PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (834200)

Clipboard (0)
None

Related Articles

1.  Murine Models of Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE.
doi:10.1155/2011/271694
PMCID: PMC3042628  PMID: 21403825
2.  B cell abnormalities in systemic lupus erythematosus 
Arthritis Research & Therapy  2003;5(Suppl 4):S22-S27.
Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease characterized by the differentiation of short- and long-lived immunoglobulin secreting plasma cells that secrete pathogenic autoantibodies. Ectopic germinal centers and plasma cells secreting autoantibodies have been observed in lupus nephritis kidneys. Candidate genetic susceptibility loci for SLE include genes that affect differentiation and survival of plasma cells, such as those that influence activation, proliferation, cytokine and chemokine secretion/responsiveness, and apoptosis of the T and B cells that are involved in humoral immunity generated in germinal centers, as well as genes that are involved in presentation and clearance of apoptotic material and autoantigens by antigen presenting cells and other phagocytes. Emerging data have demonstrated that B lymphocytes are active participants in humoral immune responses that lead to T-dependent and T-independent differentiation of immunoglobulin-secreting plasma cells by homotypic CD154–CD40 interactions as well as continued stimulation by B cell activating factor through B cell maturation antigen, B cell activating factor receptor and transmembrane activater.
doi:10.1186/ar1009
PMCID: PMC2833441  PMID: 15180894
B cells; germinal centers; immunoglobulin-secreting cells; plasma cells; systemic lupus erythematosus
3.  Genetic susceptibility to systemic lupus erythematosus in the genomic era 
Nature reviews. Rheumatology  2010;6(12):683-692.
Our understanding of the genetic basis of systemic lupus erythematosus (SLE) has been rapidly advanced using large-scale, case–control, candidate gene studies as well as genome-wide association studies during the past 3 years. These techniques have identified more than 30 robust genetic associations with SLE including genetic variants of HLA and Fcγ receptor genes, IRF5, STAT4, PTPN22, TNFAIP3, BLK, BANK1, TNFSF4 and ITGAM. Most SLE-associated gene products participate in key pathogenic pathways, including Toll-like receptor and type I interferon signaling pathways, immune regulation pathways and those that control the clearance of immune complexes. Disease-associated loci that have not yet been demonstrated to have important functions in the immune system might provide new clues to the underlying molecular mechanisms that contribute to the pathogenesis or progression of SLE. Of note, genetic risk factors that are shared between SLE and other immune-related diseases highlight common pathways in the pathophysiology of these diseases, and might provide innovative molecular targets for therapeutic interventions.
doi:10.1038/nrrheum.2010.176
PMCID: PMC3135416  PMID: 21060334
4.  Links between complement deficiency and apoptosis 
Arthritis Research  2001;3(4):207-210.
Deficiency in the classical pathway complement components displays a hierarchical association with the development of systemic lupus erythematosus (SLE). In addition, SLE causes consumption of complement. C1q- and C4-deficient mice develop a lupus-like disease and exhibit impaired clearance of apoptotic cells. The autoantigens targeted in SLE have been localised to the surface of apoptotic cells, which may be the source of these antigens. Although apoptosis was originally thought to be an immunologically inert process, dendritic cells can present epitopes derived from apoptotic cells, and immunization with apoptotic cells leads to the generation of autoantibodies. These findings taken together indicate that a defect in complement-dependent clearance of apoptotic cells may increase susceptibility to the development of autoimmunity.
doi:10.1186/ar301
PMCID: PMC128896  PMID: 11438036
apoptosis; complement; deficiency; SLE
5.  Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries 
Annals of the rheumatic diseases  2012;71(11):1809-1814.
Objective
Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.
Methods
The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.
Results
The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).
Conclusion
These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.
doi:10.1136/annrheumdis-2011-201110
PMCID: PMC3466387  PMID: 22523428
6.  Type I Interferon and Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease associated with multiple immunologic abnormalities. Prominent among these is upregulation of type I interferon (IFN)—a powerful immune adjuvant. IFN is, in part, produced in SLE in response to autoantigens in the form of self-nucleic acids and their associated nuclear proteins. Sources of these autoantigens include apoptotic and necrotic cells as well as neutrophils undergoing a specific form of cell death called NETosis. Although plasmacytoid dendritic cells are the main producers of IFN-a, other cells are important regulators of this process. Both genetic and environmental risk factors play a role in the development and pathogenesis of SLE. Further highlighting the importance of IFN, candidate gene and genome-wide association studies have identified a number of genes involved in type I IFN pathways associated with SLE. In this review, 3 monogenic deficiencies that result in lupus-like phenotypes and several polygenic variants that have been consistently associated with SLE are highlighted, and the relationship of these genes to IFN-a production is discussed. Clinical associations of the type I IFN pathway and the use of IFN-blocking agents as therapeutic agents in SLE are also reviewed.
doi:10.1089/jir.2011.0045
PMCID: PMC3216059  PMID: 21859344
7.  Emerging Roles for the Interferon-Inducible p200-Family Proteins in Sex Bias in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple organs. The disease is characterized by the production of pathogenic autoantibodies to DNA and certain nuclear antigens, chronic inflammation, and immune dysregulation. Genetic studies involving SLE patients and mouse models have indicated that multiple lupus susceptible genes contribute to the disease phenotype. Notably, the development of SLE in patients and in certain mouse models exhibits a strong sex bias. In addition, several lines of evidence indicates that activation of interferon-α (IFN-α) signaling in immune cells and alterations in the expression of certain immunomodulatory cytokines contribute to lupus pathogenesis. Studies have implicated factors, such as the X chromosomal gene dosage effect and the sex hormones, in gender bias in SLE. However, the molecular mechanisms remain unclear. Additionally, it remains unclear whether these factors influence the “IFN-signature,” which is associated with SLE. In this regard, a mutually positive regulatory feedback loop between IFNs and estrogen receptor-α (ERα) has been identified in immune cells. Moreover, studies indicate that the expression of certain IFN-inducible p200-family proteins that act as innate immune sensors for cytosolic DNA is differentially regulated by sex hormones. In this review, we discuss how the modulation of the expression of the p200-family proteins in immune cells by sex hormones and IFNs contributes to sex bias in SLE. An improved understanding of the regulation and roles of the p200-family proteins in immune cells is critical to understand lupus pathogenesis as well as response (or the lack of it) to various therapies.
doi:10.1089/jir.2011.0073
PMCID: PMC3234491  PMID: 21902548
8.  CRP/anti-CRP Antibodies Assembly on the Surfaces of Cell Remnants Switches Their Phagocytic Clearance Toward Inflammation 
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease characterized by the production of autoantibodies, formation of immune complexes (IC), and activation of complement that ultimately fuel acute and/or chronic inflammation. Accumulation in blood and tissues of post-apoptotic remnants is considered of etiological and pathological importance for patients with SLE. Besides receptors directly recognizing apoptotic cells, soluble opsonins of the innate immune system bind apoptotic material dependent on the stage of apoptosis. We describe the binding to the surface of secondary necrotic cells (SNEC) of the serum opsonin CRP and further opsonins. We show that anti-dsDNA and anti-CRP autoantibodies bind and sensitize SNEC. Autoantibody-sensitized SNEC were cleared by macrophages in vitro and induced a pro-inflammatory cytokine response. In conclusion, anti-CRP, CRP, and SNEC form a ternary pyrogen endowed with strong pro-inflammatory capabilities which is able to maintain and perpetuate chronic inflammation.
doi:10.3389/fimmu.2011.00070
PMCID: PMC3341995  PMID: 22566859
immune complexes; opsonins; CRP; anti-dsDNA; inflammation; SLE
9.  HDAC Inhibition in Lupus Models 
Molecular Medicine  2011;17(5-6):417-425.
Systemic lupus erythematosus (SLE) is a prototypic autoimmune inflammatory disease characterized by the production of autoantibodies directed against nuclear antigens such as nucleosomes, DNA and histone proteins found within the body’s cells and plasma. Autoantibodies may induce disease by forming immune complexes that lodge in target organs or by crossreacting with targeted antigens and damaging tissue. In addition to autoantibody production, apoptotic defects and impaired removal of apoptotic cells contribute to an overload of autoantigens that initiate an autoimmune response. Besides the well-recognized genetic susceptibility to SLE, environmental and epigenetic factors play a crucial role in disease pathogenesis as evidenced by monozygotic twins typically being discordant for disease. Changes in DNA methylation and histone acetylation alter gene expression and are thought to contribute to the epigenetic deregulation in disease. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur. Additionally, aberrant histone acetylation is evident in individuals with SLE. Moreover, histone deacetylase inhibitors (HDACi) have been shown to reverse the skewed expression of multiple genes involved in SLE. In this review, we discuss the implications of epigenetic alterations in the development and progression of SLE, and how therapeutics designed to alter histone acetylation status may constitute a promising avenue to target disease.
doi:10.2119/molmed.2011.00055
PMCID: PMC3105141  PMID: 21327298
10.  Genetic Modifiers of Systemic Lupus Erythematosus in FcγRIIB−/− Mice 
The Journal of Experimental Medicine  2002;195(9):1167-1174.
FcγRIIB is a potent lupus susceptibility gene as demonstrated by the observation that mice deficient in this molecule develop spontaneous antinuclear antibodies (ANA) and fatal glomerulonephritis when on the C57BL/6 background. To determine the mechanisms underlying the epistasis displayed by this gene we have constructed hybrids between FcγRIIB−/− and the systemic lupus erythematosus (SLE) modifiers yaa and lpr and the susceptibility locus Sle1. Sle1 and B6.RIIB−/− are both physically and functionally coupled; compound heterozygotes of Sle1 and B6.RIIB−/− develop significant disease, while single heterozygotes display no evidence of autoimmunity or disease, indicating that these genes lie on the same genetic pathway resulting in the loss of tolerance to nuclear antigens. However, the generation of ANA in itself is insufficient to account for the severity of autoimmune disease in this model, as demonstrated by analysis of yaa and lpr hybrids. Thus, B6.RIIB−/−/lpr mice are protected from disease progression, despite equivalent titers of ANA. In contrast, B6.RIIB−/−/yaa mice have significantly enhanced disease despite reduced ANA titers. Yaa modifies the specificity and thus the pathogenicity of the B6. RIIB−/− ANA, by converting them to antinucleolar antibodies. In addition to these known modifier pathways, we have discovered two novel, recessive loci contributed by the C57BL/6 genome that are required for the ANA phenotype, further indicating the epistatic properties of this SLE model.
doi:10.1084/jem.20020165
PMCID: PMC2193704  PMID: 11994421
lpr; yaa; Sle1; autoantibodies; glomerulonephritis
11.  Polymorphisms of the ITGAM Gene Confer Higher Risk of Discoid Cutaneous Than of Systemic Lupus Erythematosus 
PLoS ONE  2010;5(12):e14212.
Background
Lupus erythematosus (LE) is a heterogeneous disease ranging from mainly skin-restricted manifestations (discoid LE [DLE] and subacute cutaneous LE) to a progressive multisystem disease (systemic LE [SLE]). Genetic association studies have recently identified several strong susceptibility genes for SLE, including integrin alpha M (ITGAM), also known as CD11b, whereas the genetic background of DLE is less clear.
Principal Findings
To specifically investigate whether ITGAM is a susceptibility gene not only for SLE, but also for cutaneous DLE, we genotyped 177 patients with DLE, 85 patients with sporadic SLE, 190 index cases from SLE families and 395 population control individuals from Finland for nine genetic markers at the ITGAM locus. SLE patients were further subdivided by the presence or absence of discoid rash and renal involvement. In addition, 235 Finnish and Swedish patients positive for Ro/SSA-autoantibodies were included in a subphenotype analysis. Analysis of the ITGAM coding variant rs1143679 showed highly significant association to DLE in patients without signs of systemic disease (P-value  = 4.73×10−11, OR  = 3.20, 95% CI  = 2.23–4.57). Significant association was also detected to SLE patients (P-value  = 8.29×10−6, OR  = 2.14, 95% CI  = 1.52–3.00), and even stronger association was found when stratifying SLE patients by presence of discoid rash (P-value  = 3.59×10−8, OR  = 3.76, 95% CI  = 2.29–6.18).
Significance
We propose ITGAM as a novel susceptibility gene for cutaneous DLE. The risk effect is independent of systemic involvement and has an even stronger genetic influence on the risk of DLE than of SLE.
doi:10.1371/journal.pone.0014212
PMCID: PMC2996302  PMID: 21151989
12.  Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases 
Autoimmunity Reviews  2011;11(4):276-280.
Many autoimmune diseases (ADs) share similar underlying pathology and have a tendency to cluster within families, supporting the involvement of shared susceptibility genes. To date, most of the genetic variants associated with systemic lupus erythematosus (SLE) susceptibility also show association with others ADs. ITGAM and its associated ‘predisposing’ variant (rs1143679, Arg77His), predicted to alter the tertiary structures of the ligand-binding domain of ITGAM, may play a key role for SLE pathogenesis. The aim of this study is to examine whether the ITGAM variant is also associated with other ADs. We evaluated case-control association between rs1143679 and ADs (N=18,457) including primary Sjögren’s syndrome, systemic sclerosis, multiple sclerosis, rheumatoid arthritis, juvenile idiopathic arthritis, celiac disease, and type-1 diabetes. We also performed meta-analyses using our data in addition to available published data. Although the risk allele ‘A’ is relatively more frequent among cases for each disease, it was not significantly associated with any other ADs tested in this study. However, the meta-analysis for systemic sclerosis was associated with rs1143679 (pmeta=0.008). In summary, this study explored the role of ITGAM in general autoimmunity in seven non-lupus ADs, and only found association for systemic sclerosis when our results were combined with published results. Thus ITGAM may not be a general autoimmunity gene but this variant may be specifically associated with SLE and systemic sclerosis.
doi:10.1016/j.autrev.2011.07.007
PMCID: PMC3224188  PMID: 21840425
ITGAM; autoimmune diseases; genetic susceptibility
13.  MicroRNAs Implicated in the Immunopathogenesis of Lupus Nephritis 
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the deposition of immune complexes due to widespread loss of immune tolerance to nuclear self-antigens. Deposition in the renal glomeruli results in the development of lupus nephritis (LN), the leading cause of morbidity and mortality in SLE. In addition to the well-recognized genetic susceptibility to SLE, disease pathogenesis is influenced by epigenetic regulators such as microRNAs (miRNAs). miRNAs are small, noncoding RNAs that bind to the 3′ untranslated region of target mRNAs resulting in posttranscriptional gene modulation. miRNAs play an important and dynamic role in the activation of innate immune cells and are critical in regulating the adaptive immune response. Immune stimulation and the resulting cytokine milieu alter miRNA expression while miRNAs themselves modify cellular responses to stimulation. Here we examine dysregulated miRNAs implicated in LN pathogenesis from human SLE patients and murine lupus models. The effects of LN-associated miRNAs in the kidney, peripheral blood mononuclear cells, macrophages, mesangial cells, dendritic cells, and splenocytes are discussed. As the role of miRNAs in immunopathogenesis becomes delineated, it is likely that specific miRNAs may serve as targets for therapeutic intervention in the treatment of LN and other pathologies.
doi:10.1155/2013/430239
PMCID: PMC3741610  PMID: 23983769
14.  Copy number variants in genetic susceptibility and severity of systemic lupus erythematosus 
Cytogenetic and Genome Research  2009;123(1-4):142-147.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by the presence of auto-antibodies to nuclear antigens, immune complex deposition, and subsequent tissue destruction. Early studies in twins suggested that SLE has, at least in part, a genetic basis, and a role for class II alleles in the major histocompatibility complex has been known for over 30 years. Through both linkage studies and candidate gene studies, numerous additional genetic risk factors have been identified. The recent publication of two SNP-based genome-wide association studies (GWAS) has resulted in the confirmation of a number of previously identified genetic risk loci and has identified new previously unappreciated loci conferring risk for development of SLE. A role for gene copy number variation (CNV) in SLE has also been appreciated through studies of the complement component 4 (C4) loci and more recent work in the IgG Fc receptor loci. The availability of large SNP-based GWAS datasets will undoubtedly lead to the genome-wide analysis and identification of copy number variants related to genetic susceptibility for development of SLE. We review current studies of CNV in SLE susceptibility that include reports of association between SLE and CNV in C4, IgG Fc receptors, TLR7, and CCL3L1.
doi:10.1159/000184701
PMCID: PMC2826785  PMID: 19287148
15.  The interferon-α signature of systemic lupus erythematosus 
Lupus  2010;19(9):1012-1019.
Systemic lupus erythematosus (SLE) is a prototypic multisystem autoimmune disorder where interplay of environmental and genetic risk factors leads to progressive loss of tolerance to nuclear antigens over time, finally culminating in clinical disease. The heterogeneity of clinical manifestations and the disease’s unpredictable course characterized by flares and remissions are very likely a reflection of heterogeneity at the origin of disease, with a final common pathway leading to loss of tolerance to nuclear antigens. Impaired clearance of immune complexes and apoptotic material and production of autoantibodies have long been recognized as major pathogenic events in this disease. Over the past decade the type I interferon cytokine family has been postulated to play a central role in SLE pathogenesis, by promoting feedback loops progressively disrupting peripheral immune tolerance and driving disease activity. The identification of key molecules involved in the pathogenesis of SLE will not only improve our understanding of this complex disease, but also help to identify novel targets for biological intervention.
doi:10.1177/0961203310371161
PMCID: PMC3658279  PMID: 20693194
autoantibody; autoantigen; B cells; complement; dendritic cells; genetics; immune complex; interferon; pathogenesis; systemic lupus erythematosus; Toll-like receptor
16.  Genetic Regulation of Serum Cytokines in Systemic Lupus Erythematosus 
Genetic association studies in systemic lupus erythematosus (SLE) have been extremely successful in recent years, identifying a number of loci associated with disease susceptibility. Much work remains to integrate these loci into the functional pathogenic pathways which characterize the disease. Our working hypothesis is that many of the genetic variations linked to SLE and autoimmunity mediate risk of disease by altering cytokine profiles or responses to cytokine signaling. Genetic polymorphisms affecting cytokine signaling could alter thresholds for immune responses, resulting in pro-inflammatory presentation of self antigens and the subsequent misdirection of adaptive immunity against self which is observed in autoimmune disease. SLE is clinically heterogeneous and genetically complex, and we expect that individual genes and cytokine patterns will be more or less important to different disease manifestations and subgroups of patients. Defining these genotype-cytokine-phenotype relationships will increase our understanding of both initial disease pathogenesis as well as subsequent response/non-response to various therapies. In this review we summarize some recent work in the area of SLE cytokine genetics, and describe the implications for SLE, autoimmunity, and immune system homeostasis which are revealed by these investigations.
doi:10.1016/j.trsl.2009.08.012
PMCID: PMC2827336  PMID: 20171594
17.  Evaluation of imputation-based association in and around the integrin-α-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE) 
Human Molecular Genetics  2009;18(6):1171-1180.
We recently identified a novel non-synonymous variant, rs1143679, at exon 3 of the ITGAM gene associated with systemic lupus erythematosus (SLE) susceptibility in European-Americans (EAs) and African-Americans. Using genome-wide association approach, three other studies also independently reported an association between SLE susceptibility and ITGAM or ITGAM-ITGAX region. The primary objectives of this study are to assess whether single or multiple causal variants from the same gene or any nearby gene(s) are involved in SLE susceptibility and to confirm a robust ITGAM association across nine independent data sets (n = 8211). First, we confirmed our previously reported association of rs1143679 (risk allele ‘A’) with SLE in EAs (P = 1.0 × 10−8) and Hispanic-Americans (P = 2.9 × 10−5). Secondly, using a comprehensive imputation-based association test, we found that ITGAM is one of the major non-human leukocyte antigen susceptibility genes for SLE, and the strongest association for EA is the same coding variant rs1143679 (log10Bayes factor=20, P = 6.17 × 10−24). Thirdly, we determined the robustness of rs1143679 association with SLE across three additional case–control samples, including UK (P = 6.2 × 10−8), Colombian (P = 3.6 × 10−7), Mexican (P = 0.002), as well as two independent sets of trios from UK (PTDT = 1.4 × 10−5) and Mexico (PTDT = 0.015). A meta-analysis combing all independent data sets greatly reinforces the association (Pmeta = 7.1 × 10−50, odds ratio = 1.83, 95% confidence interval = 1.69–1.98, n = 10 046). However, this ITGAM association was not observed in the Korean or Japanese samples, in which rs1143679 is monomorphic for the non-risk allele (G). Taken together along with our earlier findings, these results demonstrate that the coding variant, rs1143679, best explains the ITGAM-SLE association, especially in European- and African-derived populations, but not in Asian populations.
doi:10.1093/hmg/ddp007
PMCID: PMC2649018  PMID: 19129174
18.  Genetic epidemiology: Systemic lupus erythematosus 
Arthritis Research  2001;3(6):331-336.
Systemic lupus erythematosus is the prototype multisystem autoimmune disease. A strong genetic component of susceptibility to the disease is well established. Studies of murine models of systemic lupus erythematosus have shown complex genetic interactions that influence both susceptibility and phenotypic expression. These models strongly suggest that several defects in similar pathways, e.g. clearance of immune complexes and/or apoptotic cell debris, can all result in disease expression. Studies in humans have found linkage to several overlapping regions on chromosome 1q, although the precise susceptibility gene or genes in these regions have yet to be identified. Recent studies of candidate genes, including Fcγ receptors, IL-6, and tumour necrosis factor-α, suggest that in human disease, genetic factors do play a role in disease susceptibility and clinical phenotype. The precise gene or genes involved and the strength of their influence do, however, appear to differ considerably in different populations.
PMCID: PMC128907  PMID: 11714386
candidate genes; disease susceptibility; linkage analysis; mouse models; SLE
19.  Admixture in Hispanic-Americans: Its impact on ITGAM association and implications for admixture mapping in SLE 
Genes and immunity  2009;10(5):539-545.
Systemic Lupus Erythematosus (SLE) disproportionately affects minorities, such as Hispanic-Americans. Prevalence of SLE is 3–5 times higher in Hispanic Americans (HA) than European derived populations, and have more active disease at the time of diagnosis, with more serious organ system involvement. HA is an admixed population, it is possible that there is an effect of admixture on the relative risk of disease. This admixture can create substantial increase of linkage disequilibrium (LD) in both magnitude and range, which can provide a unique opportunity for admixture mapping. Main objectives of this study are to (a) estimate hidden population structure in HA individuals; (b) estimate individual ancestry proportions and its impact on SLE risk; (c) assess impact of admixture on ITGAM association, a recently identified SLE susceptibility gene; and (d) estimate power of admixture mapping in HA. Our dataset contained 1,125 individuals, of whom 884 (657 SLE cases and 227 controls) were self classified as HA. Using 107 unlinked ancestry informative markers (AIMs) we estimated hidden population structure and individual ancestry in HA. Out of 5,671 possible pair-wise LD, 54% were statistically significant, indicating recent population admixture. The best fitted model for HA was a four population model with average ancestry of European (48%), American-Indian (40%), African (8%) and a fourth population (4%) with unknown ancestry. We also identified significant higher risk associated with American-Indian ancestry (OR=4.84, P=0.0001, 95%CI=2.14—10.95) on overall SLE. We showed that ITGAM is associated as a risk factor for SLE (OR= 2.06, P=8.74×10−5, 95%CI=1.44–2.97). This association is not affected by population substructure or admixture. We have demonstrated that HA have great potential and are an 3 appropriate population for admixture mapping. As expected, the case-only design is more powerful than case-control design, for any given admixture proportion or ancestry risk ratio.
doi:10.1038/gene.2009.30
PMCID: PMC2714406  PMID: 19387459
SLE; Association; Hispanics; Admixture mapping; Hispanic-American; Population structure
20.  Cellular and molecular pathogenesis of systemic lupus erythematosus: lessons from animal models 
Systemic lupus erythematosus (SLE) is a complex disease characterized by the appearance of autoantibodies against nuclear antigens and the involvement of multiple organ systems, including the kidneys. The precise immunological events that trigger the onset of clinical manifestations of SLE are not yet well understood. However, research using various mouse strains of spontaneous and inducible lupus in the last two decades has provided insights into the role of the immune system in the pathogenesis of this disease. According to our present understanding, the immunological defects resulting in the development of SLE can be categorized into two phases: (a) systemic autoimmunity resulting in increased serum antinuclear and antiglomerular autoantibodies and (b) immunological events that occur within the target organ and result in end organ damage. Aberrations in the innate as well as adaptive arms of the immune system both play an important role in the genesis and progression of lupus. Here, we will review the present understanding - as garnered from studying mouse models - about the roles of various immune cells in lupus pathogenesis.
doi:10.1186/ar3465
PMCID: PMC3308079  PMID: 21989039
21.  A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE 
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
doi:10.1038/ejhg.2010.197
PMCID: PMC3060320  PMID: 21179067
systemic lupus erythematosus; type I interferon system; candidate gene study; single nucleotide polymorphism; IKBKE; IL8
22.  Taming lupus—a new understanding of pathogenesis is leading to clinical advances 
Nature medicine  2012;18(6):871-882.
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the loss of tolerance to nuclear self antigens, the production of pathogenic autoantibodies and damage to multiple organ systems. Over the years, patients with SLE have been managed largely with empiric immunosuppressive therapies, which are associated with substantial toxicities and do not always provide adequate control of the disease. The development of targeted therapies that specifically address disease pathogenesis or progression has lagged, largely because of the complex and heterogeneous nature of the disease, as well as difficulties in designing uniform outcome measures for clinical trials. Recent advances that could improve the treatment of SLE include the identification of genetic variations that influence the risk of developing the disease, an enhanced understanding of innate and adaptive immune activation and regulation of tolerance, dissection of immune cell activation and inflammatory pathways and elucidation of mechanisms and markers of tissue damage. These discoveries, together with improvements in clinical trial design, form a platform from which to launch the development of a new generation of lupus therapies.
doi:10.1038/nm.2752
PMCID: PMC3607103  PMID: 22674006
23.  Pathogenesis of systemic lupus erythematosus 
Journal of Clinical Pathology  2003;56(7):481-490.
The exact patho-aetiology of systemic lupus erythematosus (SLE) remains elusive. An extremely complicated and multifactorial interaction among various genetic and environmental factors is probably involved. Multiple genes contribute to disease susceptibility. The interaction of sex, hormonal milieu, and the hypothalamo–pituitary–adrenal axis modifies this susceptibility and the clinical expression of the disease. Defective immune regulatory mechanisms, such as the clearance of apoptotic cells and immune complexes, are important contributors to the development of SLE. The loss of immune tolerance, increased antigenic load, excess T cell help, defective B cell suppression, and the shifting of T helper 1 (Th1) to Th2 immune responses leads to B cell hyperactivity and the production of pathogenic autoantibodies. Finally, certain environmental factors are probably required to trigger the disease.
PMCID: PMC1769989  PMID: 12835292
aetiology; pathogenesis; genetic; interaction; autoimmune; autoantibody
24.  Dense mapping of IL18 shows no association in SLE 
Human Molecular Genetics  2010;20(5):1026-1033.
Systemic lupus erythematosus (SLE) is an autoimmune disease which behaves as a complex genetic trait. At least 20 SLE risk susceptibility loci have been mapped using both candidate gene and genome-wide association strategies. The gene encoding the pro-inflammatory cytokine, IL18, has been reported as a candidate gene showing an association with SLE. This pleiotropic cytokine is expressed in a range of immune cells and has been shown to induce interferon-γ and tumour necrosis factor-α. Serum interleukin-18 has been reported to be elevated in patients with SLE. Here we aimed to densely map single nucleotide polymorphisms (SNPs) across IL18 to investigate the association across this locus. We genotyped 36 across IL18 by Illumina bead express in 372 UK SLE trios. We also genotyped these SNPs in a further 508 non-trio UK cases and were able to accurately impute a dense marker set across IL18 in WTCCC2 controls with a total of 258 SNPs. To improve the study's power, we also imputed a total of 158 SNPs across the IL18 locus using data from an SLE genome-wide association study and performed association testing. In total, we analysed 1818 cases and 10 770 controls in this study. Our large well-powered study (98% to detect odds ratio = 1.5, with respect to rs360719) showed that no individual SNP or haplotype was associated with SLE in any of the cohorts studied. We conclude that we were unable to replicate the SLE association with rs360719 located upstream of IL18. No evidence for association with any other common variant at IL18 with SLE was found.
doi:10.1093/hmg/ddq536
PMCID: PMC3033184  PMID: 21149337
25.  Aberrant T cell ERK pathway signaling and chromatin structure in lupus 
Autoimmunity reviews  2008;8(3):196-198.
Human systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibodies to nuclear components with subsequent immune complex formation and deposition in multiple organs. A combination of genetic and environmental factors is required for disease development, but how the environment interacts with the immune system in genetically predisposed hosts to cause lupus is unclear. Recent evidence suggests that environmental agents may alter T cell chromatin structure and gene expression through effects on DNA methylation, a repressive epigenetic mechanism promoting chromatin inactivation, to cause lupus in people with the appropriate genetic background. DNA methylation is regulated by ERK pathway signaling, and abnormalities in ERK pathway signaling may contribute to immune dysfunction in lupus through epigenetic effects on gene expression. This article reviews current evidence for epigenetic abnormalities, and in particular DNA demethylation, in the pathogenesis of idiopathic and some forms of drug induced lupus, and how impaired ERK pathway signaling may contribute to the development of human lupus through effects on T cell DNA methylation.
doi:10.1016/j.autrev.2008.07.043
PMCID: PMC2642928  PMID: 18723128
Lupus T cells; Epigenetics; DNA methylation; ERK pathway signaling; PKCδ

Results 1-25 (834200)