PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (625748)

Clipboard (0)
None

Related Articles

1.  Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma 
British Journal of Cancer  2012;107(12):1987-1996.
Background:
Multiple myeloma is a plasma cell disorder that is characterised by clonal proliferation of malignant plasma cells in the bone marrow, monoclonal paraprotein in the blood or urine and associated organ dysfunction. It accounts for approximately 1% of cancers and 13% of haematological cancers. Myeloma arises from an asymptomatic proliferation of monoclonal plasma cells termed monoclonal gammopathy of undetermined significance (MGUS).
Methods:
MicroRNA expression profiling of serum samples was performed on three patient groups as well as normal controls. Validation of the nine microRNAs detected as promising biomarkers was carried out using TaqMan quantitative reverse transcription PCR. MicroRNA levels in serum were normalised using standard curves to determine the numbers of microRNAs per μl of serum.
Results:
Three serum microRNAs, miR-720, miR-1308 and miR-1246, were found to have potential as diagnostic biomarkers in myeloma. Use of miR-720 and miR-1308 together provides a powerful diagnostic tool for distinguishing normal healthy controls, as well as patients with unrelated illnesses, from pre-cancerous myeloma and myeloma patients. In addition, the combination of miR-1246 and miR-1308 can distinguish MGUS from myeloma patients.
Conclusion:
We have developed a biomarker signature using microRNAs extracted from serum, which has potential as a diagnostic and prognostic tool for multiple myeloma.
doi:10.1038/bjc.2012.525
PMCID: PMC3516695  PMID: 23169280
myeloma; microRNAs; biomarkers; diagnostics; cleaved tRNA; serum miRNAs
2.  mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities 
Molecular cancer therapeutics  2010;9(5):1080-1091.
As part of the Spotlight on Molecular Profiling series, we present here new profiling studies of mRNA and microRNA expression for the 60 cell lines of the NCI DTP drug screen (NCI-60) using the 41,000-probe Agilent Whole Human Genome Oligo Microarray and the 15,000-feature Agilent Human microRNA Microarray V2. The expression levels of ~21,000 genes and 723 human microRNAs were measured. These profiling studies include quadruplicate technical replicates for six and eight cell lines for mRNA and microRNA, respectively, and duplicates for the remaining cell lines. The resulting data sets are freely available and searchable online in our CellMiner database. The result indicates high reproducibility for both platforms and an essential biological similarity across the various cell types. The mRNA and microRNA expression levels were integrated with our previously published 1,429-compound database of anticancer activity obtained from the NCI DTP drug screen. Large blocks of both mRNAs and microRNAs were identified with predominately unidirectional correlations to ~1,300 drugs including 121 drugs with known mechanisms of action. The data sets presented here will facilitate the identification of groups of mRNAs, microRNAs and drugs that potentially affect and interact with one another.
doi:10.1158/1535-7163.MCT-09-0965
PMCID: PMC2879615  PMID: 20442302
mRNA expression; microRNA expression; NCI-60; drug activity
3.  The microRNA.org resource: targets and expression 
Nucleic Acids Research  2007;36(Database issue):D149-D153.
MicroRNA.org (http://www.microrna.org) is a comprehensive resource of microRNA target predictions and expression profiles. Target predictions are based on a development of the miRanda algorithm which incorporates current biological knowledge on target rules and on the use of an up-to-date compendium of mammalian microRNAs. MicroRNA expression profiles are derived from a comprehensive sequencing project of a large set of mammalian tissues and cell lines of normal and disease origin. Using an improved graphical interface, a user can explore (i) the set of genes that are potentially regulated by a particular microRNA, (ii) the implied cooperativity of multiple microRNAs on a particular mRNA and (iii) microRNA expression profiles in various tissues. To facilitate future updates and development, the microRNA.org database structure and software architecture is flexibly designed to incorporate new expression and target discoveries. The web resource provides users with functional information about the growing number of microRNAs and their interaction with target genes in many species and facilitates novel discoveries in microRNA gene regulation.
doi:10.1093/nar/gkm995
PMCID: PMC2238905  PMID: 18158296
4.  microRNA Profiling Identifies Cancer-Specific and Prognostic Signatures in Pediatric Malignancies 
Purpose
microRNAs have been shown to be involved in different human cancers. We therefore have performed expression profiles on a panel of pediatric tumors to identify cancer-specific microRNAs. We also investigated if microRNAs are co-regulated with their host gene.
Experimental Design
We performed parallel microRNAs and mRNA expression profiling on 57 tumor xenografts and cell lines representing 10 different pediatric solid tumors using microarrays. For those microRNAs that map to their host mRNA, we calculated correlations between them.
Results
We found that the majority of cancer types clustered together based on their global microRNA expression profiles by unsupervised hierarchical clustering. Fourteen microRNAs were significantly differentially expressed between rhabdomyosarcoma and neuroblastoma, and 8 of them were validated in independent patient tumor samples. Exploration of the expression of microRNAs in relationship with their host genes demonstrated that the expression for 43 (63%) of 68 microRNAs located inside known coding genes were significantly correlated with that of their host genes. Among these 43 microRNAs, 5 out of 7 microRNAs in the OncomiR-1 cluster correlated significantly with their host gene MIRHG1 (P<0.01). In addition, high expression of MIRHG1 was significantly associated with high stage and MYCN-amplification in neuroblastoma tumors; and the expression level of MIRHG1 could predict the outcome of neuroblastoma patients independently from the current neuroblastoma risk-stratification in two independent patient cohorts.
Conclusion
Pediatric cancers express cancer-specific microRNAs. The high expression of the OncomiR-1 host gene MIRHG1 correlates with poor outcome for patients with neuroblastoma, indicating important oncogenic functions of this microRNA cluster in neuroblastoma biology.
doi:10.1158/1078-0432.CCR-08-3287
PMCID: PMC2737097  PMID: 19706822
microRNA; gene expression profiling; microarray; pediatric cancer; neuroblastoma; cancer classification; OncomiR-1; MIRHG1; prognosis
5.  MicroRNAs in cancer treatment and prognosis 
Disturbances in microRNA expression by epigenetic alterations and mutations may promote not only tumorigenesis but also tumor aggressiveness, invasion, metastasis, and resistance to chemotherapy and radiotherapy. Several studies have profiled microRNA expression in normal and tumorigenic tissues, demonstrating a unique microRNA signature, which can be used as a marker for cancer diagnosis and prognosis. This review discusses the importance of microRNAs as regulatory biomolecules involved in cancer, focusing on microRNAs related to cancer invasion, metastasis, epigenetic alterations, chemoresistance, and radioresistance. The identification of both differentially expressed microRNAs in tumors and their target genes provides new tools for gene therapy; the re-expression of microRNAs silenced by cancer development or the silencing of oncogenic microRNAs can be effective in the blockade of cancer-related cell proliferation.
PMCID: PMC3410578  PMID: 22860232
MicroRNA; epigenetic modifications; metastasis; chemotherapy; radiotherapy
6.  MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival 
Biology Direct  2011;6:23.
Background
MicroRNAs are small RNA species that regulate gene expression post-transcriptionally and are aberrantly expressed in many cancers including hematological malignancies. However, the role of microRNAs in the pathogenesis of multiple myeloma (MM) is only poorly understood. We therefore used microarray analysis to elucidate the complete miRNome (miRBase version 13.0) of purified tumor (CD138+) cells from 33 patients with MM, 5 patients with monoclonal gammopathy of undetermined significance (MGUS) and 9 controls.
Results
Unsupervised cluster analysis revealed that MM and MGUS samples have a distinct microRNA expression profile from control CD138+ cells. The majority of microRNAs aberrantly expressed in MM (109/129) were up-regulated. A comparison of these microRNAs with those aberrantly expressed in other B-cell and T-cell malignancies revealed a surprising degree of similarity (~40%) suggesting the existence of a common lymphoma microRNA signature. We identified 39 microRNAs associated with the pre-malignant condition MGUS. Twenty-three (59%) of these were also aberrantly expressed in MM suggesting common microRNA expression events in MM progression. MM is characterized by multiple chromosomal abnormalities of varying prognostic significance. We identified specific microRNA signatures associated with the most common IgH translocations (t(4;14) and t(11;14)) and del(13q). Expression levels of these microRNAs were distinct between the genetic subtypes (by cluster analysis) and correctly predicted these abnormalities in > 85% of cases using the support vector machine algorithm. Additionally, we identified microRNAs associated with light chain only myeloma, as well as IgG and IgA-type MM. Finally, we identified 32 microRNAs associated with event-free survival (EFS) in MM, ten of which were significant by univariate (logrank) survival analysis.
Conclusions
In summary, this work has identified aberrantly expressed microRNAs associated with the diagnosis, pathogenesis and prognosis of MM, data which will prove an invaluable resource for understanding the role of microRNAs in this devastating disease.
Reviewers
This article was reviewed by Prof. Neil Smalheiser, Prof. Yuriy Gusev, and an unknown reviewer.
doi:10.1186/1745-6150-6-23
PMCID: PMC3120802  PMID: 21592325
7.  MicroRNA profiling of tacrolimus-stimulated Jurkat human T lympocytes 
Purpose
This study investigated the Jurkat T cell line expresses cytotoxicity when treated with different concentrations of FK506, and analyzed the expression pattern of microRNA when stimulated by FK506 using the microRNAs microarray, as well as the expression pattern of a gene that is related to the differentiation, activation and proliferation of T cells after being affected by the change of microRNAs.
Methods
To investigate the effects of FK506 on microRNA expression, we purified total RNA of Jurkat cells treated with 20 µM FK506 for 72 hours and used to analyze microRNA profiling by using Agilent's chip.
Results
These results demonstrated that treatment with FK506 markedly induced the down-regulation of 20 microRNAs as well as the up-regulation of 20 microRNAs in a time-dependent manner. The genes that down-regulated by FK506 include let-7a*, miR-20a*, and miR-487a. Otherwise miR-202, miR-485-5p, and miR-518c* are gradually up-regulated in expression. Sanger Institute and DAVIDs bioinformatics indicated that microRNAs regulated the several transcriptomes including nuclear factor of activated T cell-related, T cell receptor/interleukin-2 signaling, and Ca2+-calmodulin-dependent phosphatase calcineurin pathways.
Conclusion
As a result of treating FK506 to a Jurkat cell line and running the microRNA microarray, it was found that FK506 not only took part in the suppression of T cell proliferation/activation by inhibiting calcineurin in Jurkat apoptosis, but also affected the microRNAs that are involved in the regulation of various signal transduction pathways.
doi:10.4174/jkss.2013.85.4.161
PMCID: PMC3791358  PMID: 24106682
Tacrolimus; MicroRNAs; Jurkat T lymphocyte
8.  Large-Scale Identification of MicroRNA Targets in Murine Dgcr8-Deficient Embryonic Stem Cell Lines 
PLoS ONE  2012;7(8):e41762.
Small RNAs such as microRNAs play important roles in embryonic stem cell maintenance and differentiation. A broad range of microRNAs is expressed in embryonic stem cells while only a fraction of their targets have been identified. We have performed large-scale identification of embryonic stem cell microRNA targets using a murine embryonic stem cell line deficient in the expression of Dgcr8. These cells are heavily depleted for microRNAs, allowing us to reintroduce specific microRNA duplexes and identify refined target sets. We used deep sequencing of small RNAs, mRNA expression profiling and bioinformatics analysis of microRNA seed matches in 3′ UTRs to identify target transcripts. Consequently, we have identified a network of microRNAs that converge on the regulation of several important cellular pathways. Additionally, our experiments have revealed a novel candidate for Dgcr8-independent microRNA genesis and highlighted the challenges currently facing miRNA annotation.
doi:10.1371/journal.pone.0041762
PMCID: PMC3422281  PMID: 22912678
9.  Evaluation of microRNA expression profiles and their associations with risk alleles in lymphoblastoid cell lines of familial ovarian cancer 
Carcinogenesis  2012;33(3):604-612.
Interindividual variations of microRNA expression are likely to influence the expression of microRNA target genes and, therefore, contribute to phenotypic differences in humans, including cancer susceptibility. Whether microRNA expression variation has any role in ovarian cancer development is still unknown. Here, we evaluated microRNA expression profiles in lymphoblastoid cell lines from 74 women with familial ovarian cancer and 47 unrelated controls matched on gender and race. We found that the cases and unrelated controls can be clustered using 95 differentially expressed microRNAs with 91% accuracy. To assess the potential implications of microRNAs in ovarian cancer, we investigated the associations between microRNA expression and seven ovarian cancer risk variants discovered from genome-wide association studies (GWAS), namely, rs3814113 on 9p22.2, rs2072590 on 2q31, rs2665390 on 3q25, rs10088218, rs1516982, rs10098821 on 8q24.21 and rs2363956 on 19p13. We observed 130 significant associations at a permutation level of 0.01. Compared with other risk variants, rs3814113 and rs2072590 had the greatest number of significant associations (68 and 37, respectively). Interestingly, 14 microRNAs that were associated with ovarian cancer risk alleles belong to five microRNA clusters. The most notable cluster is the tumorigenic miR-17-92 cluster with five microRNAs, all of which are significantly associated with rs3814113. Using pathway analysis, several key biological pathways were significantly overrepresented, such as cellular response to stress (P = 2.87 × 10−06), etc. Further characterization of significant associations between microRNAs and risk alleles could facilitate the understanding of the functions of these GWAS discovered risk alleles in the genetic etiology of ovarian cancer.
doi:10.1093/carcin/bgs008
PMCID: PMC3291866  PMID: 22235027
10.  MicroRNA expression profiles in human cancer cells after ionizing radiation 
Introduction
MicroRNAs are regulators of central cellular processes and are implicated in the pathogenesis and prognosis of human cancers. MicroRNAs also modulate responses to anti-cancer therapy. In the context of radiation oncology microRNAs were found to modulate cell death and proliferation after irradiation. However, changes in microRNA expression profiles in response to irradiation have not been comprehensively analyzed so far. The present study's intend is to present a broad screen of changes in microRNA expression following irradiation of different malignant cell lines.
Materials and methods
1100 microRNAs (Sanger miRBase release version 14.0) were analyzed in six malignant cell lines following irradiation with clinically relevant doses of 2.0 Gy. MicroRNA levels 6 hours after irradiation were compared to microRNA levels in non-irradiated cells using the "Geniom Biochip MPEA homo sapiens".
Results
Hierarchical clustering analysis revealed a pattern, which significantly (p = 0.014) discerned irradiated from non-irradiated cells. The expression levels of a number of microRNAs known to be involved in the regulation of cellular processes like apoptosis, proliferation, invasion, local immune response and radioresistance (e. g. miR-1285, miR-24-1, miR-151-5p, let-7i) displayed 2 - 3-fold changes after irradiation. Moreover, several microRNAs previously not known to be radiation-responsive were discovered.
Conclusion
Ionizing radiation induced significant changes in microRNA expression profiles in 3 glioma and 3 squamous cell carcinoma cell lines. The functional relevance of these changes is not addressed but should by analyzed by future work especially focusing on clinically relevant endpoints like radiation induced cell death, proliferation, migration and metastasis.
doi:10.1186/1748-717X-6-29
PMCID: PMC3079656  PMID: 21453501
11.  The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells 
Oncology reports  2011;27(1):10-16.
The development of drug resistance represents a major complication in the effective treatment of breast cancer. Epigenetic therapy, through the use of histone deacetylase inhibitors (HDACi) or demethylation agents, is an emerging area of therapeutic targeting in a number of ontological entities, particularly in the setting of aggressive therapy-resistant disease. Using the well-described HDAC inhibitor trichostatin A (TSA) we demonstrate the suppression of in vitro clonogenicity in the previously described apoptosis-resistant MCF-7TN-R breast carcinoma cell line. Additionally, recent work has demonstrated that these agents can alter the expression profile of microRNA signatures in malignant cells. Using an unbiased microRNA microarray analysis, changes in miRNA expression of MCF-7TN-R cells treated with TSA for 24 h were analyzed. We observed significant up-regulation of 22 miRNAs and down-regulation of 10 miRNAs in response to TSA treatment. Our results demonstrate that the HDACi, TSA, exerts anticancer activity in the apoptosis-resistant MCF-7TN-R breast carcinoma cell line. This activity is correlated with TSA alteration of microRNA expression profiles indicative of a less aggressive phenotype.
doi:10.3892/or.2011.1488
PMCID: PMC3982613  PMID: 21971930
microRNA; trichostatin A; histone deacetylase; MCF-7; breast cancer; drug resistance
12.  An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells 
BMC Genomics  2012;13:732.
Background
A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs) into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines) from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity.
Results
Based on the integrative network, we extracted “substructures” (network clusters) representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells) compared to drug sensitive state (parental MCF7 cells). We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222.
Conclusions
By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In addition, new miRNA clusters that contribute to antiestrogen resistance were identified, and they warrant further investigation.
doi:10.1186/1471-2164-13-732
PMCID: PMC3560207  PMID: 23270413
Bioinformatics; miRNA; Network; Breast cancer; Antiestrogen resistance
13.  Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a 
In recent years, the study of microRNAs associated with neoplastic processes has increased. Patterns of microRNA expression in different cell lines and different kinds of tumors have been identified; however, little is known about the alterations in regulatory pathways and genes involved in aberrant set of microRNAs. The identification of these altered microRNAs in several cervical cancer cells and potentially deregulated pathways involved constitute the principal goals of the present study. In the present work, the expression profiles of cellular microRNAs in Cervical Cancer tissues and cell lines were explored using microRNA microarray, Affymetrix. The most over-expressed was miR-196a, which was evaluated by real time PCR, and HOXC8 protein as potential target by immunohistochemistry assay. One hundred and twenty three human microRNAs differentially expressed in the cell tumor, 64 (52%) over-expressed and 59 (48%) under-expressed were observed. Among the microRNAs over-expressed, we focused on miR-196a; at present this microRNA is poorly studied in CC. The expression of this microRNA was evaluated by qRT-PCR, and HOXC8 by immunohistochemistry assay. There is not a specific microRNA expression profile in the CC cells, neither a microRNA related to HPV presence. Furthermore, the miR-196a was over-expressed, while an absence of HOXC8 expression was observed. We suggest that miR-196a could be played as oncomiR in CC.
PMCID: PMC4014219  PMID: 24817935
Cervical cancer; microRNAs; miR-196a; HOXC8
14.  MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation 
BMC Cancer  2013;13:533.
Background
Current evidence implicates aberrant microRNA expression patterns in human malignancies; measurement of microRNA expression may have diagnostic and prognostic applications. Roles for microRNAs in head and neck squamous cell carcinomas (HNSCC) are largely unknown. HNSCC, a smoking-related cancer, is one of the most common malignancies worldwide but reliable diagnostic and prognostic markers have not been discovered so far. Some studies have evaluated the potential use of microRNA as biomarkers with clinical application in HNSCC.
Methods
MicroRNA expression profile of oral squamous cell carcinoma samples was determined by means of DNA microarrays. We also performed gain-of-function assays for two differentially expressed microRNA using two squamous cell carcinoma cell lines and normal oral keratinocytes. The effect of the over-expression of these molecules was evaluated by means of global gene expression profiling and cell proliferation assessment.
Results
Altered microRNA expression was detected for a total of 72 microRNAs. Among these we found well studied molecules, such as the miR-17-92 cluster, comprising potent oncogenic microRNA, and miR-34, recently found to interact with p53. HOX-cluster embedded miR-196a/b and miR-10b were up- and down-regulated, respectively, in tumor samples. Since validated HOX gene targets for these microRNAs are not consistently deregulated in HNSCC, we performed gain-of-function experiments, in an attempt to outline their possible role. Our results suggest that both molecules interfere in cell proliferation through distinct processes, possibly targeting a small set of genes involved in cell cycle progression.
Conclusions
Functional data on miRNAs in HNSCC is still scarce. Our data corroborate current literature and brings new insights into the role of microRNAs in HNSCC. We also show that miR-196a and miR-10b, not previously associated with HNSCC, may play an oncogenic role in this disease through the deregulation of cell proliferation. The study of microRNA alterations in HNSCC is an essential step to the mechanistic understanding of tumor formation and could lead to the discovery of clinically relevant biomarkers.
doi:10.1186/1471-2407-13-533
PMCID: PMC3826519  PMID: 24209638
15.  Functional implications of microRNAs in acute myeloid leukemia by integrating microRNA and mRNA expression profiling 
Cancer  2011;117(20):4696-4706.
Background
MicroRNAs expression is deregulated in acute myeloid leukemia, but the corresponding functional microRNA-controlled pathways are poorly understood. Integration of mRNA and microRNA expression profiling may allow the identification of functional links between the whole transcriptome and microRNome that are involved in myeloid leukemogenesis.
Methods
Therefore, here we integrated microRNA and mRNA expression profiles obtained from 48 newly diagnosed acute myeloid leukemia patients by using two different microarray platforms and performed correlation, gene ontology and network analysis. Experimental validation was also performed in acute myeloid leukemia cell lines using microRNA mimics oligonucleotides and functional assays.
Results
Our analysis identified a strong positive correlation of HOX related genes with miR-10 and miR-20a. Furthermore, we observed a negative correlation between miR-181a and -181b, -155 and -146 expression with that of genes involved in immunity and inflammation (e.g. IRF7 and TLR4) and a positive correlation between miR-23a, miR-26a, miR-128a and miR-145 expression with that of pro-apoptotic genes (e.g., BIM and PTEN). These correlations were confirmed by gene ontology analyses, which evidenced the enrichment of members of the homeobox, immunity and inflammation and apoptosis biologic process, respectively. Furthermore, we validated experimentally the association of miR-145, miR-26a and miR-128a with apoptosis in acute myeloid leukemia.
Conclusions
Our results indicate that by integrating the transcriptome and microRNome in acute myeloid leukemia cells is possible to identify previously unidentified putative functional microRNA-mRNA interactions in acute myeloid leukemia.
doi:10.1002/cncr.26096
PMCID: PMC3154970  PMID: 21455993
microRNA; networks; AML; microarrays
16.  Genome-Wide Analysis of miRNA Signature Differentially Expressed in Doxorubicin-Resistant and Parental Human Hepatocellular Carcinoma Cell Lines 
PLoS ONE  2013;8(1):e54111.
Chemotherapy regiments have been widely used in the treatment of a variety of human malignancies including hepatocellular carcinoma (HCC). A major cause of failure in chemotherapy is drug resistance of cancer cells. Resistance to doxorubicin (DOX) is a common and representative obstacle to treat cancer effectively. Individual microRNA (miRNA) has been introduced in the evolution of DOX resistance in HCC in recent studies. However, a global and systematic assessment of the miRNA expression profiles contributing to DOX resistance is still lacking. In the present study, we applied high-throughput Illumina sequencing to comprehensively characterize miRNA expression profiles in both human HCC cell line (HepG2) and its DOX-resistant counterpart (HepG2/DOX). A total of 269 known miRNAs were significantly differentially expressed, of which 23 were up-regulated and 246 were down-regulated in HepG2/DOX cells, indicating that part of them might be involved in the development of DOX resistance. In addition, we have identified 9 and 13 novel miRNAs up- and down-expressed significantly in HepG2/DOX cells, respectively. miRNA profiling was then validated by quantitative real-time PCR for selected miRNAs, including 22 known miRNAs and 6 novel miRNAs. Furthermore, we predicted the putative target genes for the deregulated miRNAs in the samples. Function annotation implied that these selected miRNAs affected many target genes mainly involved in MAPK signaling pathway. This study provides us a general description of miRNA expression profiling, which is helpful to find potential miRNAs for adjunct treatment to overcome DOX resistance in future HCC chemotherapy.
doi:10.1371/journal.pone.0054111
PMCID: PMC3554743  PMID: 23359607
17.  Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer 
BMC Cancer  2012;12:627.
Background
There is a critical need for improved diagnostic markers for high grade serous epithelial ovarian cancer (SEOC). MicroRNAs are stable in the circulation and may have utility as biomarkers of malignancy. We investigated whether levels of serum microRNA could discriminate women with high-grade SEOC from age matched healthy volunteers.
Methods
To identify microRNA of interest, microRNA expression profiling was performed on 4 SEOC cell lines and normal human ovarian surface epithelial cells. Total RNA was extracted from 500 μL aliquots of serum collected from patients with SEOC (n = 28) and age-matched healthy donors (n = 28). Serum microRNA levels were assessed by quantitative RT-PCR following preamplification.
Results
microRNA (miR)-182, miR-200a, miR-200b and miR-200c were highly overexpressed in the SEOC cell lines relative to normal human ovarian surface epithelial cells and were assessed in RNA extracted from serum as candidate biomarkers. miR-103, miR-92a and miR -638 had relatively invariant expression across all ovarian cell lines, and with small-nucleolar C/D box 48 (RNU48) were assessed in RNA extracted from serum as candidate endogenous normalizers. No correlation between serum levels and age were observed (age range 30-79 years) for any of these microRNA or RNU48. Individually, miR-200a, miR-200b and miR-200c normalized to serum volume and miR-103 were significantly higher in serum of the SEOC cohort (P < 0.05; 0.05; 0.0005 respectively) and in combination, miR-200b + miR-200c normalized to serum volume and miR-103 was the best predictive classifier of SEOC (ROC-AUC = 0.784). This predictive model (miR-200b + miR-200c) was further confirmed by leave one out cross validation (AUC = 0.784).
Conclusions
We identified serum microRNAs able to discriminate patients with high grade SEOC from age-matched healthy controls. The addition of these microRNAs to current testing regimes may improve diagnosis for women with SEOC.
doi:10.1186/1471-2407-12-627
PMCID: PMC3542279  PMID: 23272653
Biomarker; Serum microRNA; miR-200; miR-103; Serous ovarian cancer
18.  miRGen 2.0: a database of microRNA genomic information and regulation 
Nucleic Acids Research  2009;38(Database issue):D137-D141.
MicroRNAs are small, non-protein coding RNA molecules known to regulate the expression of genes by binding to the 3′UTR region of mRNAs. MicroRNAs are produced from longer transcripts which can code for more than one mature miRNAs. miRGen 2.0 is a database that aims to provide comprehensive information about the position of human and mouse microRNA coding transcripts and their regulation by transcription factors, including a unique compilation of both predicted and experimentally supported data. Expression profiles of microRNAs in several tissues and cell lines, single nucleotide polymorphism locations, microRNA target prediction on protein coding genes and mapping of miRNA targets of co-regulated miRNAs on biological pathways are also integrated into the database and user interface. The miRGen database will be continuously maintained and freely available at http://www.microrna.gr/mirgen/.
doi:10.1093/nar/gkp888
PMCID: PMC2808909  PMID: 19850714
19.  An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma 
BMC Medical Genomics  2008;1:37.
Background
The role of microRNAs (miRNAs) in multiple myeloma (MM) has yet to be fully elucidated. To identify miRNAs that are potentially deregulated in MM, we investigated those mapping within transcription units, based on evidence that intronic miRNAs are frequently coexpressed with their host genes. To this end, we monitored host transcript expression values in a panel of 20 human MM cell lines (HMCLs) and focused on transcripts whose expression varied significantly across the dataset.
Methods
miRNA expression was quantified by Quantitative Real-Time PCR. Gene expression and genome profiling data were generated on Affymetrix oligonucleotide microarrays. Significant Analysis of Microarrays algorithm was used to investigate differentially expressed transcripts. Conventional statistics were used to test correlations for significance. Public libraries were queried to predict putative miRNA targets.
Results
We identified transcripts specific to six miRNA host genes (CCPG1, GULP1, EVL, TACSTD1, MEST, and TNIK) whose average changes in expression varied at least 2-fold from the mean of the examined dataset. We evaluated the expression levels of the corresponding intronic miRNAs and identified a significant correlation between the expression levels of MEST, EVL, and GULP1 and those of the corresponding miRNAs miR-335, miR-342-3p, and miR-561, respectively. Genome-wide profiling of the 20 HMCLs indicated that the increased expression of the three host genes and their corresponding intronic miRNAs was not correlated with local copy number variations. Notably, miRNAs and their host genes were overexpressed in a fraction of primary tumors with respect to normal plasma cells; however, this finding was not correlated with known molecular myeloma groups. The predicted putative miRNA targets and the transcriptional profiles associated with the primary tumors suggest that MEST/miR-335 and EVL/miR-342-3p may play a role in plasma cell homing and/or interactions with the bone marrow microenvironment.
Conclusion
Our data support the idea that intronic miRNAs and their host genes are regulated dependently, and may contribute to the understanding of their biological roles in cancer. To our knowledge, this is the first evidence of deregulated miRNA expression in MM, providing insights that may lead to the identification of new biomarkers and altered molecular pathways of the disease.
doi:10.1186/1755-8794-1-37
PMCID: PMC2531129  PMID: 18700954
20.  Role for MicroRNAs in Regulating Glucocorticoid Response and Resistance in Multiple Myeloma 
Hormones & cancer  2011;2(3):182-189.
Glucocorticoids (GCs) are widely used in the treatment of hematological malignancies such as multiple myeloma. However, the development of resistance to GCs limits their clinical utility. Response to GCs is dependent on an active glucocorticoid receptor, GR-α, expressed at wild-type levels in the GC-sensitive cell line (MM.1S). GC-resistant derivative cell lines MM.1Re and MM.1RL display significant downregulation of GR-α transcripts. In this study, we report that a luciferase reporter containing the 3′-UTR of GR-α is significantly repressed in MM.1R cells when compared to MM.1S cells, suggesting that one or several microRNAs that are upregulated in MM.1R maybe in part responsible for the downregulation of the GR-α transcript. To examine posttranscriptional mechanisms of GR regulation, we examined miRNAs that have complimentary binding sites in the 3′-UTR of GR-α and found miR-130b, miR-181a, and miR-636 to be differentially expressed between GC-sensitive and GC-resistant MM.1 cell lines. Overexpression of miR-130b in MM.1S cells results in decreased expression of endogenous GR protein and decreased activity of the luciferase reporter. In addition, in MM.1S cells, the downstream GC response of glucocorticoid-induced leucine zipper induction is decreased by the overexpression of miR-130b, and further miR-130b inhibits GC-induced apoptosis and causes resistance to GCs.
doi:10.1007/s12672-011-0072-8
PMCID: PMC3725966  PMID: 21761344
Multiple myeloma; MicroRNA; Glucocorticoids; Glucocorticoid receptor; Glucocorticoid resistance
21.  Friend or foe: the role of microRNA in chemotherapy resistance 
Acta Pharmacologica Sinica  2013;34(7):870-879.
Chemotherapy has been widely used in treating cancer patients. Despite the tremendous progress in cancer treatment achieved during the last decades, drug resistance still accounts for most of the tumor relapses in chemotherapy-treated patients. Emerging evidence shows that microRNAs play an important role in regulating the drug sensitivity of tumor cells. However, the mechanism of microRNA-mediated drug resistance is not fully understood. Current data suggest that microRNAs can be categorized as oncogenic or tumor-suppressive based on their functions and targets. In tumor cells undergoing drug treatment, microRNAs can function either by decreasing expression of genes associated with multiple drug resistance or by promoting escape from apoptosis and inducing tumor stem cell development. This review aims to provide an updated understanding of the role of microRNAs in regulating chemotherapy resistance and a discussion of potential therapeutic applications.
doi:10.1038/aps.2013.35
PMCID: PMC3703710  PMID: 23624759
cancer; chemotherapy; miRNA; stem cell; miR-17; stress response; drug resistance
22.  Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties 
Scientific Reports  2013;3:2687.
The epithelial-mesenchymal transition (EMT) imparts metastatic competence on otherwise non-metastatic cancer cells through decreased inter-cellular adhesions, increased migratory capacity, stem cell properties and anoikis and chemotherapy resistance. In this study, we profiled changes in microRNA expression during EMT in conjunction with changes in DNA methylation at microRNA promoters to discover essential mediators of EMT-imparted stemness properties. MicroRNA-203 (miR-203) expression is repressed following EMT induced by multiple different stimuli and in established claudin-low cell lines as well as the CD44hi/CD24lo stem cell-enriched fraction. Expression of miR-203 in mesenchymal cells compromises migratory and invasive capacity in vitro, and tumor initiation and metastasis in vivo. Unexpectedly, miR-203 expression affects the sphere-forming capacity of neighboring cells by indirectly enhancing expression of DKK1, a secreted inhibitor of Wnt signaling and stemness resulting in suppression of β-catenin protein levels. Our data suggest that restoring miR-203 expression levels may inhibit metastasis and combat deregulated Wnt signaling.
doi:10.1038/srep02687
PMCID: PMC3776231  PMID: 24045437
23.  Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism 
Scientific Abstract
To assess the feasibility and relevance of using lymphoblastoid cell lines to study the role of noncoding RNAs in the etiology of autism, we evaluated global expression profiling of 470 mature human microRNAs from 6 subjects with autism compared with 6 matched controls. Differential expression (either higher or lower) for 9 of the 470 microRNAs was observed in our autism samples compared with controls. Potential target genes for these microRNAs were identified using computer tools which included several autism susceptibility genes. Our preliminary results indicate microRNAs should be considered and evaluated in the etiology of autism. In addition, analysis of this class of noncoding RNAs in lymphoblastoid cells has the potential to reveal at least a subset of brain-related microRNAs implicated in autism. Subsequently, this model system should allow for detection of complex subtle changes in susceptibility genes/pathways contributing to autism.
doi:10.1002/aur.33
PMCID: PMC2768334  PMID: 19360674
microRNA; autism; lymphoblastoid cell lines; differential expression
24.  Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma 
Oral oncology  2012;48(8):686-691.
Objectives
MicroRNA deregulation is a critical event in head and neck squamous cell carcinoma (HNSCC). Several microRNA profiling studies aimed at deciphering the microRNA signatures of HNSCC have been reported, but there tends to be poor agreement among studies. The objective of this study was to survey the published microRNA profiling studies on HNSCC, and to assess the commonly deregulated microRNAs in an independent sample set.
Materials and Methods
Meta-analysis of 13 published microRNA profiling studies was performed to define microRNA signatures in HNSCC. Selected microRNAs (including members of miR-99 family) were evaluated in an independent set of HNSCC cases. The potential contributions of miR-99 family to the tumorigenesis of HNSCC were assessed by in vitro assays.
Results
We identified 67 commonly deregulated microRNAs. The up-regulation of miR-21, miR-155, miR-130b, miR-223 and miR-31, and the down-regulation of miR-100, miR-99a and miR-375 were further validated in an independent set of HNSCC cases with quantitative RT-PCR. Among these validated microRNAs, miR-100 and miR-99a belong to the miR-99 family. Our in vitro study demonstrated that restoration of miR-100 to the HNSCC cell lines suppressed cell proliferation and migration, and enhanced apoptosis. Furthermore, ectopic transfection of miR-99 family members down-regulated the expression of insulin-like growth factor 1 receptor (IGF1R) and mechanistic target of rapamycin (mTOR) genes.
Conclusion
In summary, we described a panel of frequently deregulated microRNAs in HNSCC, including members of miR-99 family. The deregulation of miR-99 family contributes to the tumorigenesis of HNSCC, in part by targeting IGF1R and mTOR signaling pathways.
doi:10.1016/j.oraloncology.2012.02.020
PMCID: PMC3380146  PMID: 22425712
meta-analysis; HNSCC; microRNA profiling; miR-99 family; miR-100; IGF1R; mTOR; tumor suppressor
25.  Expression profiling identifies microRNA signature in pancreatic cancer 
microRNAs are functional, 22 nt, noncoding RNAs that negatively regulate gene expression. Disturbance of microRNA expression may play a role in the initiation and progression of certain diseases. A microRNA expression signature has been identified that is associated with pancreatic cancer. This has been accomplished with the application of real-time PCR profiling of over 200 microRNA precursors on specimens of human pancreatic adenocarcinoma, paired benign tissue, normal pancreas, chronic pancreatitis and nine pancreatic cancer cell lines. Hierarchical clustering was able to distinguish tumor from normal pancreas, pancreatitis and cell lines. The PAM algorithm correctly classified 28 of 28 tumors, 6 of 6 normal pancreas and 11 of 15 adjacent benign tissues. One hundred micro-RNA precursors were aberrantly expressed in pancreatic cancer or desmoplasia (p < 0.01), including microRNAs previously reported as differentially expressed in other human cancers (miR-155, miR-21, miR-221 and miR-222) as well as those not previously reported in cancer (miR-376a and miR-301). Most of the top aberrantly expressed miRNAs displayed increased expression in the tumor. Expression of the active, mature microRNA was validated using a real-time PCR assay to quantify the mature microRNA and Northern blotting. Reverse transcription in situ PCR showed that three of the top differentially expressed miRNAs (miR-221, -376a and -301) were localized to tumor cells and not to stroma or normal acini or ducts. Aberrant microRNA expression may offer new clues to pancreatic tumorigenesis and may provide diagnostic biomarkers for pancreatic adenocarcinoma.
doi:10.1002/ijc.22394
PMCID: PMC2680248  PMID: 17149698
cancer; noncoding RNA; gene expression; real-time PCR

Results 1-25 (625748)