pharmaceutical companies and the quality, quantity, and cost of prescribing. They fail to find evidence of improvements in prescribing after exposure, and find some evidence of an association with higher prescribing frequency, higher costs, or lower prescribing quality.
Pharmaceutical companies spent $57.5 billion on pharmaceutical promotion in the United States in 2004. The industry claims that promotion provides scientific and educational information to physicians. While some evidence indicates that promotion may adversely influence prescribing, physicians hold a wide range of views about pharmaceutical promotion. The objective of this review is to examine the relationship between exposure to information from pharmaceutical companies and the quality, quantity, and cost of physicians' prescribing.
Methods and Findings
We searched for studies of physicians with prescribing rights who were exposed to information from pharmaceutical companies (promotional or otherwise). Exposures included pharmaceutical sales representative visits, journal advertisements, attendance at pharmaceutical sponsored meetings, mailed information, prescribing software, and participation in sponsored clinical trials. The outcomes measured were quality, quantity, and cost of physicians' prescribing. We searched Medline (1966 to February 2008), International Pharmaceutical Abstracts (1970 to February 2008), Embase (1997 to February 2008), Current Contents (2001 to 2008), and Central (The Cochrane Library Issue 3, 2007) using the search terms developed with an expert librarian. Additionally, we reviewed reference lists and contacted experts and pharmaceutical companies for information. Randomized and observational studies evaluating information from pharmaceutical companies and measures of physicians' prescribing were independently appraised for methodological quality by two authors. Studies were excluded where insufficient study information precluded appraisal. The full text of 255 articles was retrieved from electronic databases (7,185 studies) and other sources (138 studies). Articles were then excluded because they did not fulfil inclusion criteria (179) or quality appraisal criteria (18), leaving 58 included studies with 87 distinct analyses. Data were extracted independently by two authors and a narrative synthesis performed following the MOOSE guidelines. Of the set of studies examining prescribing quality outcomes, five found associations between exposure to pharmaceutical company information and lower quality prescribing, four did not detect an association, and one found associations with lower and higher quality prescribing. 38 included studies found associations between exposure and higher frequency of prescribing and 13 did not detect an association. Five included studies found evidence for association with higher costs, four found no association, and one found an association with lower costs. The narrative synthesis finding of variable results was supported by a meta-analysis of studies of prescribing frequency that found significant heterogeneity. The observational nature of most included studies is the main limitation of this review.
With rare exceptions, studies of exposure to information provided directly by pharmaceutical companies have found associations with higher prescribing frequency, higher costs, or lower prescribing quality or have not found significant associations. We did not find evidence of net improvements in prescribing, but the available literature does not exclude the possibility that prescribing may sometimes be improved. Still, we recommend that practitioners follow the precautionary principle and thus avoid exposure to information from pharmaceutical companies.
Please see later in the article for the Editors' Summary
Editors' Summary
A prescription drug is a medication that can be supplied only with a written instruction (“prescription”) from a physician or other licensed healthcare professional. In 2009, 3.9 billion drug prescriptions were dispensed in the US alone and US pharmaceutical companies made US$300 billion in sales revenue. Every year, a large proportion of this revenue is spent on drug promotion. In 2004, for example, a quarter of US drug revenue was spent on pharmaceutical promotion. The pharmaceutical industry claims that drug promotion—visits from pharmaceutical sales representatives, advertisements in journals and prescribing software, sponsorship of meetings, mailed information—helps to inform and educate healthcare professionals about the risks and benefits of their products and thereby ensures that patients receive the best possible care. Physicians, however, hold a wide range of views about pharmaceutical promotion. Some see it as a useful and convenient source of information. Others deny that they are influenced by pharmaceutical company promotion but claim that it influences other physicians. Meanwhile, several professional organizations have called for tighter control of promotional activities because of fears that pharmaceutical promotion might encourage physicians to prescribe inappropriate or needlessly expensive drugs.
Why Was This Study Done?
But is there any evidence that pharmaceutical promotion adversely influences prescribing? Reviews of the research literature undertaken in 2000 and 2005 provide some evidence that drug promotion influences prescribing behavior. However, these reviews only partly assessed the relationship between information from pharmaceutical companies and prescribing costs and quality and are now out of date. In this study, therefore, the researchers undertake a systematic review (a study that uses predefined criteria to identify all the research on a given topic) to reexamine the relationship between exposure to information from pharmaceutical companies and the quality, quantity, and cost of physicians' prescribing.
What Did the Researchers Do and Find?
The researchers searched the literature for studies of licensed physicians who were exposed to promotional and other information from pharmaceutical companies. They identified 58 studies that included a measure of exposure to any type of information directly provided by pharmaceutical companies and a measure of physicians' prescribing behavior. They then undertook a “narrative synthesis,” a descriptive analysis of the data in these studies. Ten of the studies, they report, examined the relationship between exposure to pharmaceutical company information and prescribing quality (as judged, for example, by physician drug choices in response to clinical vignettes). All but one of these studies suggested that exposure to drug company information was associated with lower prescribing quality or no association was detected. In the 51 studies that examined the relationship between exposure to drug company information and prescribing frequency, exposure to information was associated with more frequent prescribing or no association was detected. Thus, for example, 17 out of 29 studies of the effect of pharmaceutical sales representatives' visits found an association between visits and increased prescribing; none found an association with less frequent prescribing. Finally, eight studies examined the relationship between exposure to pharmaceutical company information and prescribing costs. With one exception, these studies indicated that exposure to information was associated with a higher cost of prescribing or no association was detected. So, for example, one study found that physicians with low prescribing costs were more likely to have rarely or never read promotional mail or journal advertisements from pharmaceutical companies than physicians with high prescribing costs.
What Do These Findings Mean?
With rare exceptions, these findings suggest that exposure to pharmaceutical company information is associated with either no effect on physicians' prescribing behavior or with adverse affects (reduced quality, increased frequency, or increased costs). Because most of the studies included in the review were observational studies—the physicians in the studies were not randomly selected to receive or not receive drug company information—it is not possible to conclude that exposure to information actually causes any changes in physician behavior. Furthermore, although these findings provide no evidence for any net improvement in prescribing after exposure to pharmaceutical company information, the researchers note that it would be wrong to conclude that improvements do not sometimes happen. The findings support the case for reforms to reduce negative influence to prescribing from pharmaceutical promotion.
Additional Information
Please access these Web sites via the online version of this summary at
Wikipedia has pages on prescription drugs and on pharmaceutical marketing (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The UK General Medical Council provides guidelines on good practice in prescribing medicines
The US Food and Drug Administration provides information on prescription drugs and on its Bad Ad Program
Healthy Skepticism is an international nonprofit membership association that aims to improve health by reducing harm from misleading health information
The Drug Promotion Database was developed by the World Health Organization Department of Essential Drugs & Medicines Policy and Health Action International Europe to address unethical and inappropriate drug promotion
PMCID: PMC2957394  PMID: 20976098
17.  Science, politics, and health in the brave new world of pharmaceutical carcinogenic risk assessment: Technical progress or cycle of regulatory capture? 
Social Science & Medicine (1982)  2012;75(8):1433-1440.
The carcinogenicity (cancer-inducing potential) of pharmaceuticals is an important risk factor for health when considering whether thousands of patients on drug trials or millions/billions of consumers in the marketplace should be exposed to a new drug. Drawing on fieldwork involving over 50 interviews and documentary research spanning 2002–2010 in Europe and the US, and on regulatory capture theory, this article investigates how the techno-regulatory standards for carcinogenicity testing of pharmaceuticals have altered since 1998. It focuses on the replacement of long-term carcinogenicity tests in rodents (especially mice) with shorter-term tests involving genetically-engineered mice (GEM). Based on evidence regarding financial/organizational control, methodological design, and interpretation of the validation and application of these new GEM tests, it is argued that regulatory agencies permitted the drug industry to shape such validation and application in ways that prioritized commercial interests over the need to protect public health. Boundary-work enabling industry scientists to define some standards of public-health policy facilitated such capture. However, as the scientific credibility of GEM tests as tools to protect public health by screening out carcinogens became inescapably problematic, a regulatory resurgence, impelled by reputational concerns, exercised more control over industry’s construction and use of the tests, The extensive problems with GEM tests as public-health protective regulatory science raises the spectre that alterations to pharmaceutical carcinogenicity-testing standards since the 1990s may have been boundary-work in which the political project of decreasing the chance that companies’ products are defined as carcinogenic has masqueraded as techno-science.
PMCID: PMC3778938  PMID: 22784375
Drug testing; Animal models; Pharmaceutical industry; International regulation; Drug safety regulation; Carcinogenic
18.  Metrics for the Evaluation of Bioequivalence of Modified-Release Formulations 
The AAPS Journal  2012;14(4):813-819.
Metrics are discussed which are used for the evaluation of bioequivalence of modified-release formulations. In order to ensure the therapeutic equivalence of the compared drug products, it would be important to contrast measures which are additional to area under the curve (AUC) and Cmax. For delayed-release products, the assessment of lag times is informative. For extended-release dosage forms, comparisons of the half-value duration and the midpoint duration time are useful. For some modified-release formulations with complicated, multiphasic concentration profiles, the comparison of partial AUCs is important. In determinations of the bioequivalence of extended-release dosage forms, investigations performed under steady-state conditions rather than after single dosing can yield enhanced probability of therapeutic equivalence, especially with substantial accumulation of the drug products. In steady-state investigations of bioequivalence, evaluation of the trough concentration and of the peak trough fluctuation is informative.
PMCID: PMC3475860  PMID: 22910857
bioequivalence; metrics; modified release; steady state; therapeutic equivalence
19.  Prediction of Solubility and Permeability Class Membership: Provisional BCS Classification of the World’s Top Oral Drugs 
The AAPS Journal  2009;11(4):740-746.
The Biopharmaceutics Classification System (BCS) categorizes drugs into one of four biopharmaceutical classes according to their water solubility and membrane permeability characteristics and broadly allows the prediction of the rate-limiting step in the intestinal absorption process following oral administration. Since its introduction in 1995, the BCS has generated remarkable impact on the global pharmaceutical sciences arena, in drug discovery, development, and regulation, and extensive validation/discussion/extension of the BCS is continuously published in the literature. The BCS has been effectively implanted by drug regulatory agencies around the world in setting bioavailability/bioequivalence standards for immediate-release (IR) oral drug product approval. In this review, we describe the BCS scientific framework and impact on regulatory practice of oral drug products and review the provisional BCS classification of the top drugs on the global market. The Biopharmaceutical Drug Disposition Classification System and its association with the BCS are discussed as well. One notable finding of the provisional BCS classification is that the clinical performance of the majority of approved IR oral drug products essential for human health can be assured with an in vitro dissolution test, rather than empirical in vivo human studies.
PMCID: PMC2782078  PMID: 19876745
BA/BE; biopharmaceutics classification system; biowaiver; intestinal absorption; molecular biopharmaceutics; oral drug product
20.  A review of the gastrointestinal therapeutic system (GITS) formulation and its effectiveness in the delivery of antihypertensive drug treatment (focus on nifedipine GITS) 
Hypertension treatment guidelines do not discriminate within drug classes and, furthermore, do not consider whether or not all of the formulations of any given drug licensed for once-daily administration can be considered to be therapeutically interchangeable. This article focuses on this issue with respect to nifedipine and the development of the gastrointestinal therapeutic system (GITS) formulation. Nifedipine GITS is regarded as the gold standard once-daily formulation of nifedipine and, as such, it is anticipated that alternative formulations will be therapeutically equivalent to nifedipine GITS. In general, this depends on demonstrating pharmacokinetic bioequivalence. This article is intended to focus attention on generic substitution and, in particular, on aspects of the scientific basis for the substitution of generic products in place of branded products. Such substitution is required for cost-saving or cost-containment reasons and is justified on the basis that the generic (substitute) drug is “therapeutically” equivalent to the branded drug. Unfortunately, there are serious shortcomings in the current methods of assessment insofar as they are typically based on statistical comparisons of average pharmacokinetic parameter values, using arbitrary comparative criteria. This article illustrates the shortcomings of the current approaches to generic substitution and concludes that, in regulatory terms, either more rigorous pharmacokinetic criteria are required or pharmacodynamic indices should be added to reinforce the regulatory criteria. Generic substitution is a balancing act but, at the moment, the cost issue is dominant. To restore the balance, equivalent efficacy must be confirmed. At present, therefore, in the absence of such regulatory rigor, the obvious course is to prefer the branded product, the therapeutic efficacy of which (including outcome benefits) has been established.
PMCID: PMC3724274  PMID: 23901292
nifedipine GITS; generic; generic substitution; bioequivalence; cardiovascular outcome; safety
21.  Personalized Medicine – Future Impact, Pharma Industry Perspective 
Scientific understanding of the genetic aberrations driving disease is advancing at a rapid pace, heralding the advent of the long awaited era of personalized medicine. For patients, personalized medicine promises the opportunity to benefit from the most effective treatment that targets the fundamental driver of their disease, while also potentially avoiding toxicity. For payers, personalized medicine is attractive as a mechanism to control usage of expensive drugs, and avoid wasteful expenditure on treatments that are ineffective. For the pharmaceutical industry personalized medicine presents both challenges and opportunities. Many pharmaceutical companies have committed to the vision of ‘right drug, right patient, right time‘, particularly in therapeutic areas such as oncology and neuroscience. Pharma recognizes that this strategy provides the opportunity to achieve substantial clinical advances in specific patient populations, compared with currently available “non-specific” medications which is expected to create a compelling value proposition and to facilitate reimbursement by payers. Drug development timelines could be accelerated, and success rates improved by conducting trials in molecularly selected patient populations that result in more rapid proof of concept and more robust clinical outcomes, allowing smaller Phase 3 trials. However, there are also significant challenges. Most importantly, the drug developer must be able to achieve the requisite return on investment despite the restricted market size. In addition, drug development costs may be increased due to the complexities of biomarker analysis and diagnostic development. Molecular profiling is an emerging science, and several large and expensive drug development programs have faltered due to the selection of the wrong biomarker to guide patient selection. Trials involving biomarkers are attracting high interest from researchers, but require new competencies in trial design, data analysis and investigator expertise in sample collection and management. Greater statistical and computing power is necessary to mine data for complicated relationships between genetic, biological and environmental factors. Additionally, if the right biomarker was not identified prospectively, there is currently no regulatory pathway for approval via a retrospective analysis. Regulatory approval pathways for therapeutics and their companion diagnostics are not well established. In the US, the diagnostic and therapeutic are reviewed by different agencies, and the requirements of each are not completely aligned, creating additional complexity. Global regulatory processes for companion diagnostics are even more diverse and challenging. Additionally, the companion diagnostic needs to be available for validation during the clinical development phase, but with the risks inherent in drug development, and limited reimbursement, diagnostic manufacturers have little incentive to develop such tests “at risk”. Despite the challenges, personalized medicine is widely believed to offer the best prospect of effective treatment and cure for patients with serious diseases. The relevant stakeholders – Pharma and biotech, diagnostic companies, regulatory agencies, payers and policy makers, must be committed to working together to provide incentives and remove obstacles so that this goal can become a reality.
PMCID: PMC2918032
22.  A Systematic Review of Studies That Aim to Determine Which Outcomes to Measure in Clinical Trials in Children  
PLoS Medicine  2008;5(4):e96.
In clinical trials the selection of appropriate outcomes is crucial to the assessment of whether one intervention is better than another. Selection of inappropriate outcomes can compromise the utility of a trial. However, the process of selecting the most suitable outcomes to include can be complex. Our aim was to systematically review studies that address the process of selecting outcomes or outcome domains to measure in clinical trials in children.
Methods and Findings
We searched Cochrane databases (no date restrictions) in December 2006; and MEDLINE (1950 to 2006), CINAHL (1982 to 2006), and SCOPUS (1966 to 2006) in January 2007 for studies of the selection of outcomes for use in clinical trials in children. We also asked a group of experts in paediatric clinical research to refer us to any other relevant studies. From these articles we extracted data on the clinical condition of interest, description of the method used to select outcomes, the people involved in the selection process, the outcomes selected, and limitations of the method as defined by the authors. The literature search identified 8,889 potentially relevant abstracts. Of these, 70 were retrieved, and 25 were included in the review. These studies described the work of 13 collaborations representing various paediatric specialties including critical care, gastroenterology, haematology, psychiatry, neurology, respiratory paediatrics, rheumatology, neonatal medicine, and dentistry. Two groups utilised the Delphi technique, one used the nominal group technique, and one used both methods to reach a consensus about which outcomes should be measured in clinical trials. Other groups used semistructured discussion, and one group used a questionnaire-based survey. The collaborations involved clinical experts, research experts, and industry representatives. Three groups involved parents of children affected by the particular condition.
Very few studies address the appropriate choice of outcomes for clinical research with children, and in most paediatric specialties no research has been undertaken. Among the studies we did assess, very few involved parents or children in selecting outcomes that should be measured, and none directly involved children. Research should be undertaken to identify the best way to involve parents and children in assessing which outcomes should be measured in clinical trials.
Ian Sinha and colleagues show, in a systematic review of published studies, that there are very few studies that address the appropriate choice of outcomes for clinical research with children.
Editors' Summary
When adult patients are given a drug for a disease by their doctors, they can be sure that its benefits and harms will have been carefully studied in clinical trials. Clinical researchers will have asked how well the drug does when compared to other drugs by giving groups of patients the various treatments and determining several “outcomes.” These are measurements carefully chosen in advance by clinical experts that ensure that trials provide as much information as possible about how effectively a drug deals with a specific disease and whether it has any other effects on patients' health and daily life. The situation is very different, however, for pediatric (child) patients. About three-quarters of the drugs given to children are “off-label”—they have not been specifically tested in children. The assumption used to be that children are just small people who can safely take drugs tested in adults provided the dose is scaled down. However, it is now known that children's bodies handle many drugs differently from adult bodies and that a safe dose for an adult can sometimes kill a child even after scaling down for body size. Consequently, regulatory bodies in the US, Europe, and elsewhere now require clinical trials to be done in children and drugs for pediatric use to be specifically licensed.
Why Was This Study Done?
Because children are not small adults, the methodology used to design trials involving children needs to be adapted from that used to design trials in adult patients. In particular, the process of selecting the outcomes to include in pediatric trials needs to take into account the differences between adults and children. For example, because children's brains are still developing, it may be important to include outcome measures that will detect any effect that drugs have on intellectual development. In this study, therefore, the researchers undertook a systematic review of the medical literature to discover how much is known about the best way to select outcomes in clinical trials in children.
What Did the Researchers Do and Find?
The researchers used a predefined search strategy to identify all the studies published since 1950 that examined the selection of outcomes in clinical trials in children. They also asked experts in pediatric clinical research for details of relevant studies. Only 25 studies, which covered several pediatric specialties and were published by 13 collaborative groups, met the strict eligibility criteria laid down by the researchers for their systematic review. Several approaches previously used to choose outcomes in clinical trials in adults were used in these studies to select outcomes. Two groups used the “Delphi” technique, in which opinions are sought from individuals, collated, and fed back to the individuals to generate discussion and a final, consensus agreement. One group used the “nominal group technique,” which involves the use of structured face-to-face discussions to develop a solution to a problem followed by a vote. Another group used both methods. The remaining groups (except one that used a questionnaire) used semistructured discussion meetings or workshops to decide on outcomes. Although most of the groups included clinical experts, people doing research on the specific clinical condition under investigation, and industry representatives, only three groups asked parents about which outcomes should be included in the trials, and none asked children directly.
What Do These Findings Mean?
These findings indicate that very few studies have addressed the selection of appropriate outcomes for clinical research in children. Indeed, in many pediatric specialties no research has been done on this important topic. Importantly, some of the studies included in this systematic review clearly show that it is inappropriate to use the outcomes used in adult clinical trials in pediatric populations. Overall, although the studies identified in this review provide some useful information on the selection of outcomes in clinical trials in children, further research is urgently needed to ensure that this process is made easier and more uniform. In particular, much more research must be done to determine the best way to involve children and their parents in the selection of outcomes.
Additional Information.
Please access these Web sites via the online version of this summary at
A related PLoSMedicine Perspective article is available
The European Medicines Agency provides information about the regulation of medicines for children in Europe
The US Food and Drug Administration Office of Pediatric Therapeutics provides similar information for the US
The UK Medicines and Healthcare products Regulatory Agency also provides information on why medicines need to be tested in children
The UK Medicines for Children Research Network aims to facilitate the conduct of clinical trials of medicines for children
The James Lind Alliance has been established in the UK to increase patient involvement in medical research issues such as outcome selection in clinical trials
PMCID: PMC2346505  PMID: 18447577
23.  A Collaborative Epidemiological Investigation into the Criminal Fake Artesunate Trade in South East Asia  
PLoS Medicine  2008;5(2):e32.
Since 1998 the serious public health problem in South East Asia of counterfeit artesunate, containing no or subtherapeutic amounts of the active antimalarial ingredient, has led to deaths from untreated malaria, reduced confidence in this vital drug, large economic losses for the legitimate manufacturers, and concerns that artemisinin resistance might be engendered.
Methods and Findings
With evidence of a deteriorating situation, a group of police, criminal analysts, chemists, palynologists, and health workers collaborated to determine the source of these counterfeits under the auspices of the International Criminal Police Organization (INTERPOL) and the Western Pacific World Health Organization Regional Office. A total of 391 samples of genuine and counterfeit artesunate collected in Vietnam (75), Cambodia (48), Lao PDR (115), Myanmar (Burma) (137) and the Thai/Myanmar border (16), were available for analysis. Sixteen different fake hologram types were identified. High-performance liquid chromatography and/or mass spectrometry confirmed that all specimens thought to be counterfeit (195/391, 49.9%) on the basis of packaging contained no or small quantities of artesunate (up to 12 mg per tablet as opposed to ∼ 50 mg per genuine tablet). Chemical analysis demonstrated a wide diversity of wrong active ingredients, including banned pharmaceuticals, such as metamizole, and safrole, a carcinogen, and raw material for manufacture of methylenedioxymethamphetamine (‘ecstasy'). Evidence from chemical, mineralogical, biological, and packaging analysis suggested that at least some of the counterfeits were manufactured in southeast People's Republic of China. This evidence prompted the Chinese Government to act quickly against the criminal traders with arrests and seizures.
An international multi-disciplinary group obtained evidence that some of the counterfeit artesunate was manufactured in China, and this prompted a criminal investigation. International cross-disciplinary collaborations may be appropriate in the investigation of other serious counterfeit medicine public health problems elsewhere, but strengthening of international collaborations and forensic and drug regulatory authority capacity will be required.
Paul Newton and colleagues' international, collaborative study found evidence that counterfeit artesunate was being manufactured in China, which prompted a criminal investigation.
Editors' Summary
Malaria is one of the world's largest public health problems, causing around 500 million cases of illness and at least one million deaths per year (the estimates vary widely). The most serious form of malaria is caused by the parasite Plasmodium falciparum, which has become resistant to multiple drugs that had previously been the cornerstones of antimalarial regimens. One group of drugs for treating malaria, the artemisinin therapies including artesunate, are based upon a Chinese herb called qinghaosu; these have now become vital to the treatment of P. falciparum malaria. But counterfeit artesunate, containing none or too little (“subtherapeutic levels”) of the active ingredient, is a growing problem especially in South and East Asia. Fake artesunate is devastating for malaria control: it causes avoidable death, reduces confidence in the drug, and takes away profit from legitimate manufacturers. Of major concern also is the potential for subtherapeutic counterfeit artesunate to fuel the parasite's resistance to the artemisinin group of drugs.
Previous estimates have suggested that between 33% and 53% of artesunate tablets in mainland South East Asia are counterfeit. In this paper the authors report on an unprecedented international collaboration and criminal investigation that attempted to quantify and source counterfeit artesunate among some of the most malarious countries in Asia.
Why Was This Study Done?
Previous reports have identified the problem of fake artesunate, but as of yet there have been few reports on the potential solutions. Concerned health workers and scientists, the regional World Health Organization (WHO) office and the International Criminal Police Organization (INTERPOL) got together to discuss what could be done in May 2005 when it became clear the counterfeit artesunate situation was worsening in the Greater Mekong Sub-Region of South East Asia (comprising Cambodia, Lao People's Democratic Republic, Myanmar, Thailand, Vietnam, and Yunnan Province in the People's Republic of China). Their subsequent investigation combined the goals and methods of a range of concerned parties—police, scientists, and health workers—to identify the source of counterfeit artesunate in South East Asia and to supply the evidence to help arrest and prosecute the perpetrators.
What Did the Researchers Do and Find?
The researchers conducted forensic analyses of samples of genuine and counterfeit artesunate. They selected these samples from larger surveys and investigations that had been conducted in the region beginning in the year 2000. Genuine samples were supplied by a manufacturer to provide a comparator. The authors examined the physical appearance of the packages and subjected the tablets to a wide range of chemical and biological tests that allowed an analysis of the components contained in the tablets.
When comparing the collected packages and tablets against the genuine samples, the researchers found considerable diversity of fake artesunate in SE Asia. Sixteen different fake hologram types (the stickers contained on packages meant to identify them as genuine) were found. Chemical analysis revealed that all tablets thought to be fake contained no or very small quantities of artesunate. Other ingredients found in the artesunate counterfeit tablets included paracetamol, antibiotics, older antimalarial drugs, and a range of minerals, and there were a variety of gases surrounding the tablets inside the packaging. Biological analyses of pollen grains inside the packaging suggested that the packages originated in the parts of South East Asia along the Chinese border.
What Do these Findings Mean?
The results were crucial in helping the authorities establish the origin of the fake artesunate. For example, the authors identified two regional clusters where the counterfeit tablets appeared to be coming from, thus flagging a potential manufacturing site or distribution network. The presence of wrong active pharmaceutical ingredients (such as the older antimalarial drugs) suggested the counterfeiters had access to a variety of active pharmaceutical ingredients. The presence of safrole, a precursor to the illicit drug ecstasy, suggested the counterfeits may be coming from factories that manufacture ecstasy. And the identification of minerals indigenous to certain regions also helped identify the counterfeits' origin. The researchers concluded that at least some of the counterfeit artesunate was coming from southern China. The Secretary General of INTERPOL presented the findings to the Chinese government, which then carried out a criminal investigation and arrested individuals alleged to have produced and distributed the counterfeit artesunate.
The collaboration between police, public health workers and scientists on combating fake artesunate is unique, and provides a model for others to follow. However, the authors note that substantial capacity in forensic analysis and the infrastructure to support collaborations between these different disciplines are needed.
Additional Information.
Please access these Web sites via the online version of this summary at
The World Health Organization in 2006 created IMPACT—International Medical Products Anti-Counterfeiting Taskforce—with the aim of forging international collaboration to seek global solutions to this global challenge and in raising awareness of the dangers of counterfeit medical products. The task force membership includes international organizations, nongovernmental organizations, enforcement agencies, pharmaceutical manufacturers' associations, and drug and regulatory authorities. IMPACT's Web site notes that trade in counterfeit medicines is widespread and affects both developed and developing countries but is more prevalent in countries that have weak drug regulatory systems, poor supply of basic medicines, unregulated markets, high drug prices and/or significant price differentials. IMPACT holds international conferences and maintains a rapid alert system for counterfeit drugs.
The drug industry's anticounterfeit organization, Pharmaceutical Security Institute, works to develop improved systems to identify the extent of the counterfeiting problem and to assist in coordinating international inquiries. Its membership includes 21 large pharmaceutical companies.
The Web site of David Pizzanelli, a world expert on security holography, contains a PowerPoint presentation co-authored by Paul Newton that illustrates the different types of fake holograms found on fake artesunate packages, and their implications for artemisinin resistance (
PMCID: PMC2235893  PMID: 18271620
24.  Medical Students' Exposure to and Attitudes about the Pharmaceutical Industry: A Systematic Review 
PLoS Medicine  2011;8(5):e1001037.
A systematic review of published studies reveals that undergraduate medical students may experience substantial exposure to pharmaceutical marketing, and that this contact may be associated with positive attitudes about marketing.
The relationship between health professionals and the pharmaceutical industry has become a source of controversy. Physicians' attitudes towards the industry can form early in their careers, but little is known about this key stage of development.
Methods and Findings
We performed a systematic review reported according to PRISMA guidelines to determine the frequency and nature of medical students' exposure to the drug industry, as well as students' attitudes concerning pharmaceutical policy issues. We searched MEDLINE, EMBASE, Web of Science, and ERIC from the earliest available dates through May 2010, as well as bibliographies of selected studies. We sought original studies that reported quantitative or qualitative data about medical students' exposure to pharmaceutical marketing, their attitudes about marketing practices, relationships with industry, and related pharmaceutical policy issues. Studies were separated, where possible, into those that addressed preclinical versus clinical training, and were quality rated using a standard methodology. Thirty-two studies met inclusion criteria. We found that 40%–100% of medical students reported interacting with the pharmaceutical industry. A substantial proportion of students (13%–69%) were reported as believing that gifts from industry influence prescribing. Eight studies reported a correlation between frequency of contact and favorable attitudes toward industry interactions. Students were more approving of gifts to physicians or medical students than to government officials. Certain attitudes appeared to change during medical school, though a time trend was not performed; for example, clinical students (53%–71%) were more likely than preclinical students (29%–62%) to report that promotional information helps educate about new drugs.
Undergraduate medical education provides substantial contact with pharmaceutical marketing, and the extent of such contact is associated with positive attitudes about marketing and skepticism about negative implications of these interactions. These results support future research into the association between exposure and attitudes, as well as any modifiable factors that contribute to attitudinal changes during medical education.
Please see later in the article for the Editors' Summary
Editors' Summary
The complex relationship between health professionals and the pharmaceutical industry has long been a subject of discussion among physicians and policymakers. There is a growing body of evidence that suggests that physicians' interactions with pharmaceutical sales representatives may influence clinical decision making in a way that is not always in the best interests of individual patients, for example, encouraging the use of expensive treatments that have no therapeutic advantage over less costly alternatives. The pharmaceutical industry often uses physician education as a marketing tool, as in the case of Continuing Medical Education courses that are designed to drive prescribing practices.
One reason that physicians may be particularly susceptible to pharmaceutical industry marketing messages is that doctors' attitudes towards the pharmaceutical industry may form early in their careers. The socialization effect of professional schooling is strong, and plays a lasting role in shaping views and behaviors.
Why Was This Study Done?
Recently, particularly in the US, some medical schools have limited students' and faculties' contact with industry, but some have argued that these restrictions are detrimental to students' education. Given the controversy over the pharmaceutical industry's role in undergraduate medical training, consolidating current knowledge in this area may be useful for setting priorities for changes to educational practices. In this study, the researchers systematically examined studies of pharmaceutical industry interactions with medical students and whether such interactions influenced students' views on related topics.
What Did the Researchers Do and Find?
The researchers did a comprehensive literature search using appropriate search terms for all relevant quantitative and qualitative studies published before June 2010. Using strict inclusion criteria, the researchers then selected 48 articles (from 1,603 abstracts) for full review and identified 32 eligible for analysis—giving a total of approximately 9,850 medical students studying at 76 medical schools or hospitals.
Most students had some form of interaction with the pharmaceutical industry but contact increased in the clinical years, with up to 90% of all clinical students receiving some form of educational material. The highest level of exposure occurred in the US. In most studies, the majority of students in their clinical training years found it ethically permissible for medical students to accept gifts from drug manufacturers, while a smaller percentage of preclinical students reported such attitudes. Students justified their entitlement to gifts by citing financial hardship or by asserting that most other students accepted gifts. In addition, although most students believed that education from industry sources is biased, students variably reported that information obtained from industry sources was useful and a valuable part of their education.
Almost two-thirds of students reported that they were immune to bias induced by promotion, gifts, or interactions with sales representatives but also reported that fellow medical students or doctors are influenced by such encounters. Eight studies reported a relationship between exposure to the pharmaceutical industry and positive attitudes about industry interactions and marketing strategies (although not all included supportive statistical data). Finally, student opinions were split on whether physician–industry interactions should be regulated by medical schools or the government.
What Do These Findings Mean?
This analysis shows that students are frequently exposed to pharmaceutical marketing, even in the preclinical years, and that the extent of students' contact with industry is generally associated with positive attitudes about marketing and skepticism towards any negative implications of interactions with industry. Therefore, strategies to educate students about interactions with the pharmaceutical industry should directly address widely held misconceptions about the effects of marketing and other biases that can emerge from industry interactions. But education alone may be insufficient. Institutional policies, such as rules regulating industry interactions, can play an important role in shaping students' attitudes, and interventions that decrease students' contact with industry and eliminate gifts may have a positive effect on building the skills that evidence-based medical practice requires. These changes can help cultivate strong professional values and instill in students a respect for scientific principles and critical evidence review that will later inform clinical decision-making and prescribing practices.
Additional Information
Please access these Web sites via the online version of this summary at
Further information about the influence of the pharmaceutical industry on doctors and medical students can be found at the American Medical Students Association PharmFree campaign and PharmFree Scorecard, Medsin-UKs PharmAware campaign, the nonprofit organization Healthy Skepticism, and the Web site of No Free Lunch.
PMCID: PMC3101205  PMID: 21629685
25.  The Toxic Effects of Cigarette Additives. Philip Morris' Project Mix Reconsidered: An Analysis of Documents Released through Litigation 
PLoS Medicine  2011;8(12):e1001145.
Stanton Glantz and colleagues analyzed previously secret tobacco industry documents and peer-reviewed published results of Philip Morris' Project MIX about research on cigarette additives, and show that this research on the use of cigarette additives cannot be taken at face value.
In 2009, the promulgation of US Food and Drug Administration (FDA) tobacco regulation focused attention on cigarette flavor additives. The tobacco industry had prepared for this eventuality by initiating a research program focusing on additive toxicity. The objective of this study was to analyze Philip Morris' Project MIX as a case study of tobacco industry scientific research being positioned strategically to prevent anticipated tobacco control regulations.
Methods and Findings
We analyzed previously secret tobacco industry documents to identify internal strategies for research on cigarette additives and reanalyzed tobacco industry peer-reviewed published results of this research. We focused on the key group of studies conducted by Phillip Morris in a coordinated effort known as “Project MIX.” Documents showed that Project MIX subsumed the study of various combinations of 333 cigarette additives. In addition to multiple internal reports, this work also led to four peer-reviewed publications (published in 2001). These papers concluded that there was no evidence of substantial toxicity attributable to the cigarette additives studied. Internal documents revealed post hoc changes in analytical protocols after initial statistical findings indicated an additive-associated increase in cigarette toxicity as well as increased total particulate matter (TPM) concentrations in additive-modified cigarette smoke. By expressing the data adjusted by TPM concentration, the published papers obscured this underlying toxicity and particulate increase. The animal toxicology results were based on a small number of rats in each experiment, raising the possibility that the failure to detect statistically significant changes in the end points was due to underpowering the experiments rather than lack of a real effect.
The case study of Project MIX shows tobacco industry scientific research on the use of cigarette additives cannot be taken at face value. The results demonstrate that toxins in cigarette smoke increase substantially when additives are put in cigarettes, including the level of TPM. In particular, regulatory authorities, including the FDA and similar agencies elsewhere, could use the Project MIX data to eliminate the use of these 333 additives (including menthol) from cigarettes.
Please see later in the article for the Editors' Summary
Editors' Summary
The tobacco industry in the United States has recognized that regulation of its products was inevitable as early as 1963 and devoted increasing attention to the likelihood of regulation by the US Food and Drug Administration in the mid-1990s, which finally became law in 2009. In addition, the World Health Organization (WHO) Framework Convention on Tobacco Control (WHO FCTC), which came into force in June 2003, includes provisions addressing the regulation of the contents of tobacco products and the regulation of tobacco product disclosures. Although these steps represent progress in tobacco control, the events of the past few decades show the determination of the tobacco industry to avoid regulation, including the regulation of additives. In the United States, executives of the tobacco company Philip Morris (PM) recognized the inevitability of regulation and responded by initiating efforts to shape legislation and regulation by reorganizing its internal scientific activities and conducting scientific research that could be used to shape any proposed regulations. For example, the company conducted “Project MIX,” a study of chemical constituents in and toxicity of smoke produced by burning cigarettes containing three different combinations of 333 cigarette additives that “were constructed to resemble typical commercial blended cigarettes.” The resulting four papers published in Food and Chemical Toxicology in January 2002 concluded that there was no evidence of substantial toxicity attributable to the cigarette additives studied.
Why Was This Study Done?
The use of cigarette additives is an important concern of the WHO, FDA, and similar national regulatory bodies around the world. Philip Morris has used the published Project MIX papers to assert the safety of individual additives and other cigarette companies have done similar studies that reached similar conclusions. In this study, the researchers used documents made public as a result of litigation against the tobacco industry to investigate the origins and design of Project MIX and to conduct their own analyses of the results to assess the reliability of the conclusions in the papers published in Food and Chemical Toxicology.
What Did the Researchers Do and Find?
The researchers systematically examined tobacco industry documents in the University of California San Francisco Legacy Tobacco Documents Library (then about 60 million pages made publicly available as a result of litigation) and used an iterative process of searching, analyzing, and refining to identify and review in detail 500 relevant documents.
The researchers found that in the original Project MIX analysis, the published papers obscured findings of toxicity by adjusting the data by total particulate matter (TPM) concentration. When the researchers conducted their own analysis by studying additives per cigarette (as was specified in the original Project MIX protocol), they found that 15 carcinogenic chemicals increased by 20%. The researchers also reported that, for unexplained reasons, Philip Morris deemphasized 19 of the 51 chemicals tested in the presentation of results, including nine that were substantially increased in smoke on a per cigarette basis of additive-added cigarettes, compared to smoke of control cigarettes.
The researchers explored the possibility that the failure of Project MIX to detect statistically significant changes in the toxicity of the smoke from cigarettes containing the additives was due to underpowered experiments rather than lack of a real effect by conducting their own statistical analysis. This analysis suggests that a better powered study would have detected a much broader range of biological effects associated with the additives than was identified in Philip Morris' published paper, suggesting that it substantially underestimated the toxic potential of cigarette smoke and additives.
The researchers also found that Food and Chemical Toxicology, the journal in which the four Project MIX papers were published, had an editor and 11 of its International Editorial Board with documented links to the tobacco industry. The scientist and leader of Project MIX Edward Carmines described the process of publication as “an inside job.”
What Do These Findings Mean?
These findings show that the tobacco industry scientific research on the use of cigarette additives cannot be taken at face value: the results demonstrate that toxins in cigarette smoke increase substantially when additives are put in cigarettes. In addition, better powered studies would probably have detected a much broader range of adverse biological effects associated with the additives than identified to those identified in PM's published papers suggesting that the published papers substantially underestimate the toxic potential combination of cigarette smoke and additives.
Regulatory authorities, including the FDA and similar agencies elsewhere who are implementing WHO FCTC, should conduct their own independent analysis of Project MIX data, which, analyzed correctly, could provide a strong evidence base for the elimination of the use of the studied additives (including menthol) in cigarettes on public health grounds.
Additional Information
Please access these Web sites via the online version of this summary at
For PLoS Medicine's own policy on publishing papers sponsored by the tobacco industry see
The World Health Organization (WHO) provides information on the Framework Convention on Tobacco Control (FCTC)
The documents that the researchers reviewed in this paper can be found at the Legacy Tobacco Documents Library
PMCID: PMC3243707  PMID: 22205885

Results 1-25 (919082)