Search tips
Search criteria

Results 1-25 (1267214)

Clipboard (0)

Related Articles

1.  The Fusobacterium nucleatum Outer Membrane Protein RadD Is an Arginine-Inhibitable Adhesin Required for Inter-Species Adherence and the Structured Architecture of Multi-Species Biofilm 
Molecular microbiology  2008;71(1):35-47.
A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central “bridging organisms” in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum. Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive “early oral colonizers”. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation.
PMCID: PMC2741168  PMID: 19007407
Fusobacterium nucleatum; RadD. Arginine; Adhesin; Biofilm; Co-aggregation
2.  Identification and Characterization of Fusolisin, the Fusobacterium nucleatum Autotransporter Serine Protease 
PLoS ONE  2014;9(10):e111329.
Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61–65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55–101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF) with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96–113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55–65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.
PMCID: PMC4214739  PMID: 25357190
3.  Fusobacterium nucleatum Apoptosis-inducing Outer Membrane Protein 
Journal of dental research  2005;84(8):700-704.
The periodontal pathogen Fusobacterium nucleatum induces apoptosis in lymphocytes. We previously identified the autotransporter protein Fap2 in F. nucleatum strain PK1594 that induced apoptosis in lymphocytes when expressed in Escherichia coli. In this study, we identified protein homologs of Fap2 in the transformable F. nucleatum strain ATCC 23726, to determine their role in the induction of apoptosis in lymphocytes. We used a new gene-inactivation vector conferring thiamphenicol resistance (pHS31) to construct a mutant deficient in one of the homologs, aim1. Transcriptional analyses demonstrated disruption of aim1 expression, and phenotypic analyses revealed a 41% decrease in the ability of the mutant to induce apoptosis in Jurkat cells, as compared with the parental strain. These studies demonstrate, in the native host cell background, the contribution of aim1 to F. nucleatum induction of apoptosis and, to the best of our knowledge, represent the first report of a genetically defined and phenotypically characterized mutation in F. nucleatum.
PMCID: PMC1550554  PMID: 16040725
Fusobacterium nucleatum; apoptosis; autotransporter; aim1; mutant
4.  Direct Recognition of Fusobacterium nucleatum by the NK Cell Natural Cytotoxicity Receptor NKp46 Aggravates Periodontal Disease 
PLoS Pathogens  2012;8(3):e1002601.
Periodontitis is a common human chronic inflammatory disease that results in the destruction of the tooth attachment apparatus and tooth loss. Although infections with periopathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are essential for inducing periodontitis, the nature and magnitude of the disease is determined by the host's immune response. Here, we investigate the role played by the NK killer receptor NKp46 (NCR1 in mice), in the pathogenesis of periodontitis. Using an oral infection periodontitis model we demonstrate that following F. nucleatum infection no alveolar bone loss is observed in mice deficient for NCR1 expression, whereas around 20% bone loss is observed in wild type mice and in mice infected with P. gingivalis. By using subcutaneous chambers inoculated with F. nucleatum we demonstrate that immune cells, including NK cells, rapidly accumulate in the chambers and that this leads to a fast and transient, NCR1-dependant TNF-α secretion. We further show that both the mouse NCR1 and the human NKp46 bind directly to F. nucleatum and we demonstrate that this binding is sensitive to heat, to proteinase K and to pronase treatments. Finally, we show in vitro that the interaction of NK cells with F. nucleatum leads to an NCR1-dependent secretion of TNF-α. Thus, the present study provides the first evidence that NCR1 and NKp46 directly recognize a periodontal pathogen and that this interaction influences the outcome of F. nucleatum-mediated periodontitis.
Author Summary
Periodontal disease is a common bacterial-induced inflammatory process in which F. nucleatum and P. gingivalis infections lead to the destruction of the teeth supporting attachment apparatus. Previous reports demonstrated that immune cells aggravate the severity of the disease. However, whether NK cells in general and NKp46 (a major killer receptor expressed by NK cells) in particular, play a protective or destructive role in this disease is unknown. Using mice deficient in NCR1 (the mouse orthlogue of NKp46), we demonstrate that oral infection of mice with F. nucleatum, but not with P. gingivalis results in an NCR1-dependent alveolar bone loss. In addition, we show that F. nucleatum is recognized by NCR1 and NKp46 directly and that this recognition leads to the secretion of TNF-α, a central cytokine critically involved in the pathogenesis of periodontal destruction. Collectively, we show that NCR1 and NKp46 play a critical role in the pathogenesis of F. nucleatum-mediated periodontitis.
PMCID: PMC3310798  PMID: 22457623
5.  The FomA Porin from Fusobacterium nucleatum Is a Toll-Like Receptor 2 Agonist with Immune Adjuvant Activity 
Many bacterial components selectively activate immune and nonhematopoietic target cells via Toll-like receptor (TLR) signaling; modulation of such host responses defines the immune adjuvant properties of these bacterial products. For example, the outer membrane protein porins from Neisseria, Salmonella, and Shigella are known TLR2 agonists with established systemic and mucosal immune adjuvanticity. Early work indicated that the FomA porin from Fusobacterium nucleatum has immune adjuvant activity in mice. Using a purified recombinant FomA, we have verified its immune stimulatory properties and have defined a role for TLR2 signaling in its in vitro and in vivo activity. FomA induces interleukin 8 (IL-8) secretion and NF-κB-dependent luciferase activity in HEK cells expressing TLR2, IL-6 secretion, and cell surface upregulation of CD86 and major histocompatibility complex (MHC) II in primary B cells from wild-type mice, but it fails to activate cells from TLR2 knockout mice. Accordingly, the immune adjuvant activity of FomA is also TLR2 dependent. In a mouse model of immunization with ovalbumin (OVA), FomA induces enhanced production of OVA-specific IgM and IgG, including IgG1 and IgG2b antibodies, as well as enhanced secretion of IL-10 and IL-6, consistent with a Th2-type adjuvant effect. We also observe a moderate production of anti-FomA antibodies, suggesting that FomA is also immunogenic, a quality that is also TLR2 dependent. Therefore, modulation of host immune responses by FomA may be effective for targeting general host immunity not only to pathogens (as a novel TLR2 adjuvant) but also to F. nucleatum itself (as an antigen), expanding its use as a self-adjuvanted antigen in an immunization strategy against polymicrobial infections, including those by F. nucleatum.
PMCID: PMC3393365  PMID: 22623652
6.  A proteomic investigation of Fusobacterium nucleatum alkaline-induced biofilms 
BMC Microbiology  2012;12:189.
The Gram negative anaerobe Fusobacterium nucleatum has been implicated in the aetiology of periodontal diseases. Although frequently isolated from healthy dental plaque, its numbers and proportion increase in plaque associated with disease. One of the significant physico-chemical changes in the diseased gingival sulcus is increased environmental pH. When grown under controlled conditions in our laboratory, F. nucleatum subspecies polymorphum formed mono-culture biofilms when cultured at pH 8.2. Biofilm formation is a survival strategy for bacteria, often associated with altered physiology and increased virulence. A proteomic approach was used to understand the phenotypic changes in F. nucleatum cells associated with alkaline induced biofilms. The proteomic based identification of significantly altered proteins was verified where possible using additional methods including quantitative real-time PCR (qRT-PCR), enzyme assay, acidic end-product analysis, intracellular polyglucose assay and Western blotting.
Of 421 proteins detected on two-dimensional electrophoresis gels, spot densities of 54 proteins varied significantly (p < 0.05) in F. nucleatum cultured at pH 8.2 compared to growth at pH 7.4. Proteins that were differentially produced in biofilm cells were associated with the functional classes; metabolic enzymes, transport, stress response and hypothetical proteins. Our results suggest that biofilm cells were more metabolically efficient than planktonic cells as changes to amino acid and glucose metabolism generated additional energy needed for survival in a sub-optimal environment. The intracellular concentration of stress response proteins including heat shock protein GroEL and recombinational protein RecA increased markedly in the alkaline environment. A significant finding was the increased abundance of an adhesin, Fusobacterial outer membrane protein A (FomA). This surface protein is known for its capacity to bind to a vast number of bacterial species and human epithelial cells and its increased abundance was associated with biofilm formation.
This investigation identified a number of proteins that were significantly altered by F. nucleatum in response to alkaline conditions similar to those reported in diseased periodontal pockets. The results provide insight into the adaptive mechanisms used by F. nucleatum biofilms in response to pH increase in the host environment.
PMCID: PMC3478200  PMID: 22943491
Fusobacterium nucleatum; Biofilms; Alkaline pH; Periodontal diseases; Proteomics
7.  Localization of the Fusobacterium nucleatum T18 adhesin activity mediating coaggregation with Porphyromonas gingivalis T22. 
Journal of Bacteriology  1993;175(3):840-850.
Adherence of pathogenic bacteria is often an essential first step in the infectious process. The ability of bacteria to adhere to one another, or to coaggregate, may be an important factor in their ability to colonize and function as pathogens in the periodontal pocket. Previously, a strong and specific coaggregation was demonstrated between two putative periodontal pathogens, Fusobacterium nucleatum and Porphyromonas gingivalis. The interaction appeared to be mediated by a protein adhesin on the F. nucleatum cells and a carbohydrate receptor on the P. gingivalis cells. In this investigation, we have localized the adhesin activity of F. nucleatum T18 to the outer membrane on the basis of the ability of F. nucleatum T18 vesicles to coaggregate with whole cells of P. gingivalis T22 and the ability of the outer membrane fraction of F. nucleatum T18 to inhibit coaggregation between whole cells of F. nucleatum T18 and P. gingivalis T22. Proteolytic pretreatment of the F. nucleatum T18 outer membrane fraction resulted in a loss of coaggregation inhibition, confirming the proteinaceous nature of the adhesin. The F. nucleatum T18 outer membrane fraction was found to be enriched for several proteins, including a 42-kDa major outer membrane protein which appeared to be exposed on the bacterial cell surface. Fab fragments prepared from antiserum raised to the 42-kDa outer membrane protein were found to partially but specifically block coaggregation. These data support the conclusion that the 42-kDa major outer membrane protein of F. nucleatum T18 plays a role in mediating coaggregation with P. gingivalis T22.
PMCID: PMC196226  PMID: 8380804
8.  Monocyte suppression of Fusobacterium nucleatum-induced human polyclonal B-lymphocyte activation. 
Infection and Immunity  1984;46(2):332-339.
Previous studies reported that Fusobacterium nucleatum induced polyclonal B-lymphocyte activation (PBA) as determined by immunoglobulin M production in cultures of human peripheral blood mononuclear cells. However, the PBA response was greatly enhanced when the cells were depleted of esterase-positive, adherent cells (i.e., monocytes). The purpose of this study was to confirm and further examine the suppression of F. nucleatum-induced PBA (F. nucleatum-PBA) by blood monocytes. For comparison, PBA induced by pokeweed mitogen (PWM-PBA), which is enhanced by monocytes, was assessed in some experiments. We found the removal of monocytes from unfractionated cells by (i) Sephadex G-10, (ii) anti-monocyte specific OM-1 monoclonal antibody plus complement, or (iii) L-leucine methyl ester, a compound which selectively kills lysosome-rich cells, resulted in a population of cells responsive to F. nucleatum-PBA and unresponsive to PWM-PBA. The addition of double adherence-purified monocytes (greater than 85% esterase-positive cells), particularly in concentrations of greater than 10%, to lymphocytes depleted of monocytes by G-10, OM-1, or L-leucine methyl ester treatments, suppressed F. nucleatum-PBA and enhanced PWM-PBA. Monocytes also suppressed a mixture of isolated T and B cells combined in a T/B cell ratio of 3:1, which is an optimal ratio for F. nucleatum-PBA. Allogeneic monocytes suppressed F. nucleatum-PBA, although at low numbers these cells were not as suppressive as autologous monocytes. Heating at 56 degrees C for 15 min, sonicating, or freeze-thawing the monocyte preparations resulted in an abrogation of monocyte-induced suppression of F. nucleatum-PBA. Kinetic studies in which fresh monocytes were added daily to lymphocytes stimulated with F. nucleatum or PWM showed that the monocytes must be added within the first 2 days of culture to suppress F. nucleatum-PBA or enhance PWM-PBA. Monocytes incubated with F. nucleatum for 48 h released into the culture medium a soluble factor that suppressed F. nucleatum-PBA. The results from this study demonstrate a potent mechanism by which the host might prevent exaggerated nonspecific immunoglobulin responses when exposed to PBA-inducing concentrations of F. nucleatum. On the other hand, the induction of suppressive monocytes (or monocyte-mediated suppressive factors) by interaction with F. nucleatum might result in the inhibition of host protective immune reactions.
PMCID: PMC261535  PMID: 6334029
9.  Toll-Like Receptor 2-Dependent Activity of Native Major Outer Membrane Protein Proteosomes of Chlamydia trachomatis 
Infection and Immunity  2013;81(1):303-310.
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the etiologic agent of blinding trachoma. Intracellular signaling pathways leading to host cell inflammation and innate immunity to Chlamydia include those mediated by Toll-like receptors (TLRs) and nucleotide binding oligomerization domain 1 (Nod1) protein. In epithelial cells, TLR-dependent signaling contributes to local immune responses via induction of inflammatory mediators. There is evidence that TLR3, TLR4, and, particularly, TLR2 are critical for Chlamydia-mediated host cell activation and pathology. Despite the importance of TLR2, major chlamydial TLR2 antigens have not been identified so far. Numerous bacterial porins are known TLR2 agonists, i.e., porins from Neisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, which share structural and functional similarities with the chlamydial major outer membrane protein (MOMP), a strong antigen candidate for a potential vaccine against C. trachomatis. We describe the ability of purified, detergent-free MOMP to signal via TLR2 in vitro in TLR-overexpressing cells and TLR2-competent human reproductive tract epithelial cell lines. Using MOMP formed in pure protein micelles (proteosomes), we show the induction of TLR2-dependent interleukin-8 (IL-8) and IL-6 secretion in vitro, the involvement of TLR1 as a TLR2 coreceptor, and the activation of both NF-κB and mitogen-activated protein (MAP) kinase intracellular pathways. Interestingly, MOMP proteosomes induce cytokine secretion in endocervical epithelial cells (End/E6E7) but not in urethral epithelial cells (THUECs). A detailed understanding of the TLR2-dependent molecular mechanisms that characterize the effect of MOMP proteosomes on host cells may provide new insights for its successful development as an immunotherapeutic target against Chlamydia.
PMCID: PMC3536141  PMID: 23132491
10.  A New Type of Na+-Driven ATP Synthase Membrane Rotor with a Two-Carboxylate Ion-Coupling Motif 
PLoS Biology  2013;11(6):e1001596.
Multi-disciplinary methods reveal a novel type of ion binding in the rotor ring of the F1Fo-ATP synthase from the opportunistic pathogen Fusobacterium nucleatum.
The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na+. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F1Fo-ATP synthase with a novel Na+ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na+ specificity in physiological settings. Consistently, activity measurements showed Na+ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na+ ionophore monensin. Furthermore, Na+ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na+ coupling is provided by two identical crystal structures of the c11 ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na+ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na+ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.
Author Summary
Essential cellular processes such as biosynthesis, transport, and motility are sustained by the energy released in the hydrolysis of ATP, the universal energy carrier in living cells. Most ATP in the cell is produced by a membrane-bound enzyme, the ATP synthase, through a rotary mechanism that is coupled to the translocation of ions across the membrane. The majority of ATP synthases are energized by transmembrane electrochemical gradients of protons (proton-motive force), but a number of organisms, including some important human pathogens, use gradients of sodium ions instead (sodium-motive force). The ion specificity of ATP synthases is determined by a membrane-embedded sub-complex, the c-ring, which is the smallest known biological rotor. The functional mechanism of the rotor ring and its variations among different organisms are of wide interest, because of this enzyme's impact on metabolism and disease, and because of its potential for nanotechnology applications. Here, we characterize a previously unrecognized type of Na+-driven ATP synthase from the opportunistic human pathogen Fusobacterium nucleatum, which is implicated in periodontal diseases. We analyzed this ATP synthase and its rotor ring through a multi-disciplinary approach, combining cell-growth and biochemical assays, X-ray crystallography and computer-simulation methods. Two crystal structures of the membrane rotor were solved, at low and high pH, revealing an atypical ion-recognition motif mediated by two carboxylate side-chains. This motif is shared by other human pathogens, such as Mycobacterium tuberculosis or Streptococcus pneumonia, whose ATP synthases are targets of novel antibiotic drugs. The implications of this ion-recognition mode on the mechanism of the ATP synthase and the cellular bioenergetics of F. nucleatum were thus examined. Our results provide the basis for future pharmacological efforts against this important pathogen.
PMCID: PMC3692424  PMID: 23824040
11.  Caspase-11 Activation in Response to Bacterial Secretion Systems that Access the Host Cytosol 
PLoS Pathogens  2013;9(6):e1003400.
Inflammasome activation is important for antimicrobial defense because it induces cell death and regulates the secretion of IL-1 family cytokines, which play a critical role in inflammatory responses. The inflammasome activates caspase-1 to process and secrete IL-1β. However, the mechanisms governing IL-1α release are less clear. Recently, a non-canonical inflammasome was described that activates caspase-11 and mediates pyroptosis and release of IL-1α and IL-1β. Caspase-11 activation in response to Gram-negative bacteria requires Toll-like receptor 4 (TLR4) and TIR-domain-containing adaptor-inducing interferon-β (TRIF)-dependent interferon production. Whether additional bacterial signals trigger caspase-11 activation is unknown. Many bacterial pathogens use specialized secretion systems to translocate effector proteins into the cytosol of host cells. These secretion systems can also deliver flagellin into the cytosol, which triggers caspase-1 activation and pyroptosis. However, even in the absence of flagellin, these secretion systems induce inflammasome activation and the release of IL-1α and IL-1β, but the inflammasome pathways that mediate this response are unclear. We observe rapid IL-1α and IL-1β release and cell death in response to the type IV or type III secretion systems of Legionella pneumophila and Yersinia pseudotuberculosis. Unlike IL-1β, IL-1α secretion does not require caspase-1. Instead, caspase-11 activation is required for both IL-1α secretion and cell death in response to the activity of these secretion systems. Interestingly, whereas caspase-11 promotes IL-1β release in response to the type IV secretion system through the NLRP3/ASC inflammasome, caspase-11-dependent release of IL-1α is independent of both the NAIP5/NLRC4 and NLRP3/ASC inflammasomes as well as TRIF and type I interferon signaling. Furthermore, we find both overlapping and non-redundant roles for IL-1α and IL-1β in mediating neutrophil recruitment and bacterial clearance in response to pulmonary infection by L. pneumophila. Our findings demonstrate that virulent, but not avirulent, bacteria trigger a rapid caspase-11-dependent innate immune response important for host defense.
Author Summary
The inflammasome, a multiprotein complex, is critical for host defense against bacterial infection. The inflammasome activates the host protease caspase-1 to process and secrete IL-1β. Another caspase, caspase-11, can cause cell death and IL-1α release. The bacterial signals that trigger caspase-11 activation are poorly understood. A common feature of many bacterial pathogens is the ability to inject virulence factors and other bacterial molecules into the host cell cytosol by means of a variety of virulence-associated secretion systems. These secretion systems can introduce bacterial flagellin into the host cytosol, which leads to caspase-1 activation and cell death. However, many bacteria lack or down-regulate flagellin yet still activate the inflammasome. Here, we show that the type IV secretion system of Legionella pneumophila and the type III secretion system of Yersinia pseudotuberculosis rapidly trigger caspase-11 activation in a flagellin-independent manner. Caspase-11 activation mediates two separate inflammasome pathways: one leading to IL-1β processing and secretion, and one leading to cell death and IL-1α release. Furthermore, we find these caspase-11-regulated cytokines are critical for neutrophil recruitment to the site of infection and clearance of non-flagellated Legionella in vivo. Overall, our findings show that virulent bacteria activate a rapid caspase-11-dependent immune response that plays a critical role in host defense.
PMCID: PMC3675167  PMID: 23762026
12.  Interactions of Anaerobic Bacteria with Dental Stem Cells: An In Vitro Study 
PLoS ONE  2014;9(11):e110616.
In patients with periodontitis, it is highly likely that local (progenitor) cells encounter pathogenic bacteria. The purpose of this in vitro study was to elucidate how human dental follicle stem cells (hDFSC) react towards a direct challenge with anaerobic periodontal pathogens under their natural oxygen-free atmosphere. HDFSC were compared to human bone marrow mesenchymal stem cells (hBMSC) and differentiated primary human gingival fibroblasts (hGiF), as well as permanent gingival carcinoma cells (Ca9-22).
Methodology/Principal Findings
The different cell types were investigated in a co-culture system with Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). The viability of the cells and pathogens under anaerobic conditions, as well as interactions in terms of adherence and internalization, were examined. Additionally, the release of pro-inflammatory interleukin-8 (IL-8) and anti-inflammatory interleukin-10 (IL-10) was quantified via enzyme-linked immunosorbent assay. The bacteria adhered less efficiently to hDFSC compared to Ca9-22 (P. gingivalis: 0.18% adherence to hDFSC; 3.1% adherence to Ca9-22). Similar results were observed for host cell internalization (F. nucleatum: 0.002% internalization into hDFSC; 0.09% internalization into Ca9-22). Statistically significantly less IL-8 was secreted from hDFSC after stimulation with F. nucleatum and P. gingivalis in comparison with hGiF (F. nucleatum: 2080.0 pg/ml – hGiF; 19.7 pg/ml – hDFSC). The IL-10 response of the differentiated cells was found to be low in relation to their pro-inflammatory IL-8 response.
The results indicate that dental stem cells are less prone to interactions with pathogenic bacteria than differentiated cells in an anaerobic environment. Moreover, during bacterial challenge, the stem cell immune response seems to be more towards an anti-inflammatory reaction. For a potential future therapeutic use of hDFSC, these findings support the idea of a save application.
PMCID: PMC4219685  PMID: 25369260
13.  Fusobacterium nucleatum Increases Collagenase 3 Production and Migration of Epithelial Cells  
Infection and Immunity  2005;73(2):1171-1179.
Fusobacterium nucleatum is closely associated with human periodontal diseases and may also be a causative agent in other infections, such as pericarditis, septic arthritis, and abscesses of tonsils and liver. Initiation and outcome of infective diseases depend critically on the host cell signaling system altered by the microbe. Production of proteinases by infected cells is an important factor in pericellular tissue destruction and cell migration. We studied binding of F. nucleatum to human epithelial cells (HaCaT keratinocyte line) and subsequent cell signaling related to collagenase 3 expression, cell motility, and cell survival, using a scratch wound cell culture model. F. nucleatum increased levels of 12 protein kinases involved in cell migration, proliferation, and cell survival signaling, as assessed by the Kinetworks immunoblotting system. Epithelial cells of the artificial wound margins were clearly preferential targets of F. nucleatum. The bacterium colocalized with lysosomal structures and stimulated migration of these cells. Of the 13 anaerobic oral bacterial species, F. nucleatum and Fusobacterium necrophorum were among the best inducers of collagenase 3 mRNA levels, a powerful matrix metalloproteinase. Production of collagenase 3 was detected in fusobacterium-infected cells and cell culture medium by immunocytochemistry, immunoblotting, and zymography. The proteinase production involved activation of p38 mitogen-activated protein kinase in the infected cells. The study suggests that F. nucleatum may be involved in the pathogenesis of periodontal diseases (and other infections) by activating multiple cell signaling systems that lead to stimulation of collagenase 3 expression and increased migration and survival of the infected epithelial cells.
PMCID: PMC547012  PMID: 15664960
14.  HIV-1 Reactivation Induced by the Periodontal Pathogens Fusobacterium nucleatum and Porphyromonas gingivalis Involves Toll-Like Receptor 4 and 9 Activation in Monocytes/Macrophages▿  
Although oral coinfections (e.g., periodontal disease) are highly prevalent in human immunodeficiency virus type 1-positive (HIV-1+) patients and appear to positively correlate with viral load levels, the potential for oral bacteria to induce HIV-1 reactivation in latently infected cells has received little attention. We showed that HIV-1 long terminal repeat (LTR) promoter activation can be induced by periodontopathogens in monocytes/macrophages; nevertheless, the mechanisms involved in this response remain undetermined. Since Toll-like receptor 2 (TLR2), TLR4, and TLR9 activation have been involved in HIV-1 recrudescence, we sought to determine the role of these TLRs in HIV-1 reactivation induced by the periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis using BF24 monocytes/macrophages stably transfected with the HIV-1 promoter driving chloramphenicol acetyltransferase (CAT) expression and THP89GFP cells, a model of HIV-1 latency. We demonstrated that TLR9 activation by F. nucleatum and TLR2 activation by both bacteria appear to be involved in HIV-1 reactivation; however, TLR4 activation had no effect. Moreover, the autocrine activity of tumor necrosis factor alpha (TNF-α) but not interleukin-1β (IL-1β) produced in response to bacteria could impact viral reactivation. The transcription factors NF-κB and Sp1 appear to be positively regulating HIV-1 reactivation induced by these oral pathogens. These results suggest that oral Gram-negative bacteria (F. nucleatum and P. gingivalis) associated with oral and systemic chronic inflammatory disorders enhance HIV-1 reactivation in monocytes/macrophages through TLR2 and TLR9 activation in a mechanism that appears to be transcriptionally regulated. Increased bacterial growth and emergence of these bacteria or their products accompanying chronic oral inflammatory diseases could be risk modifiers for viral replication, systemic immune activation, and AIDS progression in HIV-1+ patients.
PMCID: PMC2944464  PMID: 20610663
15.  Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. 
Infection and Immunity  1995;63(12):4830-4836.
Fusobacterium nucleatum has been implicated in the pathogenesis of several diseases, including urinary tract infections, bacteremia, pericarditis, otitis media, and disorders of the oral cavity such as pulpal infections, alveolar bone abscesses, and periodontal disease. We have previously demonstrated that sonic extracts of F. nucleatum FDC 364 were capable of inhibiting human T-cell responses to mitogens and antigens. In this study, we have further characterized this immunosuppressive protein (FIP) and initiated experiments to determine its mode of action. The purified FIP has an apparent molecular mass of 90 to 100 kDa; sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the FIP is actually composed of two subunits with molecular masses of 48 and 44 kDa. Purified FIP retained its biological activity and was capable of inhibiting mitogen-induced proliferation of human T cells. Inhibition was dose dependent, and the FIP exhibited a specific activity approximately 250-fold greater than that of the crude extract. Cell cycle analysis indicates that FIP-treated cells were prevented from exiting the G0/G1 phase of the cell cycle. However, FIP did not alter the expression of activation markers (CD69, CD25, and CD71) or interleukin-2 secretion. The latter observations suggest that the T cells did indeed become activated and had entered the G1 phase of the cell cycle. Analysis of the expression of cyclins indicates that the phase of the cell cycle that is FIP sensitive resides somewhere beyond the restriction point of cyclin D2 (early to mid-G1) but prior to that of cyclins D3 and E (mid- to late G1). Finally, analysis of the expression of the proliferating cell nuclear antigen indicates that this is the earliest detectable defect in T cells exposed to FIP. We propose that if a block in the G1 phase of the cell cycle occurs in vivo in lymphocytes, it may result in a state of local and/or systemic immunosuppression. These suppressive effects could alter the nature and consequences of host-parasite interactions, thereby enhancing the pathogenicity of F. nucleatum itself or that of some other opportunistic organisms.
PMCID: PMC173692  PMID: 7591143
16.  Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells 
Infection and Immunity  2000;68(6):3140-3146.
Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatum were also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections.
PMCID: PMC97547  PMID: 10816455
17.  Characterization of Conserved Combined T and B Cell Epitopes in Leptospira interrogans Major Outer Membrane Proteins OmpL1 and LipL41 
BMC Microbiology  2011;11:21.
Leptospira interrogans are bacterial pathogens of animal that cause zoonotic infections in human. Outer membrane proteins of leptospire are among the most effective antigens which can stimulate remarkable immune responses during the infection processes, and thus are currently considered leading candidate vaccine antigens. The objective of the present study is to predict and confirm major combined B and T cell epitopes of leptospiral outer membrane proteins OmpL1 and LipL41, as well as to evaluate their capacity in the induction of immune responses in BALB/c mice.
In this study, four epitopes from OmpL1 and four from LipL41 conserved regions were evaluated for their potential utilization in leptospire vaccines. Firstly, combined B and T cell epitopes were predicted by softwares and expressed using a phage display system. OmpL1 residues 87-98 and 173-191 (OmpL187-98 and OmpL1173-191) and LipL4130-48, LipL41233-256 of LipL41 were identified as immunodominant B cell epitopes by Western blot. Epitopes OmpL1173-191, OmpL1297-320 of OmpL1 and LipL41233-256, LipL41263-282 of LipL41 were identified as immunodominant CD4+ T cell epitopes through proliferation analysis of splenocytes from recombinant OmpL1 (rOmpL1) or recombinant LipL41 (rLipL41)-immunized BALB/c (H-2d) mice. These epitopes induced responses of CD4+ T cells and Th1 (T helper cells) type cytokine responses during the infection.
This work identified combined T and B cell immunodominant epitopes in outer membrane proteins OmpL1 and LipL41 of Leptospira interrogans. OmpL1173-191 of OmpL1 and LipL41233-256 of LipL41 could be useful in a vaccine against Leptospira. The findings could also contribute to the development of effective cross-protective vaccine strategies for leptospirosis.
PMCID: PMC3038132  PMID: 21269437
18.  Induction of Apoptotic Cell Death in Peripheral Blood Mononuclear and Polymorphonuclear Cells by an Oral Bacterium, Fusobacterium nucleatum 
Infection and Immunity  2000;68(4):1893-1898.
It is largely unknown why a variety of bacteria present in the oral cavity are capable of establishing themselves in the periodontal pockets of nonimmunocompromised individuals in the presence of competent immune effector cells. In this paper we present evidence for the immunosuppressive role of Fusobacterium nucleatum, a gram-negative oral bacterium which plays an important role in the generation of periodontal disease. Our studies indicate that the immunosuppressive role of F. nucleatum is largely due to the ability of this organism to induce apoptotic cell death in peripheral blood mononuclear cells (PBMCs) and in polymorphonuclear cells (PMNs). F. nucleatum treatment induced apoptosis of PBMCs and PMNs as assessed by an increase in subdiploid DNA content determined by DNA fragmentation and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling assays. The ability of F. nucleatum to induce apoptosis was abolished by either heat treatment or proteinase digestion but was retained after formaldehyde treatment, suggesting that a heat-labile surface protein component is responsible for bacterium-mediated cell apoptosis. The data also indicated that F. nucleatum-induced cell apoptosis requires activation of caspases and is protected by NF-κB. Possible mechanisms of F. nucleatum's role in the pathogenesis of periodontal disease are discussed.
PMCID: PMC97363  PMID: 10722579
19.  Anaerobic Co-Culture of Mesenchymal Stem Cells and Anaerobic Pathogens - A New In Vitro Model System 
PLoS ONE  2013;8(11):e78226.
Human mesenchymal stem cells (hMSCs) are multipotent by nature and are originally isolated from bone marrow. In light of a future application of hMSCs in the oral cavity, a body compartment with varying oxygen partial pressures and an omnipresence of different bacterial species i.e. periodontitis pathogens, we performed this study to gain information about the behavior of hMSC in an anaerobic system and the response in interaction with oral bacterial pathogens.
Methodology/Principal Findings
We established a model system with oral pathogenic bacterial species and eukaryotic cells cultured in anaerobic conditions. The facultative anaerobe bacteria Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were studied. Their effects on hMSCs and primary as well as permanent gingival epithelial cells (Ca9-22, HGPEC) were comparatively analyzed. We show that hMSCs cope with anoxic conditions, since 40% vital cells remain after 72 h of anaerobic culture. The Ca9-22 and HGPEC cells are significantly more sensitive to lack of oxygen. All bacterial species reveal a comparatively low adherence to and internalization into hMSCs (0.2% and 0.01% of the initial inoculum, respectively). In comparison, the Ca9-22 and HGPEC cells present better targets for bacterial adherence and internalization. The production of the pro-inflammatory chemokine IL-8 is higher in both gingival epithelial cell lines compared to hMSCs and Fusobacterium nucleatum induce a time-dependent cytokine secretion in both cell lines. Porphyromonas gingivalis is less effective in stimulating secretion of IL-8 in the co-cultivation experiments.
HMSCs are suitable for use in anoxic regions of the oral cavity. The interaction with local pathogenic bacteria does not result in massive pro-inflammatory cytokine responses. The test system established in this study allowed further investigation of parameters prior to set up of oral hMSC in vivo studies.
PMCID: PMC3817215  PMID: 24223777
20.  Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. 
Clinical Microbiology Reviews  1996;9(1):55-71.
The pathogenic potential of Fusobacterium nucleatum and its significance in the development of periodontal diseases, as well as in infections in other organs, have gained new interest for several reasons. First, this bacterium has the potential to be pathogenic because of its number and frequency in periodontal lesions, its production of tissue irritants, its synergism with other bacteria in mixed infections, and its ability to form aggregates with other suspected pathogens in periodontal disease and thus act as a bridge between early and late colonizers on the tooth surface. Second, of the microbial species that are statistically associated with periodontal disease, F. nucleatum is the most common in clinical infections of other body sites. Third, during the past few years, new techniques have made it possible to obtain more information about F. nucleatum on the genetic level, thereby also gaining better knowledge of the structure and functions of the outer membrane proteins (OMPs). OMPs are of great interest with respect to coaggregation, cell nutrition, and antibiotic susceptibility. This review covers what is known to date about F. nucleatum in general, such as taxonomy and biology, with special emphasis on its pathogenic potential. Its possible relationship to other periodontal bacteria in the development of periodontal diseases and the possible roles played by OMPs are considered.
PMCID: PMC172882  PMID: 8665477
21.  Interleukin-8 and Intercellular Adhesion Molecule 1 Regulation in Oral Epithelial Cells by Selected Periodontal Bacteria: Multiple Effects of Porphyromonas gingivalis via Antagonistic Mechanisms 
Infection and Immunity  2001;69(3):1364-1372.
Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of IL-8 and ICAM-1 is reduced after Porphyromonas gingivalis ATCC 33277 challenge. In the present study, we investigated the mechanisms that govern the regulation of these two molecules in bacterially infected gingival epithelial cells. Experimental approaches included bacterial stimulation of gingival epithelial cells by either a brief challenge (1.5 to 2 h) or a continuous coculture throughout the incubation period. The kinetics of IL-8 and ICAM-1 expression following brief challenge were such that (i) secretion of IL-8 by gingival epithelial cells reached its peak 2 h following Fusobacterium nucleatum infection whereas it rapidly decreased within 2 h after P. gingivalis infection and remained decreased up to 30 h and (ii) IL-8 and ICAM-1 mRNA levels were up-regulated rapidly 2 to 4 h postinfection and then decreased to basal levels 8 to 20 h after infection with either Actinobacillus actinomycetemcomitans, F. nucleatum, or P. gingivalis. Attenuation of IL-8 secretion was facilitated by adherent P. gingivalis strains. The IL-8 secreted from epithelial cells after F. nucleatum stimulation could be down-regulated by subsequent infection with P. gingivalis or its culture supernatant. Although these results suggested that IL-8 attenuation at the protein level might be associated with P. gingivalis proteases, the Arg- and Lys-gingipain proteases did not appear to be solely responsible for IL-8 attenuation. In addition, while P. gingivalis up-regulated IL-8 mRNA expression, this effect was overridden when the bacteria were continuously cocultured with the epithelial cells. The IL-8 mRNA levels in epithelial cells following sequential challenge with P. gingivalis and F. nucleatum and vice versa were approximately identical and were lower than those following F. nucleatum challenge alone and higher than control levels or those following P. gingivalis challenge alone. Thus, together with the protease effect, P. gingivalis possesses a powerful strategy to ensure the down-regulation of IL-8 and ICAM-1.
PMCID: PMC98029  PMID: 11179300
22.  Sensitization with Fusobacterium nucleatum targets antibody-dependent cellular cytotoxicity to mammalian cells. 
Infection and Immunity  1986;52(3):650-656.
Incubation of mammalian tumor cells with either soluble of insoluble fractions (10 to 100 micrograms/ml) of Fusobacterium nucleatum sensitizes them to the destructive activity of antibody-dependent cellular cytotoxicity (ADCC) effector cells in the presence of anti-F. nucleatum antisera. All three types of ADCC effector cells are capable of destroying F. nucleatum-sensitized target cells with varying degrees of effectiveness (lymphocytes much greater than monocytes greater than neutrophils). Hyperimmune rabbit anti-F. nucleatum antisera were active at a dilution as high as 1/100,000. Our studies indicated that F. nucleatum must be bound to the target cells since if either the effector cells are treated with F. nucleatum or F. nucleatum is directly to an ADCC reaction, there is no significant effect on cytotoxicity. The kinetics of F. nucleatum-targeted ADCC are identical to those of classical ADCC, suggesting a similar mechanism. The specificity of F. nucleatum-targeted ADCC was demonstrated by cold target inhibition studies and by showing that other antibacterial antisera were incapable of mediating the activity.
PMCID: PMC260906  PMID: 3710577
23.  Fusobacterium nucleatum Induces Premature and Term Stillbirths in Pregnant Mice: Implication of Oral Bacteria in Preterm Birth  
Infection and Immunity  2004;72(4):2272-2279.
Fusobacterium nucleatum is a gram-negative anaerobe ubiquitous to the oral cavity. It is associated with periodontal disease. It is also associated with preterm birth and has been isolated from the amniotic fluid, placenta, and chorioamnionic membranes of women delivering prematurely. Periodontal disease is a newly recognized risk factor for preterm birth. This study examined the possible mechanism underlying the link between these two diseases. F. nucleatum strains isolated from amniotic fluids and placentas along with those isolated from orally related sources invaded both epithelial and endothelial cells. The invasive ability may enable F. nucleatum to colonize and infect the pregnant uterus. Transient bacteremia caused by periodontal infection may facilitate bacterial transmission from the oral cavity to the uterus. To test this hypothesis, we intravenously injected F. nucleatum into pregnant CF-1 mice. The injection resulted in premature delivery, stillbirths, and nonsustained live births. The bacterial infection was restricted inside the uterus, without spreading systemically. F. nucleatum was first detected in the blood vessels in murine placentas. Invasion of the endothelial cells lining the blood vessels was observed. The bacteria then crossed the endothelium, proliferated in surrounding tissues, and finally spread to the amniotic fluid. The pattern of infection paralleled that in humans. This study represents the first evidence that F. nucleatum may be transmitted hematogenously to the placenta and cause adverse pregnancy outcomes. The results strengthen the link between periodontal disease and preterm birth. Our study also indicates that invasion may be an important virulence mechanism for F. nucleatum to infect the placenta.
PMCID: PMC375172  PMID: 15039352
24.  Anaplasma phagocytophilum Ats-1 Is Imported into Host Cell Mitochondria and Interferes with Apoptosis Induction 
PLoS Pathogens  2010;6(2):e1000774.
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, infects human neutrophils and inhibits mitochondria-mediated apoptosis. Bacterial factors involved in this process are unknown. In the present study, we screened a genomic DNA library of A. phagocytophilum for effectors of the type IV secretion system by a bacterial two-hybrid system, using A. phagocytophilum VirD4 as bait. A hypothetical protein was identified as a putative effector, hereby named Anaplasma translocated substrate 1 (Ats-1). Using triple immunofluorescence labeling and Western blot analysis of infected cells, including human neutrophils, we determined that Ats-1 is abundantly expressed by A. phagocytophilum, translocated across the inclusion membrane, localized in the host cell mitochondria, and cleaved. Ectopically expressed Ats-1 targeted mitochondria in an N-terminal 17 residue-dependent manner, localized in matrix or at the inner membrane, and was cleaved as native protein, which required residues 55–57. In vitro-translated Ats-1 was imported in a receptor-dependent manner into isolated mitochondria. Ats-1 inhibited etoposide-induced cytochrome c release from mitochondria, PARP cleavage, and apoptosis in mammalian cells, as well as Bax-induced yeast apoptosis. Ats-1(55–57) had significantly reduced anti-apoptotic activity. Bax redistribution was inhibited in both etoposide-induced and Bax-induced apoptosis by Ats-1. Taken together, Ats-1 is the first example of a bacterial protein that traverses five membranes and prevents apoptosis at the mitochondria.
Author Summary
Anaplasma phagocytophilum is the pathogen that causes human granulocytic anaplasmosis, an emerging infectious disease. As an obligate intracellular organism, this bacterium cannot reproduce outside of eukaryotic cells due to the loss of many genes that are present in free-living bacteria. Paradoxically, it specifically infects short-lived white blood cells that play critical roles in anti-microbial defense, by subverting a number of host innate immune responses including programmed cell death (apoptosis). A. phagocytophilum factors that are involved in this process are largely unknown. In this study, we first searched A. phagocytophilum proteins that are secreted by its specialized secretion system into eukaryotic cells. We found a protein of unknown function, here named Ats-1, which is abundantly produced by A. phagocytophilum and traverses five membranes to enter the mitochondria of human cells. Our further study showed that Ats-1 reduces the sensitivity of mitochondria to respond to apoptosis-inducing factors, leading to the inhibition of host cell apoptosis. Thus, present findings identified a bacterial protein that allows infected white blood cells to live longer to support bacterial growth. The absence of similarity of the sequence or the mode of action to any other known cell death suppressor suggests that Ats-1 defines a previously undescribed class of anti-apoptotic protein. This protein and the mechanism thereof may provide insight regarding a new therapeutic target for treatment of human granulocytic anaplasmosis.
PMCID: PMC2824752  PMID: 20174550
25.  Fusobacterium nucleatum Infection of Colonic Cells Stimulates MUC2 Mucin and Tumor Necrosis Factor Alpha▿ 
Infection and Immunity  2011;79(7):2597-2607.
The etiology of inflammatory bowel disease is not completely known, but it is influenced by the presence of normal gut microflora as well as yet-unrecognized pathogens. The anaerobic, Gram-negative bacterial species Fusobacterium nucleatum is a common resident of the human mouth and gut and varies in its pathogenic potential. In this study, we demonstrate that highly invasive F. nucleatum isolates derived from the inflamed guts of Crohn's disease patients evoked significantly greater MUC2 and tumor necrosis factor alpha (TNF-α) gene expression than minimally invasive strains isolated from the noninflamed gut in human colonic epithelial cells and in a rat ligated colonic loop model of infection. Only live F. nucleatum induced mucin secretion and TNF-α expression in direct contact with and/or during invasion of colonic cells. In rat colons, mucin secretion was augmented in response to a highly invasive F. nucleatum isolate but was unaffected by treatment with a minimally invasive strain. Taken together, these studies reveal that F. nucleatum may represent a challenging pathogen in the etiology of gut inflammatory diseases and highlight the importance of different pathotypes of candidate bacterial species in disease pathogenesis.
PMCID: PMC3191979  PMID: 21536792

Results 1-25 (1267214)