Search tips
Search criteria

Results 1-25 (1173583)

Clipboard (0)

Related Articles

1.  Autophagy switches to apoptosis in prostate cancer cells infected with melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) 
Autophagy  2011;7(9):1076-1077.
MDA-7/IL-24 has noteworthy potential as an anticancer therapeutic because of its diversity of antitumor properties, its lack of toxicity toward normal cells and tissues, and its safety and efficacy as evidenced in a phase I clinical trial. In a recent study, we document that Ad.mda-7-induced ER stress and ceramide production leads to early autophagy that subsequently switches to apoptosis in human prostate cancer cells. During the apoptotic phase, the MDA-7/IL-24 protein physically interacts with Beclin 1 and this interaction might inhibit Beclin 1 function culminating in apoptosis. Conversely, Ad.mda-7 infection leads to calpain-mediated cleavage of the Atg5 protein that might also facilitate a biochemical switch from autophagy to apoptosis. Our recent paper reveals novel aspects of the interplay between autophagy and apoptosis that underlie the cytotoxic action of MDA-7/IL-24 in prostate cancer cells. These new insights into MDA-7/IL-24 action provide intriguing leads for developing innovative combinatorial approaches for prostate cancer therapy.
PMCID: PMC3210317  PMID: 21610321
mda-7/IL-24; protective autophagy; apoptosis; Beclin 1; Atg5
2.  mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer 
Journal of Cellular Physiology  2012;227(5):1805-1813.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G2/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.
PMCID: PMC3228882  PMID: 21732348
MDA-7/IL-24; soluble clusterin; nuclear clusterin; G2/M arrest; apoptosis
3.  OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins 
Cancer biology & therapy  2010;9(7):526-536.
The present studies focused on determining whether the autophagy-inducing drug OSU-03012 (AR-12) could enhance the toxicity of recombinant adenoviral delivery of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) in glioblastoma multiforme (GBM) cells. The toxicity of a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7) was enhanced by OSU-03012 in a diverse panel of primary human GBM cells. The enhanced toxicity correlated with reduced ERK1/2 phosphorylation and expression of MCL-1 and BCL-XL, and was blocked by molecular activation of ERK1/2 and by inhibition of the intrinsic, but not the extrinsic, apoptosis pathway. Both OSU-03012 and expression of MDA-7/IL-24 increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) that correlated with increased levels of autophagy and expression of dominant negative PERK blocked autophagy induction and tumor cell death. Knockdown of ATG5 or Beclin1 suppressed OSU-03012 enhanced MDA-7/IL-24-induced autophagy and blocked the lethal interaction between the two agents. Ad.mda-7-infected GBM cells secreted MDA-7/IL-24 into the growth media and this conditioned media induced expression of MDA-7/IL-24 in uninfected GBM cells. OSU-03012 interacted with conditioned media to kill GBM cells and knockdown of MDA-7/IL-24 in these cells suppressed tumor cell killing. Collectively, our data demonstrate that the induction of autophagy and mitochondrial dysfunction by a combinatorial treatment approach represents a potentially viable strategy to kill primary human GBM cells.
PMCID: PMC2888700  PMID: 20107314
ROS; caspase; ER stress; CD95; cell death
4.  Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24 
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent “bystander” activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival.
PMCID: PMC4334374  PMID: 23720015
MDA-7/IL-24; apoptosis; Wnt signaling; cancer-initiating/stem cells; breast cancer
5.  PERK–Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24–Induced Killing of Primary Human Glioblastoma Multiforme Cells 
Cancer research  2010;70(3):1120-1129.
Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R–like endoplasmic reticulum kinase (PERK), Ca++ elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca++ induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7–killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca2+, and ROS, which in turn promote glioma cell autophagy and cell death.
PMCID: PMC2890071  PMID: 20103619
6.  Secretable Chaperone Grp170 Enhances Therapeutic Activity of a Novel Tumor Suppressor Mda-7/IL-24 
Cancer research  2008;68(10):3890-3898.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a cancer-specific, apoptosis-inducing gene with broad-spectrum antitumor activity, making it an ideal candidate for a novel cancer gene therapy. A systemic and sustained antitumor immune response generated at the time of initial molecular-targeted therapy would provide additional clinical benefits in cancer patients, resulting in improved prevention of tumor recurrence. In this study, we explored the therapeutic efficacy of intratumoral delivery of a nonreplicating adenoviral vectors encoding mda-7/IL-24 (Ad.mda-7) and a secretable form of endoplasmic reticulum resident chaperone grp170 (Ad.sgrp170), a potent immunostimulatory adjuvant and antigen carrier. Intratumoral administration of Ad.mda-7 in combination with Ad.sgrp170 was more effective in controlling growth of TRAMP-C2 prostate tumor as compared to either Ad.mda-7 or Ad.sgrp170 treatment. Generation of systemic antitumor immunity was demonstrated by enhanced protection against subsequent tumor challenge and improved control of distant tumors. The combined treatments enhanced antigen and tumor-specific T-cell response as indicated by increased IFN-γ production and cytolytic activity. Antibody depletion suggests that CD8+ T-cell may be involved in the antitumor effect of the dual molecule-targeted therapies. Therefore, introducing immunostimulatory chaperone grp170 in situ strongly promotes the ‘immunogenic’ cell death when delivered to the mda-7/IL-24 induced apoptotic tumor cells, indicating that an improved anti-cancer efficacy may be achieved by concurrently targeting both tumor and immune compartments. Given multiple undefined antigens present endogenously within prostate cancer, these data provide a rationale for combining sgrp170-based vaccine strategy with mda-7/IL-24-targeted cancer therapy to induce durable systemic immunity.
PMCID: PMC3025602  PMID: 18483274
mda-7/IL-24; cancer gene therapy; stress protein; chaperone; grp170; immunity
7.  Melanoma differentiation-associated gene-7, MDA-7/IL-24, selectively induces growth suppression, apoptosis in human hepatocellular carcinoma cell line HepG2 by replication-incompetent adenovirus vector 
AIM: To investigate the effect of replication-incompetent adenovirus vector expressing MDA-7/IL-24 on tumor growth and apoptosis in human hepatocellular carcinoma (HCC) cell line HepG2 and normal liver cell line L02.
METHODS: We constructed the recombinant replication-incompetent Ad.mda-7 virus vector and infected it into the human HCC cell line HepG2 and normal liver cell line L02. RT-PCR was performed to detect the mRNA expressing in cells. by ELISA was used to detect MDA-7/IL-24 protein expression in the culture supernatant. The effect of apoptosis induced by Ad.mda-7 was confirmed by Hoechst staining and flow cytometry assay with Annexin-V and PI staining. MTT assay was used to determine growth inhibition of HepG2 cells, and cell-cycle and hypodiploidy analyses were performed by flow cytometry.
RESULTS: Recombinant replication-defective virus expressing MDA-7/IL-24 was constructed successfully. RT-PCR showed that the Ad.mda-7 could mediate the expression of the exogenous gene MDA-7/IL-24 into HepG2 and L02. The concentration of MDA-7/IL-24 protein in supernatant was 130 pg/mL and 110 pg/mL in Ad.mda-7-infected L02 and HepG2 cells, respectively. Ad.mda-7 infection obviously induced apoptosis (from 2.60±0.72% to 33.6±13.2%, P  = 0.00012) and growth suppression in HepG2 (inhibition ratio IR = 68%) and an increase in the percentage of specific cancer cell types at the G2/M phase of the cell cycle (from 6.44% to 32.29%, P < 0.01), but not in L02 cells.
CONCLUSION: These results confirm selectively induction of apoptosis and growth suppression by the mda-7/IL-24 gene with replication-incompetent adenovirus vector in human hepatocellular carcinoma cell line HepG2.
PMCID: PMC4124357  PMID: 16586551
Cancer gene therapy; Hepatocellular carcinoma (HCC); Apoptosis; Growth suppression; MDA-7/IL-24
8.  Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction 
Cancer research  2013;74(2):563-574.
Subtraction-hybridization combined with induction of cancer cell terminal differentiation in human melanoma cells identified melanoma differentiation associated gene-7 (mda-7/IL-24) and SARI (Suppressor of AP-1, induced by IFN) that display potent antitumor activity. These genes are not constitutively expressed in cancer cells and forced expression of mda-7/IL-24 (Ad.mda-7) or SARI(Ad.SARI) promotes cancer-specific cell death. Ectopic expression of mda-7/IL-24 induces SARI mRNA and protein in a panel of different cancer cells leading to cell death, without harming corresponding normal cells. Simultaneous inhibition of K-ras downstream extracellular regulated kinase 1/2 (ERK1/2) signaling in pancreatic cancer cells reverses the translational block of MDA-7/IL-24 and induces SARI expression and cell death. Using SARI-antisense-based approaches we demonstrate that SARI expression is necessary for mda-7/IL-24 antitumor effects. Secreted MDA-7/IL-24 protein induces antitumor ‘bystander’ effects by promoting its own expression. Recombinant MDA-7/IL-24 (His-MDA-7) induces SARI expression, supporting the involvement of SARI in the MDA-7/IL-24-driven autocrine loop culminating in antitumor effects. Moreover, His-MDA-7 after binding to its cognate receptors (IL-20R1/IL-20R2 or IL-22R/IL-20R2) induces intracellular signaling by phosphorylation of p38 MAPK leading to transcription of a family of growth arrest and DNA damage inducible (GADD) genes, culminating in apoptosis. Inhibition of p38 MAPK fails to induce SARI following Ad.mda-7 infection. These findings reveal the significance of the mda-7/IL-24-SARI axis in cancer-specific killing, and provide a potential strategy for treating both local and metastatic disease.
PMCID: PMC3915776  PMID: 24282278
SARI; MDA-7/IL-24; apoptosis; IL-20/IL-22 receptors
9.  Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress 
Oncotarget  2014;5(6):1526-1537.
The interplay between oxidative stress and autophagy is critical for determining the fate of cancer cells exposed to redox-active and cytotoxic chemotherapeutic agents. Mitoquinone (MitoQ), a mitochondrially-targeted redox-active ubiquinone conjugate, selectively kills breast cancer cells over healthy mammary epithelial cells. We reported previously that MitoQ, although a derivative of the antioxidant ubiquinone, can generate excess ROS and trigger the Keap1-Nrf2 antioxidant response in the MDA-MB-231 cell line. Following MitoQ treatment, a greater number of cells underwent autophagy than apoptosis. However, the relationship between MitoQ-induced oxidative stress and autophagy as a primary cellular response was unclear. In this report, we demonstrate that MitoQ induces autophagy related gene 7 (Atg7)-dependent, yet Beclin-1-independent, autophagy marked by an increase in LC3-II. Both the ATG7-deficient human MDA-MB-231 cells and Atg7-knockout mouse embryonic fibroblasts exhibited lower levels of autophagy following MitoQ treatment than their respective wild-type counterparts. Increased apoptosis was confirmed in these autophagy-deficient isogenic cell line pairs, indicating that autophagy was attempted for survival in wild type cell lines. Furthermore, we observed higher levels of ROS in Atg7-deficient cells, as measured by hydroethidine oxidation. In Atg7-deficient cells, redox-sensitive Keap1 degradation was decreased, suggesting autophagy- and Atg7-dependent degradation of Keap1. Conversely, downregulation of Keap1 decreased autophagy levels, increased Nrf2 activation, upregulated cytoprotective antioxidant gene expression, and caused accumulation of p62, suggesting a feedback loop between ROS-regulated Keap1-Nrf2 and Atg7-regulated autophagy. Our data indicate that excessive ROS causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response triggered by cytotoxic levels of MitoQ.
PMCID: PMC4039229  PMID: 24681637
autophagy; reactive oxygen species; mitoquinone; breast cancer
10.  Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation 
Autophagy  2012;8(12):1811-1821.
Although it is known that tumor necrosis factor-related apoptosis-inducing ligand (TNFSF10/TRAIL) induces autophagy, the mechanism by which autophagy is activated by TNFSF10 is still elusive. In this report, we show evidence that TRAF2- and RIPK1-mediated MAPK8/JNK activation is required for TNFSF10-induced cytoprotective autophagy. TNFSF10 activated autophagy rapidly in cancer cell lines derived from lung, bladder and prostate tumors. Blocking autophagy with either pharmacological inhibitors or siRNAs targeting the key autophagy factors BECN1/Beclin 1 or ATG7 effectively increased TNFSF10-induced apoptotic cytotoxicity, substantiating a cytoprotective role for TNFSF10-induced autophagy. Blocking MAPK8 but not NFκB effectively blocked autophagy, suggesting that MAPK8 is the main pathway for TNFSF10-induced autophagy. In addition, blocking MAPK8 effectively inhibited degradation of BCL2L1/Bcl-xL and reduction of the autophagy-suppressing BCL2L1–BECN1complex. Knockdown of TRAF2 or RIPK1 effectively suppressed TNFSF10-induced MAPK8 activation and autophagy. Furthermore, suppressing autophagy inhibited expression of antiapoptosis factors BIRC2/cIAP1, BIRC3/cIAP2, XIAP and CFLAR/c-FLIP and increased the formation of TNFSF10-induced death-inducing signaling complex (DISC). These results reveal a critical role for the MAPK8 activation pathway through TRAF2 and RIPK1 for TNFSF10-induced autophagy that blunts apoptosis in cancer cells. Thus, suppression of MAPK8-mediated autophagy could be utilized for sensitizing cancer cells to therapy with TNFSF10.
PMCID: PMC3541290  PMID: 23051914
autophagy; MAPK8/JNK; RIPK1/RIP1; TRAF2; TNFSF10/TRAIL; apoptosis
11.  The EGFR antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1α and Bcl-2 and activating the beclin-1/hVps34 complex 
Cancer research  2010;70(14):5942-5952.
Autophagy is a regulated catabolic process triggered in cells deprived of nutrients or growth factors that govern nutrient uptake. Here we report that autophagy is induced by cetuximab, a therapeutic antibody that blocks EGFR function. Cancer cell treatment with cetuximab triggered autophagosome formation, conversion of microtubule-associated protein 1 light chain 3 from its cytoplasmic to membrane-associated form, and increased acidic vesicular organelle formation. Autophagy occurred when cetuximab inhibited the class I PI3K/Akt/mTOR pathway, but not when it inhibited only the MEK/Erk pathway, and it was accompanied by decreased levels of hypoxia inducible factor-1 alpha (HIF-1α) and Bcl-2. Stable overexpression of a HIF-1α mutant prevented cetuximab-induced autophagy and decrease in Bcl-2 levels. Knockdown of autophagy regulator beclin 1 or cell treatment with autophagy inhibitor 3-methyladenine, a class III PI3K (hVps34) inhibitor, also inhibited cetuximab-induced autophagy. Furthermore, knockdown of beclin 1 or Atg7 or treatment with the lysosome inhibitor chloroquine sensitized cancer cells to cetuximab-induced apoptosis. Mechanistic analysis argued that cetuximab acted by promoting an association between beclin 1 and hVps34, which was inhibited by overexpression of Bcl-2. Our findings suggest that the autophagy protects cancer cells from the pro-apoptotic effects of cetuximab.
PMCID: PMC2933174  PMID: 20634405
cetuximab; autophagy; EGFR
12.  Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (−)-Gossypol (AT-101) 
BMC Cancer  2015;15:224.
Acquired resistance to standard chemotherapy causes treatment failure in patients with metastatic bladder cancer. Overexpression of pro-survival Bcl-2 family proteins has been associated with a poor chemotherapeutic response, suggesting that Bcl-2-targeted therapy may be a feasible strategy in patients with these tumors. The small-molecule pan-Bcl-2 inhibitor (−)-gossypol (AT-101) is known to induce apoptotic cell death, but can also induce autophagy through release of the pro-autophagic BH3 only protein Beclin-1 from Bcl-2. The potential therapeutic effects of (−)-gossypol in chemoresistant bladder cancer and the role of autophagy in this context are hitherto unknown.
Cisplatin (5637rCDDP1000, RT4rCDDP1000) and gemcitabine (5637rGEMCI20, RT4rGEMCI20) chemoresistant sub-lines of the chemo-sensitive bladder cancer cell lines 5637 and RT4 were established for the investigation of acquired resistance mechanisms. Cell lines carrying a stable lentiviral knockdown of the core autophagy regulator ATG5 were created from chemosensitive 5637 and chemoresistant 5637rGEMCI20 and 5637rCDDP1000 cell lines. Cell death and autophagy were quantified by FACS analysis of propidium iodide, Annexin and Lysotracker staining, as well as LC3 translocation.
Here we demonstrate that (−)-gossypol induces an apoptotic type of cell death in 5637 and RT4 cells which is partially inhibited by the pan-caspase inhibitor z-VAD. Cisplatin- and gemcitabine-resistant bladder cancer cells exhibit enhanced basal and drug-induced autophagosome formation and lysosomal activity which is accompanied by an attenuated apoptotic cell death after treatment with both (−)-gossypol and ABT-737, a Bcl-2 inhibitor which spares Mcl-1, in comparison to parental cells. Knockdown of ATG5 and inhibition of autophagy by 3-MA had no discernible effect on apoptotic cell death induced by (−)-gossypol and ABT-737 in parental 5637 cells, but evoked a significant increase in early apoptosis and overall cell death in BH3 mimetic-treated 5637rGEMCI20 and 5637rCDDP1000 cells.
Our findings show for the first time that (−)-gossypol concomitantly triggers apoptosis and a cytoprotective type of autophagy in bladder cancer and support the notion that enhanced autophagy may underlie the chemoresistant phenotype of these tumors. Simultaneous targeting of Bcl-2 proteins and the autophagy pathway may be an efficient new strategy to overcome their “autophagy addiction” and acquired resistance to current therapy.
PMCID: PMC4409725  PMID: 25885284
13.  The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells 
Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular apoptosis and autophagy in breast cancer cells via modulation of p38 MAPK/Akt/mTOR pathways. Further studies are warranted to further explore the molecular targets of ALS in the treatment of breast cancer.
PMCID: PMC4365748  PMID: 25834401
ALS; breast cancer; cell cycle; apoptosis; autophagy; p38 MAPK
14.  The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation 
eLife  null;4:e05289.
Autophagy is a fundamental adaptive response to amino acid starvation orchestrated by conserved gene products, the autophagy (ATG) proteins. However, the cellular cues that activate the function of ATG proteins during amino acid starvation are incompletely understood. Here we show that two related stress-responsive kinases, members of the p38 mitogen-activated protein kinase (MAPK) signaling pathway MAPKAPK2 (MK2) and MAPKAPK3 (MK3), positively regulate starvation-induced autophagy by phosphorylating an essential ATG protein, Beclin 1, at serine 90, and that this phosphorylation site is essential for the tumor suppressor function of Beclin 1. Moreover, MK2/MK3-dependent Beclin 1 phosphorylation (and starvation-induced autophagy) is blocked in vitro and in vivo by BCL2, a negative regulator of Beclin 1. Together, these findings reveal MK2/MK3 as crucial stress-responsive kinases that promote autophagy through Beclin 1 S90 phosphorylation, and identify the blockade of MK2/3-dependent Beclin 1 S90 phosphorylation as a mechanism by which BCL2 inhibits the autophagy function of Beclin 1.
eLife digest
Cells keep themselves healthy by breaking down unneeded or damaged internal structures via a process called autophagy. This process also helps a cell to survive if it is starved of nutrients. For example, if a cell does not receive enough amino acids, it cannot make new proteins. Autophagy can break down existing non-essential proteins so that their amino acids can be re-used to build other proteins that the cell needs to survive.
Autophagy is performed by a set of proteins that is found in many different species, ranging from yeast to humans and plants. How these proteins are activated when a cell is starved of amino acids is not fully understood. However, evidence suggests that activating one of these proteins, called Beclin 1, by adding phosphate groups to it controls the extent to which autophagy occurs. It is also known from previous work that less autophagy occurs when Beclin 1 binds to another protein called BCL2.
Wei, An et al. identified two enzymes that attach a phosphate group to a specific site on Beclin 1 to activate it, and revealed that autophagy is defective in cells that lack these enzymes. Furthermore, Wei, An et al. found the BCL2 protein prevents autophagy by binding to Beclin 1 in such a way that stops these two enzymes from activating Beclin 1.
Beclin 1 is also known to prevent the growth of malignant tumors. Wei, An et al. found that to do so, Beclin 1 must have a phosphate group added to the same site that activates the protein during autophagy. This suggests that drugs that enhance the addition of this phosphate group to Beclin 1 could help activate autophagy and have anti-cancer effects.
PMCID: PMC4337728  PMID: 25693418
autophagy; Beclin 1; BCL2; MAPK signaling; starvation; human; mouse
15.  Ceramide metabolism regulates autophagy and apoptotic-cell death induced by melatonin in liver cancer cells 
Journal of pineal research  2015;59(2):178-189.
Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mM) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin1 expression, p62 degradation and LC3II and LAMP2 colocalization, which translated in decreased cell viability. Moreover, ATG5-silencing sensitized HepG2 cells to melatonin induced-apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyl transferase (SPT) inhibition with myriocin prevented melatonin induced autophagy and ASMase inhibition with imipramine impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin while SPT inhibition significantly enhanced cell death. Findings suggest a cross-talk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerge as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells.
PMCID: PMC4523438  PMID: 25975536
melatonin; hepatocarcinoma; autophagy; ceramides; apoptosis; serine palmitoyltransferase; acid sphingomyelinase
16.  mda-7/IL-24: Multifunctional cancer-specific apoptosis-inducing cytokine 
Pharmacology & therapeutics  2006;111(3):596-628.
“Differentiation therapy” provides a unique and potentially effective, less toxic treatment paradigm for cancer. Moreover, combining “differentiation therapy” with molecular approaches presents an unparalleled opportunity to identify and clone genes mediating cancer growth control, differentiation, senescence, and programmed cell death (apoptosis). Subtraction hybridization applied to human melanoma cells induced to terminally differentiate by treatment with fibroblast interferon (IFN-β) plus mezerein (MEZ) permitted cloning of melanoma differentiation associated (mda) genes. Founded on its novel properties, one particular mda gene, mda-7, now classified as a member of the interleukin (IL)-10 gene family (IL-24) because of conserved structure, chromosomal location, and cytokine-like properties has become the focus of attention of multiple laboratories. When administered by transfection or adenovirus-transduction into a spectrum of tumor cell types, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) induces apoptosis, whereas no toxicity is apparent in normal cells. mda-7/IL-24 displays potent “bystander antitumor” activity and also has the capacity to enhance radiation lethality, to induce immune-regulatory activities, and to inhibit tumor angiogenesis. Based on these remarkable attributes and effective antitumor therapy in animal models, this cytokine has taken the important step of entering the clinic. In a Phase I clinical trial, intratumoral injections of adenovirus-administered mda-7/IL-24 (Ad.mda-7) was safe, elicited tumor-regulatory and immune-activating processes, and provided clinically significant activity. This review highlights our current understanding of the diverse activities and properties of this novel cytokine, with potential to become a prominent gene therapy for cancer.
PMCID: PMC1781515  PMID: 16464504
mda-7/IL-24; Differentiation therapy of cancer; Programmed cell death; Antitumor bystander activity; Radiosensitization; Angiogenesis; Cell signaling; Phase I clinical trial
Autophagy  2007;4(2):195-204.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosis-resistant. Autophagy (cellular “self digestion”) has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O2). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 over-expression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.
PMCID: PMC3164855  PMID: 18059169 CAMSID: cams1903
autophagy; hypoxia; autophagic cell death; BNIP3; cancer
18.  Pan-Bcl-2 inhibitor Obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling 
BMC Cancer  2015;15:919.
Colorectal cancer is the third most common malignancy in humans and novel therapeutic approaches are urgently needed. Autophagy is an evolutionarily highly conserved cellular process by which cells collect unnecessary organelles or misfolded proteins and subsequently degrade them in vesicular structures in order to refuel cells with energy. Dysregulation of the complex autophagy signaling network has been shown to contribute to the onset and progression of cancer in various models. The Bcl-2 family of proteins comprises central regulators of apoptosis signaling and has been linked to processes involved in autophagy. The antiapoptotic members of the Bcl-2 family of proteins have been identified as promising anticancer drug targets and small molecules inhibiting those proteins are in clinical trials.
Flow cytometry and colorimetric assays were used to assess cell growth and cell death. Long term 3D cell culture was used to assess autophagy in a tissue mimicking environment in vitro. RNA interference was applied to modulate autophagy signaling. Immunoblotting and q-RT PCR were used to investigate autophagy signaling. Immunohistochemistry and fluorescence microscopy were used to detect autophagosome formation and autophagy flux.
This study demonstrates that autophagy inhibition by obatoclax induces cell death in colorectal cancer (CRC) cells in an autophagy prone environment. Here, we demonstrate that pan-Bcl-2 inhibition by obatoclax causes a striking, late stage inhibition of autophagy in CRC cells. In contrast, ABT-737, a Mcl-1 sparing Bcl-2 inhibitor, failed to interfere with autophagy signaling. Accumulation of p62 as well as Light Chain 3 (LC3) was observed in cells treated with obatoclax. Autophagy inhibition caused by obatoclax is further augmented in stressful conditions such as starvation. Furthermore, our data demonstrate that inhibition of autophagy caused by obatoclax is independent of the essential pro-autophagy proteins Beclin-1, Atg7 and Atg12.
The objective of this study was to dissect the contribution of Bcl-2 proteins to autophagy in CRC cells and to explore the potential of Bcl-2 inhibitors for autophagy modulation. Collectively, our data argue for a Beclin-1 independent autophagy inhibition by obatoclax. Based on this study, we recommend the concept of autophagy inhibition as therapeutic strategy for CRC.
Electronic supplementary material
The online version of this article (doi:10.1186/s12885-015-1929-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4653869  PMID: 26585594
Autophagy; Colorectal cancer; Apoptosis; Autophagy related gene; LC3; p62 (SQSTM1); Obatoclax; Chloroquine
19.  The crosstalk between autophagy and apoptosis: where does this lead? 
Protein & Cell  2012;3(1):17-27.
Recent advances in the understanding of the molecular processes contributing to autophagy have provided insight into the relationship between autophagy and apoptosis. In contrast to the concept of “autophagic cell death,” accumulating evidence suggests that autophagy serves a largely cytoprotective role in physiologically relevant conditions. The cytoprotective function of autophagy is mediated in many circumstances by negative modulation of apoptosis. Apoptotic signaling, in turn, serves to inhibit autophagy. While the mechanisms mediating the complex counter-regulation of apoptosis and autophagy are not yet fully understood, important points of crosstalk include the interactions between Beclin-1 and Bcl-2/Bcl-xL and between FADD and Atg5, caspase- and calpain-mediated cleavage of autophagy-related proteins, and autophagic degradation of caspases. Continued investigation of these and other means of crosstalk between apoptosis and autophagy is necessary to elucidate the mechanisms controlling the balance between survival and death both under normal conditions and in diseases including cancer.
PMCID: PMC4875212  PMID: 22314807
autophagy; apoptosis; Beclin-1; lymphocytes
20.  Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms 
Molecular Cancer  2013;12:171.
Autophagy is an indispensable lysosomal self-digestion process involved in the degradation of aggregated proteins and damaged organelles. Autophagy is associated with the several pathological processes, including cancer. Cancer stem cells (CSCs) play significant roles in cancer initiation, progression and drug resistance. Recent studies have demonstrated the antitumor activities of plant-derived chemopreventive agent rottlerin (Rott). However, the molecular mechanism by which Rott induces autophagy in breast CSCs has not been investigated.
The objectives of this study were to examine the molecular mechanism by which Rott induces autophagy which leads to apoptosis in breast CSCs. Treatment of breast CSCs with Rott for 24 h resulted in a concentration dependent induction of autophagy, followed by apoptosis as measured by flow cytometry. Electron microscopy confirmed the presence of autophagosomes in Rott treated breast CSCs. Western blot analysis showed that Rott treatment increased the expression of LC3, Beclin-1 and Atg12 that are accumulated during autophagy. Prolonged exposure of breast CSCs to Rott caused apoptosis which was associated with the suppression of phosphorylated Akt and mTOR, upregulation of phosphorylated AMPK, and downregulation of anti-apoptosis Bcl-2, Bcl-XL, XIAP and cIAP-1. Knock-down of Atg7 or Beclin-1 by shRNA inhibited Rott-induced autophagy at 24 h. Our study also demonstrates that pre-treatment of breast CSCs with autophagosome inhibitors 3-methyladenine and Bafilomycin, as well as protein synthesis inhibitor cycloheximide inhibited Rott-induced autophagy and apoptosis. Rott induces autophagy via extensive cytoplasmic vacuolization in breast CSCs. Molecular docking results between C2-domain of protein kinase C-delta and Rott indicated that both hydrogen bonding and hydrophobic interactions contributed significantly for ligand binding with minimum binding affinity of ≈ 7.5 Kcal/mol. Although, autophagy inhibitors suppress the formation of cytoplasmic vacuolization and autophagy in breast CSCs, the potency of Rott to induce autophagy and apoptosis might be based on its capability to activate several pathways such as AMPK and proteasome inhibition.
A better understanding of the relationship between autophagy and apoptosis would eventually allow us to discover novel drugs for the treatment of breast cancer by eliminating CSCs.
PMCID: PMC3914415  PMID: 24359639
3-methyladenine (3-MA); Autophagy; Bafilomycin (Baf); Beclin-1; Cycloheximide (CHX); LC3; AMPK; Atg12
21.  The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells 
Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.
PMCID: PMC4338784  PMID: 25733818
Danusertib; breast cancer; cell cycle; apoptosis; autophagy; EMT
22.  Role of Bcl-xL/Beclin-1 in Interplay between Apoptosis and Autophagy in Oxaliplatin and Bortezomib-induced Cell Death 
Biochemical pharmacology  2014;88(2):178-188.
Recent studies indicate that a complex relationship exists between autophagy and apoptosis. In this study we investigated a regulatory relationship between autophagy and apoptosis in colorectal cancer cells utilizing molecular and biochemical approaches. For this study, human colorectal carcinoma HCT116 and CX-1 cells were treated with two chemotherapeutic agents—oxaliplatin, which induces apoptosis, and bortezomib, which triggers both apoptosis and autophagy. A combinatorial treatment of oxaliplatin and bortezomib caused a synergistic induction of apoptosis which was mediated through an increase in caspase activation. The combinational treatment of oxaliplatin and bortezomib promoted the JNK-Bcl-xL-Bax pathway which modulated the synergistic effect through the mitochondria-dependent apoptotic pathway. JNK signaling led to Bcl-xL phosphorylation at serine 62, oligomerization of Bax, alteration of mitochondrial membrane potential, and subsequent cytochrome c release. Overexpression of dominant-negative mutant of Bcl-xL (S62A), but not dominant-positive mutant of Bcl-xL (S62D), suppressed cytochrome c release and synergistic death effect. Interestingly, Bcl-xL also affected autophagy through alteration of interaction with Beclin-1. Beclin-1 was dissociated from Bcl-xL and initiated autophagy during treatment with oxaliplatin and bortezomib. However, activated caspase 8 cleaved Beclin-1 and suppressed Beclin-1-associated autophagy and enhanced apoptosis. A combinatorial treatment of oxaliplatin and bortezomib-induced Beclin-1 cleavage was abolished in Beclin-1 double mutant (D133AA/D149A) knock-in HCT116 cells, restoring the autophagy-promoting function of Beclin-1 and suppressing the apoptosis induced by the combination therapy. In addition, the combinatorial treatment significantly inhibited colorectal cancer xenografts’ tumor growth. An understanding of the molecular mechanisms of crosstalk between apoptosis and autophagy will support the application of combinatorial treatment to colorectal cancer.
PMCID: PMC3969586  PMID: 24486574
Oxaliplatin; Bortezomib; Mitochondria-dependent pathway; Bcl-xL; Beclin-1
23.  A natural BH3-mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2—Beclin1 interaction at endoplasmic reticulum 
Cell death and differentiation  2010;18(1):60-71.
A natural BH3-mimetic, small molecule inhibitor of Bcl-2, (-)-gossypol, shows promise in ongoing Phase II-III clinical trials for human prostate cancer. Here we show that (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, both in vitro and in vivo, but not in androgen-dependent cells with low Bcl-2 and sensitive to apoptosis. The Bcl-2 inhibitor induces autophagy via blocking Bcl-2—Beclin1 interaction, together with downregulating Bcl-2, upregulating Beclin1 and activating the autophagic pathway. (-)-Gossypol-induced autophagy is Beclin1- and Atg5-dependent. Our results demonstrate for the first time that (-)-gossypol can also interrupt the interactions between Beclin1 and Bcl-2/Bcl-xL at endoplasmic reticulum, thus releasing the BH3-only pro-autophagic protein Beclin1, which in turn triggers the autophagic cascade. Oral administration of (-)-gossypol significantly inhibited the growth of AI prostate cancer xenografts, representing a promising new regimen for the treatment of human hormone-refractory prostate cancer with Bcl-2 overexpression. Our data provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which would facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.
PMCID: PMC2950895  PMID: 20577262
(-)-Gossypol; Bcl-2; Beclin1; Autophagy; Apoptosis
24.  A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2–Beclin1 interaction at endoplasmic reticulum 
Cell Death and Differentiation  2010;18(1):60-71.
A natural BH3-mimetic, small-molecule inhibitor of Bcl-2, (−)-gossypol, shows promise in ongoing phase II and III clinical trials for human prostate cancer. In this study we show that (−)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, both in vitro and in vivo, but not in androgen-dependent (AD) cells with low Bcl-2 and sensitive to apoptosis. The Bcl-2 inhibitor induces autophagy through blocking Bcl-2–Beclin1 interaction, together with downregulating Bcl-2, upregulating Beclin1, and activating the autophagic pathway. The (−)-gossypol-induced autophagy is dependent on Beclin1 and Atg5. Our results show for the first time that (−)-gossypol can also interrupt the interactions between Beclin1 and Bcl-2/Bcl-xL at endoplasmic reticulum, thus releasing the BH3-only pro-autophagic protein Beclin1, which in turn triggers the autophagic cascade. Oral administration of (−)-gossypol significantly inhibited the growth of AI prostate cancer xenografts, representing a promising new regimen for the treatment of human hormone-refractory prostate cancer with Bcl-2 overexpression. Our data provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which will facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.
PMCID: PMC2950895  PMID: 20577262
(−)-gossypol; Bcl-2; Beclin1; autophagy; apoptosis
25.  Silvestrol induces early autophagy and apoptosis in human melanoma cells 
BMC Cancer  2016;16:17.
Silvestrol is a cyclopenta[b]benzofuran that was isolated from the fruits and twigs of Aglaia foveolata, a plant indigenous to Borneo in Southeast Asia. The purpose of the current study was to determine if inhibition of protein synthesis caused by silvestrol triggers autophagy and apoptosis in cultured human cancer cells derived from solid tumors.
In vitro cell viability, flow cytometry, fluorescence microscopy, qPCR and immunoblot was used to study the mechanism of action of silvestrol in MDA-MB-435 melanoma cells.
By 24 h, a decrease in cyclin B and cyclin D expression was observed in silvestrol-treated cells relative to control. In addition, silvestrol blocked progression through the cell cycle at the G2-phase. In silvestrol-treated cells, DAPI staining of nuclear chromatin displayed nucleosomal fragments. Annexin V staining demonstrated an increase in apoptotic cells after silvestrol treatment. Silvestrol induced caspase-3 activation and apoptotic cell death in a time- and dose-dependent manner. Furthermore, both silvestrol and SAHA enhanced autophagosome formation in MDA-MB-435 cells. MDA-MB-435 cells responded to silvestrol treatment with accumulation of LC3-II and time-dependent p62 degradation. Bafilomycin A, an autophagy inhibitor, resulted in the accumulation of LC3 in cells treated with silvestrol. Silvestrol-mediated cell death was attenuated in ATG7-null mouse embryonic fibroblasts (MEFs) lacking a functional autophagy protein.
Silvestrol potently inhibits cell growth and induces cell death in human melanoma cells through induction of early autophagy and caspase-mediated apoptosis. Silvestrol represents a natural product scaffold that exhibits potent cytotoxic activity and could be used for the further study of autophagy and its relationship to apoptosis in cancer cells.
Electronic supplementary material
The online version of this article (doi:10.1186/s12885-015-1988-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4712514  PMID: 26762417
Melanoma; Silvestrol; Autophagy; Apoptosis

Results 1-25 (1173583)