Search tips
Search criteria

Results 1-25 (875400)

Clipboard (0)

Related Articles

1.  Development of the vertebral morphogenetic field in the mouse: interactions between Crossveinless-2 and Twisted gastrulation 
Developmental biology  2008;323(1):6-18.
Crossveinless-2 (Cv2), Twisted Gastrulation (Tsg) and Chordin (Chd) are components of an extracellular biochemical pathway that regulates Bone Morphogenetic Protein (BMP) activity during dorso-ventral patterning of Drosophila and Xenopus embryos, the formation of the fly wing, and mouse skeletogenesis. Because the nature of their genetic interactions remained untested in the mouse, we generated a null allele for Cv2 which was crossed to Tsg and Chd mutants to obtain Cv2;Tsg and Cv2;Chd compound mutants. We found that Cv2 is essential for skeletogenesis as its mutation caused the loss of multiple bone structures and posterior homeotic transformation of the last thoracic vertebra. During early vertebral development, Smad1 phosphorylation in the intervertebral region was decreased in the Cv2 mutant, even though CV2 protein is normally located in the future vertebral bodies. Because Cv2 mutation affects BMP signaling at a distance, this suggested that CV2 is involved in the localization of the BMP morphogenetic signal. Cv2 and Chd mutations did not interact significantly. However, mutation of Tsg was epistatic to all CV2 phenotypes. We propose a model in which CV2 and Tsg participate in the generation of a BMP signaling morphogenetic field during vertebral formation in which CV2 serves to concentrate diffusible Tsg/BMP4 complexes in the vertebral body cartilage.
PMCID: PMC2647368  PMID: 18789316
BMP; Crossveinless-2; Chordin; Twisted Gastrulation; Tolloid; vertebra; morphogenetic field; cartilage; pattern formation
2.  The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling 
Nature  2000;405(6788):757-763.
Dorsal-ventral patterning in vertebrate and Drosophila embryos requires a conserved system of extracellular proteins to generate a positional information gradient. The components involved include bone morphogenetic proteins (BMP/Dpp), a BMP antagonist (Chordin/Short gastrulation; Chd/Sog) and a secreted metalloproteinase (Xolloid/Tolloid) that cleaves Chd/Sog. Here we describe Xenopus Twisted gastrulation (xTsg), another member of this signalling pathway. xTsg is expressed ventrally as part of the BMP-4 synexpression group and encodes a secreted BMP-binding protein that is a BMP signalling agonist. The data suggest a molecular mechanism by which xTsg dislodges latent BMPs bound to Chordin BMP-binding fragments generated by Xolloid cleavage, providing a permissive signal that allows high BMP signalling in the embryo. Drosophila Tsg also binds BMPs and is expressed dorsally, supporting the proposal that the dorsal-ventral axis was inverted in the course of animal evolution.
PMCID: PMC2292104  PMID: 10866189
3.  Organizer-derived Bmp2 is required for the formation of a correct Bmp activity gradient during embryonic development 
Nature Communications  2014;5:3766.
Bone morphogenetic proteins (Bmps) control dorsoventral patterning of vertebrate embryos through the establishment of a ventrodorsal gradient of the activated downstream cytoplasmic effectors Smad1/5/8. Some Bmp ligands are expressed in the ventral and lateral regions and in the organizer during gastrulation of the embryo, but it remains unclear how organizer-derived Bmps contribute to total Bmp ligand levels and to the establishment of the correct phospho-Smad1/5/8 gradient along the ventrodorsal axis. Here we demonstrate that interference with organizer-specific Bmp2b signalling in zebrafish embryos alters the phospho-Smad1/5/8 gradient throughout the ventrodorsal axis, elevates the levels of the Bmp antagonist Chordin and dorsalizes the embryos. Moreover, we show that organizer-derived Bmp2b represses chordin transcription in the organizer and contributes to the control of the Chordin gradient. Combining these experimental results with simulations of Bmp’s reaction-diffusion dynamics, our data indicate that organizer-produced Bmp2b is required for the establishment and maintenance of a Bmp activity gradient and for appropriate embryonic dorsoventral patterning during gastrulation.
The morphogen, Bmp, regulates differentiation of cell fates along the ventral to dorsal axis during vertebrate embryonic development. Here, Xue et al. show that Bmp2b produced by the organizer during early gastrulation in zebrafish embryos has a role in the establishment of an appropriate Bmp morphogen activity gradient and the correct dorsoventral patterning of the embryos.
PMCID: PMC4071459  PMID: 24777107
4.  Patterning of the Dorsal-Ventral Axis in Echinoderms: Insights into the Evolution of the BMP-Chordin Signaling Network 
PLoS Biology  2009;7(11):e1000248.
Deciphering the process of dorsal-ventral patterning in the sea urchin reveals an extreme case of BMP translocation and an unusual configuration of the BMP-Chordin axis in echinoderms.
Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFβ Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient.
Author Summary
During early development of many organisms, patterning along the dorsal-ventral axis is regulated by the activities of two signaling centers located on the ventral and dorsal sides of the embryo. One of these centers produces growth factors of the BMP family that act as morphogens, whereas the other center secretes BMP antagonists such as Chordin that regulate the flow of BMPs along the dorsal-ventral axis. Expression from these two signaling centers results in roughly complementary distributions of BMP and BMP antagonist. We have analyzed BMP-mediated dorsal-ventral axis patterning in embryos of sea urchins, which are phylogenetically close to vertebrates and extensively rely on cell-cell interactions for their development. We found that in sea urchins, unlike in most organisms, the activity of a single signaling center located on the ventral side is responsible for generating both the ventral and the dorsal sides of the embryo. In addition, we discovered that the BMP2/4 gene is co-expressed with Chordin in this ventral center but that the BMP2/4 protein is translocated to the opposite side of the embryo where it activates the genetic program responsible for dorsal differentiation. Our study reveals an unusual example of signaling at a distance by a BMP growth factor. It also highlights that although the proteins used for dorsal-ventral patterning are evolutionarily conserved, there are considerable variations in the manner in which these proteins can be used in different species to generate a gradient of BMP morphogen.
PMCID: PMC2772021  PMID: 19956794
5.  Crossveinless-2 Is a BMP Feedback Inhibitor that Binds Chordin/BMP to Regulate Xenopus Embryonic Patterning 
Developmental cell  2008;15(2):248-260.
Vertebrate Crossveinless-2 (CV2) is a secreted protein that can potentiate or antagonize BMP signaling. Through embryological and biochemical experiments we find that: 1) CV2 functions as a BMP4 feedback inhibitor in ventral regions of the Xenopus embryo; 2) CV2 complexes with Twisted gastrulation and BMP4; 3) CV2 is not a substrate for tolloid proteinases; 4) CV2 binds to purified Chordin protein with high affinity (KD in the 1 nM range); 5) CV2 binds even more strongly to Chordin proteolytic fragments resulting from Tolloid digestion or to full-length Chordin/BMP complexes; 6) CV2 depletion causes the Xenopus embryo to become hypersensitive to the anti-BMP effects of Chordin overexpression or tolloid inhibition. We propose that the CV2/Chordin interaction may help coordinate BMP diffusion to the ventral side of the embryo, ensuring that BMPs liberated from Chordin inhibition by tolloid proteolysis cause peak signaling levels.
PMCID: PMC2581521  PMID: 18694564
6.  First Evidence of Bone Morphogenetic Protein 1 Expression and Activity in Sheep Ovarian Follicles1 
Biology of Reproduction  2010;83(1):138-146.
Bone morphogenetic protein (BMP) 1 is a vertebrate metalloproteinase of the astacin family. BMP1 plays a key role in regulating the formation of the extracellular matrix (ECM), particularly by processing the C-propeptide of fibrillar procollagens. BMP1 also promotes BMP signaling by releasing BMP signaling molecules from complexes with the BMP-antagonist chordin. As a result of BMP1′s dual role in both ECM formation and BMP signaling, we hypothesized that BMP1 could play a role in ovarian physiology. Using the sheep ovary as a model system, we showed that BMP1 was expressed in the ovary throughout early fetal stages to adulthood. Furthermore, in adult ovaries, BMP1 was expressed along with chordin, BMP4, and twisted gastrulation, which together form an extracellular regulatory complex for BMP signaling. Within ovine ovaries, immunohistochemical localization demonstrated that BMP1 was present in granulosa cells at all stages of follicular development, from primordial to large antral follicles, and that the levels of BMP1 were not affected by the final follicle selection mechanism. In cultured granulosa cells, BMP1 expression was not affected by gonadotropins, but BMP4 and activin A had opposing effects on the levels of BMP1 mRNA. BMP1 appeared to be secreted into the follicular fluid of antral follicles, where it is able to exert procollagen C-proteinase and chordinase activities. Interestingly, BMP1 activity in follicular fluid decreased with follicular growth.
Enzymatically active bone morphogenetic protein 1 (BMP1) is produced by granulosa cells and is present in the follicular fluid of ovine ovarian follicles.
PMCID: PMC2888967  PMID: 20357269
BMP1; follicle; follicular development; granulosa cells; ovary
7.  The pro-BMP activity of Twisted gastrulation is independent of BMP binding 
Development (Cambridge, England)  2003;130(17):4047-4056.
The determination of the vertebrate dorsoventral body axis is regulated in the extracellular space by a system of interacting secreted molecules consisting of BMP, Chordin, Tolloid and Twisted Gastrulation (Tsg). Tsg is a BMP-binding protein that forms ternary complexes with BMP and Chordin. We investigated the function of Tsg in embryonic patterning by generating point mutations in its two conserved cysteine-rich domains. Surprisingly, Tsg proteins with mutations in the N-terminal domain were unable to bind BMP, yet ventralized the embryo very effectively, indicating strong pro-BMP activity. This hyperventralizing Tsg activity required an intact C-terminal domain and could block the anti-BMP activity of isolated BMP-binding modules of Chordin (CRs) in embryonic assays. This activity was specific for CR-containing proteins as it did not affect the dorsalizing effects of Noggin or dominant-negative BMP receptor. The ventralizing effects of the xTsg mutants were stronger than the effect of Chordin loss-of-function in Xenopus or zebrafish. The results suggest that xTsg interacts with additional CR-containing proteins that regulate dorsoventral development in embryos.
PMCID: PMC2277362  PMID: 12874126
Twisted-gastrulation; BMP; Chordin; Tolloid; Crossveinless; TGFβ; Cell-cell signaling; Xenopus; Zebrafish; CR modules
8.  The Developmentally Regulated Expression of Twisted Gastrulation Reveals a Role for Bone Morphogenetic Proteins in the Control of T Cell Development 
The evolutionarily conserved, secreted protein Twisted gastrulation (Tsg) modulates morphogenetic effects of decapentaplegic (dpp) and its orthologs, the bone morphogenetic proteins 2 and 4 (BMP2/4), in early Drosophila and vertebrate embryos. We have uncovered a role for Tsg at a much later stage of mammalian development, during T cell differentiation in the thymus. BMP4 is expressed by thymic stroma and inhibits the proliferation of CD4−CD8− double-negative (DN) thymocytes and their differentiation to the CD4+CD8+ double-positive (DP) stage in vitro. Tsg is expressed by thymocytes and up-regulated after T cell receptor signaling at two developmental checkpoints, the transition from the DN to the DP and from the DP to the CD4+ or CD8+ single-positive stage. Tsg can synergize with the BMP inhibitor chordin to block the BMP4-mediated inhibition of thymocyte proliferation and differentiation. These data suggest that the developmentally regulated expression of Tsg may allow thymocytes to temporarily withdraw from inhibitory BMP signals.
PMCID: PMC2193926  PMID: 12119341
BMP4; Twisted gastrulation; thymocyte development; chordin; morphogen
9.  Systems Biology of the Self-regulating Morphogenetic Gradient of the Xenopus Gastrula 
The morphogenetic field concept was proposed by experimental embryologists to account for the self-regulative behavior of embryos. Such fields have remained an abstract concept until the recent identification of their molecular components using a combination of genetics, biochemistry, and theoretical modeling. One of the best studied models of a morphogenetic field is the Dorsal-Ventral (D-V) patterning of the early frog embryo. This patterning system is regulated by the bone morphogenetic protein (BMP) signaling pathway and an intricate network of secreted protein antagonists. This biochemical pathway of interacting proteins functions in the extracellular space to generate a D-V gradient of BMP signaling, which is maintained during extensive morphogenetic movements of cell layers during gastrulation. The D-V field is divided into a dorsal and a ventral center, in regions of low and high BMP signaling respectively, under opposite transcriptional control by BMPs. The robustness of the patterning is assured at two different levels. First, in the extracellular space by secreted BMP antagonists that generate a directional flow of BMP ligands to the ventral side. The flow is driven by the regulated proteolysis of the Chordin inhibitor and by the presence of a molecular sink on the ventral side that concentrates BMP signals. The tolloid metalloproteinases and the Chordin-binding protein Crossveinless-2 (CV2) are key components of this ventral sink. Second, by transcriptional feedback at the cellular level: The dorsal and ventral signaling centers adjust their size and level of BMP signaling by transcriptional feedback. This allows cells on one side of a gastrula containing about 10,000 cells to communicate with cells in the opposite pole of the embryo.
A network of BMP ligands and antagonists regulates embryonic patterning in frogs. Proteolysis of inhibitors, a molecular sink, and transcriptional feedback loops ensure its robustness.
PMCID: PMC2742089  PMID: 20066084
10.  Computational Analysis of BMP Gradients in Dorsal-ventral Patterning of the Zebrafish Embryo 
Journal of theoretical biology  2007;248(4):579-589.
The genetic network controlling early dorsal-ventral (DV) patterning has been extensively studied and modeled in the fruit fly Drosophila. This patterning is driven by signals coming from bone morphogenetic proteins (BMPs), and regulated by interactions of BMPs with secreted factors such as the antagonist short gastrulation (Sog). Experimental studies suggest that the DV patterning of vertebrates is controlled by a similar network of BMPs and antagonists (such as Chordin, a homologue of Sog), but differences exist in how the two systems are organized, and a quantitative comparison of pattern formation in them has not been made. Here, we develop a computational model in three-dimensions of the zebrafish embryo and use it to study molecular interactions in the formation of BMP morphogen gradients in early DV patterning. Simulation results are presented on the dynamics BMP gradient formation, the cooperative action of two feedback loops from BMP signaling to BMP and Chordin synthesis, and pattern sensitivity with respect to BMP and Chordin dosage. Computational analysis shows that, unlike the case in Drosophila, synergy of the two feedback loops in the zygotic control of BMP and Chordin expression, along with early initiation of localized Chordin expression, is critical for establishment and maintenance of a stable and appropriate BMP gradient in the zebrafish embryo.
PMCID: PMC4151269  PMID: 17673236
Dorsal-ventral Patterning; BMP Gradients; Morphogens; zebrafish Embryo; Feedback
11.  Proteolytic cleavage of Chordin as a switch for the dual activities of Twisted gastrulation in BMP signaling 
Development (Cambridge, England)  2001;128(22):4439-4447.
Dorsoventral patterning is regulated by a system of interacting secreted proteins involving BMP, Chordin, Xolloid and Twisted gastrulation (Tsg). We have analyzed the molecular mechanism by which Tsg regulates BMP signaling. Overexpression of Tsg mRNA in Xenopus embryos has ventralizing effects similar to Xolloid, a metalloprotease that cleaves Chordin. In embryos dorsalized by LiCl treatment, microinjection of Xolloid or Tsg mRNA restores the formation of trunk-tail structures, indicating an increase in BMP signaling. Microinjection of Tsg mRNA leads to the degradation of endogenous Chordin fragments generated by Xolloid. The ventralizing activities of Tsg require an endogenous Xolloid-like activity, as they can be blocked by a dominant-negative Xolloid mutant. A BMP-receptor binding assay revealed that Tsg has two distinct and sequential activities on BMP signaling. First, Tsg makes Chordin a better BMP antagonist by forming a ternary complex that prevents binding of BMP to its cognate receptor. Second, after cleavage of Chordin by Xolloid, Tsg competes the residual anti-BMP activity of Chordin fragments and facilitates their degradation. This molecular pathway, in which Xolloid switches the activity of Tsg from a BMP antagonist to a pro-BMP signal once all endogenous full-length Chordin is degraded, may help explain how sharp borders between embryonic territories are generated.
PMCID: PMC2277371  PMID: 11714670
TGFβ; BMP; Chordin; Tolloid; Twisted gastrulation; Crossveinless; Xenopus
12.  Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution 
PLoS Biology  2006;4(9):e291.
We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called “dorsal.” On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other.
Experimental and anatomical evidence for the role of Bmp and Chordin in the development of the dorsal-ventral axis of hemichordates provides insights into the evolution of the chordate lineage.
PMCID: PMC1551926  PMID: 16933975
13.  BMP signaling and spadetail regulate exit of muscle precursors from the zebrafish tailbud. 
Developmental biology  2012;375(2):117-127.
The tailbud is a population of stem cells in the posterior embryonic tail. During zebrafish development, these stem cells give rise to the main structures of the embryo's posterior body, including the tail somites. Progenitor cells reside in the tailbud for variable amounts of time before they exit and begin to differentiate. There must be a careful balance between cells that leave the tailbud and cells that are held back in order to give rise to later somites. However, this meticulous process is not well understood. A gene that has shed some light on this area is the t-box transcription factor spadetail (spt). When spt is mutated, embryos develop an enlarged tailbud and are only able to form roughly half of their somites. This phenotype is due to the fact that some of the somitic precursors are not able to leave the tailbud or differentiate. Another factor involved in tail morphogenesis is the Bone Morphogenetic Protein (BMP) pathway. BMPs are important for many processes during early development, including cell migration. Chordino (chd) is a secreted protein that inhibits BMP signaling. BMPs are upregulated in chd mutants, however, these mutants are able to form organized somites. In embryos where chd and spt are mutated, somites are completely absent. These double mutants also develop a large tailbud due to the accumulation of progenitor cells that are never able to leave or differentiate. To study the dynamics of cells in the tailbud and their role in somite formation we have analyzed the genetic factors and pathway interactions involved, conducted transplant experiments to look at behavior of mutant cells in different genetic backgrounds, and used time lapse microscopy to characterize cell movements and behavior in wild type and mutant tailbuds. These data suggest that spt expression and BMP inhibition are both required for somitic precursors to exit the tailbud. They also elucidate that chd;spt tailbud mesodermal progenitor cells (MPC) behave autonomously and their dynamics within the tailbud are drastically different than WT MPCs.
PMCID: PMC3582720  PMID: 23246591
spadetail; BMP; tailbud; somitogenesis; mesoderm progenitors
14.  SNW1 Is a Critical Regulator of Spatial BMP Activity, Neural Plate Border Formation, and Neural Crest Specification in Vertebrate Embryos 
PLoS Biology  2011;9(2):e1000593.
In frog and fish embryos, SNW1 is a protein required for the spatio-temporal activity of BMP signaling necessary for neural plate border formation and specification of neural crest tissue.
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.
Author Summary
A subset of cells in the ectoderm of vertebrate embryos becomes the neural crest, which contributes to the bones and cartilage of the adult face. The neural crest arises in a location between the epidermis, which becomes the future skin, and the neural plate, which becomes the future central nervous system. Through our studies in both frog and fish embryos, we have discovered that the protein SNW-domain containing protein 1 (SNW1) is absolutely essential for defining the edge of the neural plate, where neural crest forms. SNW-domain containing proteins have been implicated in a variety of nuclear activities ranging from transcriptional regulation and elongation to RNA splicing. We show that SNW1 functions upstream of bone morphogenetic protein (BMP) receptors to regulate BMP activity, and is necessary for the activity of the BMP signaling pathway at the neural plate border where the neural crest is specified. In the absence of SNW1, BMP activity is reduced in this region and neural crest cells are lost. Given that SNW1 family proteins are highly conserved from nematodes to humans, SNW1's BMP regulatory function is likely conserved in other animals.
PMCID: PMC3039673  PMID: 21358802
15.  Shaping BMP morphogen gradients through enzyme-substrate interactions 
Developmental cell  2011;21(2):375-383.
Bone Morphogenetic Proteins (BMPs) regulate dorsal/ventral (D/V) patterning across the animal kingdom; however, the biochemical properties of certain pathway components can vary according to species-specific developmental requirements. For example, Tolloid (Tld)-like metalloproteases cleave vertebrate BMP-binding proteins called Chordins constitutively, while the Drosophila Chordin ortholog, Short gastrulation (Sog), is only cleaved efficiently when bound to BMPs. We identified Sog characteristics responsible for making its cleavage dependent on BMP binding. “Chordin-like” variants that are processed independently of BMPs, changed the steep BMP gradient found in Drosophila embryos to a shallower profile, analogous to that observed in some vertebrate embryos. This change ultimately affected cell fate allocation and tissue size and resulted in increased variability of patterning. Thus, the acquisition of BMP-dependent Sog processing during evolution appears to facilitate long-range ligand diffusion and formation of a robust morphogen gradient, enabling the bistable BMP signaling outputs required for early Drosophila patterning.
PMCID: PMC3175245  PMID: 21839924
16.  Dorsal-Ventral Patterning and Neural Induction in Xenopus Embryos 
We review the current status of research in dorsal-ventral (D-V) patterning in vertebrates. Emphasis is placed on recent work on Xenopus, which provides a paradigm for vertebrate development based on a rich heritage of experimental embryology. D-V patterning starts much earlier than previously thought, under the influence of a dorsal nuclear β-Catenin signal. At mid-blastula two signaling centers are present on the dorsal side: The prospective neuroectoderm expresses bone morphogenetic protein (BMP) antagonists, and the future dorsal endoderm secretes Nodal-related mesoderm-inducing factors. When dorsal mesoderm is formed at gastrula, a cocktail of growth factor antagonists is secreted by the Spemann organizer and further patterns the embryo. A ventral gastrula signaling center opposes the actions of the dorsal organizer, and another set of secreted antagonists is produced ventrally under the control of BMP4. The early dorsal β-Catenin signal inhibits BMP expression at the transcriptional level and promotes expression of secreted BMP antagonists in the prospective central nervous system (CNS). In the absence of mesoderm, expression of Chordin and Noggin in ectoderm is required for anterior CNS formation. FGF (fibroblast growth factor) and IGF (insulin-like growth factor) signals are also potent neural inducers. Neural induction by anti-BMPs such as Chordin requires mitogen-activated protein kinase (MAPK) activation mediated by FGF and IGF. These multiple signals can be integrated at the level of Smad1. Phosphorylation by BMP receptor stimulates Smad1 transcriptional activity, whereas phosphorylation by MAPK has the opposite effect. Neural tissue is formed only at very low levels of activity of BMP-transducing Smads, which require the combination of both low BMP levels and high MAPK signals. Many of the molecular players that regulate D-V patterning via regulation of BMP signaling have been conserved between Drosophila and the vertebrates.
PMCID: PMC2280069  PMID: 15473842
beta-Catenin; Chordin; Noggin; Xnr3; Cerberus; sFRP; Frzb; Crescent; Dickkopf; Crossveinless-2; Tsg; Xolloid-related; Bambi; Sizzled; FGF; IGF; Urbilateria
17.  Mouse Crossveinless-2 is the vertebrate homolog of a Drosophila extracellular regulator of BMP signaling 
Mechanisms of development  2002;119(Suppl 1):S179-S184.
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway.
PMCID: PMC3039546  PMID: 14516682
Crossveinless-2; Chordin; Twisted gastrulation; Short gastrulation; BMP; Dpp; Tolloid; CR domain; von Willebrand factor type D domain; TIL domain; Extracellular matrix; Organogenesis; Somite; Sclerotome; Notochord; Neural crest; Dorsal root ganglion; Branchial arch; Cartilage; Vertebra; Intervertebral disc; Lung
18.  Spemann’s organizer and the self-regulation of embryonic fields 
Mechanisms of development  2009;126(11-12):925-941.
Embryos and developing organs have the remarkable ability of self-regenerating after experimental manipulations. In the Xenopus blastula half-embryos can regenerate the missing part, producing identical twins. Studies on the molecular nature of Spemann’s organizer have revealed that self-regulation results from the battle between two signaling centers under reciprocal transcriptional control. Long-range communication between the dorsal and ventral sides is mediated by the action of growth factor antagonists – such as the BMP antagonist Chordin – that regulate the flow of BMPs within the embryonic morphogenetic field. BMPs secreted by the dorsal Spemann organizer tissue are released by metalloproteinases of the Tolloid family, which cleave Chordin at a distance of where they were produced. The dorsal center secretes Chordin, Noggin, BMP2 and ADMP. The ventral center of the embryo secretes BMP4, BMP7, Sizzled, Crossveinless-2 and Tolloid-related. Crossveinless-2 binds Chordin/BMP complexes, facilitating their flow towards the ventral side, where BMPs are released by Tolloid allowing peak BMP signaling. Self-regulation occurs because transcription of ventral genes is induced by BMP while transcription of dorsal genes is repressed by BMP signals. This assures that for each action of Spemann’s organizer there is a reaction in the ventral side of the embryo. Because both dorsal and ventral centers express proteins of similar biochemical activities, they can compensate for each other. A novel biochemical pathway of extracellular growth factor signaling regulation has emerged from these studies in Xenopus. This remarkable dorsal-ventral positional information network has been conserved in evolution and is ancestral to all bilateral animals.
PMCID: PMC2803698  PMID: 19733655
Morphogenetic fields; Embryonic induction; Dorsal-Ventral patterning; BMP; Chordin; Crossveinless-2; Tolloid; Sizzled; Hox genes; Urbilateria
19.  Chordin is required for neural but not axial development in sea urchin embryos 
Developmental biology  2009;328(2):221-233.
The oral-aboral (OA) axis in the sea urchin is specified by the TGFβ family members Nodal and BMP2/4. Nodal promotes oral specification, whereas BMP2/4, despite being expressed in the oral territory, is required for aboral specification. This study explores the role of Chordin (Chd) during sea urchin embryogenesis. Chd is a secreted BMP inhibitor that plays an important role in axial and neural specification and patterning in Drosophila and vertebrate embryos. In L. variegatus embryos, Chd and BMP2/4 are functionally antagonistic. Both are expressed in overlapping domains in the oral territory prior to and during gastrulation. Perturbation shows that, surprisingly, Chd is not involved in OA axis specification. Instead, Chd is required both for normal patterning of the ciliary band at the OA boundary and for development of synaptotagmin B-positive (synB) neurons in a manner that is reciprocal with BMP2/4. Chd expression and synB-positive neural development are both downstream from p38 MAPK and Nodal, but not Goosecoid. These data are summarized in a model for synB neural development.
PMCID: PMC2700341  PMID: 19389361
Chordin; BMP; p38 MAPK; Nodal; Neural; Axis
20.  The Integrator Complex Subunit 6 (Ints6) Confines the Dorsal Organizer in Vertebrate Embryogenesis 
PLoS Genetics  2013;9(10):e1003822.
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Author Summary
A complex integration of signaling pathways establishes the body plan of the vertebrate embryo. The dorsal side of the embryo is defined by the organizer, a specialized field of cells that breaks the symmetry of the zebrafish blastula by instructing neighboring cells to adopt dorsal fates based on their proximity. The isolation of mutant genes in the zebrafish has identified many genes required for embryonic development. However, our knowledge of the molecular mechanisms integrating different signaling pathways within a gene regulatory network to properly pattern the embryo is still incomplete. We isolated a recessive maternal effect mutation in the integrator complex subunit 6 (ints6) gene that leads to a circumferential expansion of the organizer and the formation of dorsal tissues at the expense of ventral tissues. Currently, the only reported role for the Integrator Complex is to mediate processing of snRNAs of the spliceosome. Our molecular genetic approach indicates that ints6 confines the organizer to dorsal domains, preventing it from extending around the margin into ventral domains. Thus, we have determined a novel role for a highly conserved component of an RNA processing machine.
PMCID: PMC3814294  PMID: 24204286
21.  Unveiling the Bmp13 Enigma: Redundant Morphogen or Crucial Regulator? 
Bone morphogenetic proteins are a diverse group of morphogens with influences not only on bone tissue, as the nomenclature suggests, but on multiple tissues in the body and often at crucial and influential periods in development.
The purpose of this review is to identify and discuss current knowledge of one vertebrate BMP, Bone Morphogenetic Protein 13 (BMP13), from a variety of research fields, in order to clarify BMP13's functional contribution to developing and maintaining healthy tissues, and to identify potential future research directions for this intriguing morphogen. BMP13 is highly evolutionarily conserved (active domain >95%) across diverse species from Zebrafish to humans, suggesting a crucial function. In addition, mutations in BMP13 have recently been associated with Klippel-Feil Syndrome, causative of numerous skeletal and developmental defects including spinal disc fusion. The specific nature of BMP13's crucial function is, however, not yet known.
The literature for BMP13 is focused largely on its activity in the healing of tendon-like tissues, or in comparisons with other BMP family molecules for whom a clear function in embryo development or osteogenic differentiation has been identified. There is a paucity of detailed information regarding BMP13 protein activity, structure or protein processing. Whilst some activity in the stimulation of osteogenic or cartilaginous gene expression has been reported, and BMP13 expression is found in post natal cartilage and tendon tissues, there appears to be a redundancy of function in the BMP family, with several members capable of stimulating similar tissue responses. This review aims to summarise the known or potential role(s) for BMP13 in a variety of biological systems.
PMCID: PMC2536705  PMID: 18797508
BMP13; Cartilage; Growth Factor; Development; Bone
22.  Lactoferricin Enhances BMP7-Stimulated Anabolic Pathways in Intervertebral Disc Cells 
Gene  2013;524(2):282-291.
Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral (IVD) matrix and cell homeostasis. Similarly, lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc (IVD) matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin (BMP receptor antagonist) and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration.
PMCID: PMC3679319  PMID: 23644135
23.  Identification of Early Requirements for Preplacodal Ectoderm and Sensory Organ Development 
PLoS Genetics  2010;6(9):e1001133.
Preplacodal ectoderm arises near the end of gastrulation as a narrow band of cells surrounding the anterior neural plate. This domain later resolves into discrete cranial placodes that, together with neural crest, produce paired sensory structures of the head. Unlike the better-characterized neural crest, little is known about early regulation of preplacodal development. Classical models of ectodermal patterning posit that preplacodal identity is specified by readout of a discrete level of Bmp signaling along a DV gradient. More recent studies indicate that Bmp-antagonists are critical for promoting preplacodal development. However, it is unclear whether Bmp-antagonists establish the proper level of Bmp signaling within a morphogen gradient or, alternatively, block Bmp altogether. To begin addressing these issues, we treated zebrafish embryos with a pharmacological inhibitor of Bmp, sometimes combined with heat shock-induction of Chordin and dominant-negative Bmp receptor, to fully block Bmp signaling at various developmental stages. We find that preplacodal development occurs in two phases with opposing Bmp requirements. Initially, Bmp is required before gastrulation to co-induce four transcription factors, Tfap2a, Tfap2c, Foxi1, and Gata3, which establish preplacodal competence throughout the nonneural ectoderm. Subsequently, Bmp must be fully blocked in late gastrulation by dorsally expressed Bmp-antagonists, together with dorsally expressed Fgf and Pdgf, to specify preplacodal identity within competent cells abutting the neural plate. Localized ventral misexpression of Fgf8 and Chordin can activate ectopic preplacodal development anywhere within the zone of competence, whereas dorsal misexpression of one or more competence factors can activate ectopic preplacodal development in the neural plate. Conversely, morpholino-knockdown of competence factors specifically ablates preplacodal development. Our work supports a relatively simple two-step model that traces regulation of preplacodal development to late blastula stage, resolves two distinct phases of Bmp dependence, and identifies the main factors required for preplacodal competence and specification.
Author Summary
Cranial placodes, which produce sensory structures in the head, arise from a contiguous band of preplacodal ectoderm surrounding the anterior neural plate during gastrulation. Little is known about early regulation of preplacodal ectoderm, but modulation of signaling through Bone Morphogenetic Protein (Bmp) is clearly involved. Recent studies show that dorsally expressed Bmp-antagonists help establish preplacodal ectoderm, but it is not clear whether antagonists titrate Bmp to a discrete low level that actively induces preplacodal fate or, alternatively, whether Bmp must be fully blocked to permit preplacodal development. We show that in zebrafish preplacodal development occurs in distinct phases with differing Bmp requirements. Initially, Bmp is required before gastrulation to render all ventral ectoderm competent to form preplacodal tissue. We further show that four transcription factors, Foxi1, Gata3, Tfap2a, and Tfap2c, specifically mediate preplacodal competence. Once induced, these factors no longer require Bmp. Thereafter, Bmp must be fully blocked by dorsally expressed Bmp-antagonists to permit preplacodal development. In addition, dorsally expressed Fgf and/or Pdgf are also required, activating preplacodal development in competent cells abutting the neural plate. Thus, we have resolved the role of Bmp and traced the regulation of preplacodal development to pre-gastrula stage.
PMCID: PMC2944784  PMID: 20885782
24.  A Late Role for bmp2b in the Morphogenesis of Semicircular Canal Ducts in the Zebrafish Inner Ear 
PLoS ONE  2009;4(2):e4368.
The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.
Methodology/Principal Findings
We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b−/−) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.
Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.
PMCID: PMC2629815  PMID: 19190757
25.  Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases 
Cell  2006;124(1):147-159.
Here we report an unexpected role for the secreted Frizzled-related protein (sFRP) Sizzled/Ogon as an inhibitor of the extracellular proteolytic reaction that controls BMP signaling during Xenopus gastrulation. Microinjection experiments suggest that the Frizzled domain of Sizzled regulates the activity of Xolloid-related (Xlr), a metalloproteinase that degrades Chordin, through the following molecular pathway: Szl ┤ Xlr ┤ Chd ┤ BMP → P-Smad1 → Szl. In biochemical assays, the Xlr proteinase has similar affinities for its endogenous substrate Chordin and for its competitive inhibitor Sizzled, which is resistant to enzyme digestion. Extracellular levels of Sizzled and Chordin in the gastrula embryo and enzyme reaction constants were all in the 10−8 M range, consistent with a physiological role in the regulation of dorsal-ventral patterning. Sizzled is also a natural inhibitor of BMP1, a Tolloid metalloproteinase of medical interest. Furthermore, mouse sFRP2 inhibited Xlr, suggesting a wider role for this molecular mechanism.
PMCID: PMC2486255  PMID: 16413488

Results 1-25 (875400)