PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (876220)

Clipboard (0)
None

Related Articles

1.  Maintenance of MHC Class IIB diversity in a recently established songbird population 
Journal of avian biology  2012;43(2):109-118.
We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations.
doi:10.1111/j.1600-048X.2012.05504.x
PMCID: PMC3368239  PMID: 22685370
MHC; birds; passerines; colonization
2.  Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco 
Pleistocene glacial cycles are thought to have played a major role in the diversification of temperate and boreal species of North American birds. Given that coalescence times between sister taxa typically range from 0.1 to 2.0 Myr, it has been assumed that diversification occurred as populations were isolated in refugia over long periods of time, probably spanning one to several full glacial cycles. In contrast, the rapid postglacial range expansions and recolonization of northern latitudes following glacial maxima have received less attention as potential promoters of speciation. Here we report a case of extremely rapid diversification in the songbird genus Junco as a result of a single continent-wide range expansion within the last 10 000 years. Molecular data from 264 juncos sampled throughout their range reveal that as the yellow-eyed junco (Junco phaeonotus) of Mesoamerica expanded northward following the last glacial maximum, it speciated into the dark-eyed junco (Junco hyemalis), which subsequently diversified itself into at least five markedly distinct and geographically structured morphotypes in the USA and Canada. Patterns of low genetic structure and diversity in mitochondrial DNA and amplified fragment length polymorphism loci found in dark-eyed juncos relative to Mesoamerican yellow-eyed juncos provide support for the hypothesis of an expansion from the south, followed by rapid diversification in the north. These results underscore the role of postglacial expansions in promoting diversification and speciation through a mechanism that represents an alternative to traditional modes of Pleistocene speciation.
doi:10.1098/rspb.2007.0852
PMCID: PMC2279216  PMID: 17725978
speciation; postglacial expansion; phylogeography; Holocene; Junco
3.  Speciation on Oceanic Islands: Rapid Adaptive Divergence vs. Cryptic Speciation in a Guadalupe Island Songbird (Aves: Junco) 
PLoS ONE  2013;8(5):e63242.
The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated “cryptic” lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving divergence and speciation, but also their potential role as repositories of ancestral diversity.
doi:10.1371/journal.pone.0063242
PMCID: PMC3651090  PMID: 23675466
4.  Phenotypic integration and independence: Hormones, performance, and response to environmental change 
Hormones coordinate the co-expression of behavioral, physiological, and morphological traits, giving rise to correlations among traits and organisms whose parts work well together. This article considers the implications of these hormonal correlations with respect to the evolution of hormone-mediated traits. Such traits can evolve owing to changes in hormone secretion, hormonal affinity for carrier proteins, rates of degradation and conversion, and interaction with target tissues to name a few. Critically, however, we know very little about whether these changes occur independently or in tandem, and thus whether hormones promote the evolution of tight phenotypic integration or readily allow the parts of the phenotype to evolve independently. For example, when selection favors a change in expression of hormonally mediated characters, is that alteration likely to come about through changes in hormone secretion (signal strength), changes in response to a fixed level of secretion (sensitivity of target tissues), or both? At one extreme, if the phenotype is tightly integrated and only the signal responds via selection's action on one or more hormonally mediated traits, adaptive modification may be constrained by past selection for phenotypic integration. Alternatively, response to selection may be facilitated if multivariate selection favors new combinations that can be easily achieved by a change in signal strength. On the other hand, if individual target tissues readily “unplug” from a hormone signal in response to selection, then the phenotype may be seen as a loose confederation that responds on a trait-by-trait basis, easily allowing adaptive modification, although perhaps more slowly than if signal variation were the primary mode of evolutionary response. Studies reviewed here and questions for future research address the relative importance of integration and independence by comparing sexes, individuals, and populations. Most attention is devoted to the hormone testosterone (T) and a songbird species, the dark-eyed junco (Junco hyemalis).
doi:10.1093/icb/icp057
PMCID: PMC4012227  PMID: 21665827
5.  Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation 
Behavioral Ecology  2012;23(5):960-969 .
Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat.
doi:10.1093/beheco/ars059
PMCID: PMC3431113  PMID: 22936840
adaptation; boldness; corticosterone; evolution; junco; urbanization
6.  Differential migration and an endocrine response to stress in wintering dark-eyed juncos (Junco hyemalis). 
The dark-eyed junco (junco hyemalis) exhibits differential migration in autumn that, in general, results in females overwintering south of males, and young within each sex overwintering north of older birds. Individuals overwintering at higher latitudes face less predictable and more challenging environmental conditions. Rapid increases in circulating levels of the energy-regulating glucocorticosteroid, corticosterone, occur in response to environmental stressors. To establish whether the strength of acute corticosterone secretion was correlated with the probability of encountering poor environmental conditions, we compared the corticosterone stress response (e.g. initial plasma concentrations at the time of capture and 30 min later) in dark-eyed juncos overwintering in Mississippi (MS), USA, near the southern limit of their wintering range, with juncos overwintering in New York (NY), USA, near the northern limit of their wintering range. During two winters, 22 males and one female were sampled in NY; 13 males, 12 females and one bird of undetermined sex were sampled in MS. Not unexpectedly, NY birds carried greater fat reserves that resulted in a significantly higher value of energetic condition (mass corrected for wing cord cubed). There was no difference between the two winters sampled at either site, nor was there an effect of sex on patterns of corticosterone secretion in MS birds. With sexes pooled, MS and NY birds had similar baseline corticosterone levels. However, as predicted, NY birds exhibited significantly higher corticosterone concentrations 30 min after capture. These results support the hypothesis that birds wintering in less predictable, more extreme environments show a higher amplitude corticosterone response, which may enable them to adjust their behaviour and physiology more rapidly in response to environmental stressors such as storms. Adrenocortical sensitivity may be a part of the physiological milieu associated with differential migration in juncos; whether it results from endogenous differences in the migratory programmes of individuals or from acclimatization to local environmental conditions remains to be determined.
PMCID: PMC1690749  PMID: 11052541
7.  Robust behavioral effects of song playback in the absence of testosterone or corticosterone release 
Hormones and behavior  2012;62(4):418-425.
Some species of songbirds elevate testosterone in response to territorial intrusions while others do not. The search for a general explanation for this interspecific variation in hormonal response to social challenges has been impeded by methodological differences among studies. We asked whether song playback alone is sufficient to bring about elevation in testosterone or corticosterone in the dark-eyed junco (Junco hyemalis), a species that has previously demonstrated significant testosterone elevation in response to a simulated territorial intrusion when song was accompanied by a live decoy. We studied two populations of juncos that differ in length of breeding season (6–8 v. 14–16 weeks), and conducted playbacks of high amplitude, long-range song. In one population, we also played low amplitude, short-range song, a highly potent elicitor of aggression in juncos and many songbirds. We observed strong aggressive responses to both types of song, but no detectable elevation of plasma testosterone or corticosterone in either population. We also measured rise in corticosterone in response to handling post-playback, and found full capacity to elevate corticosterone but no effect of song class (long-range or short-range) on elevation. Collectively, our data suggest that males can mount an aggressive response to playback without a change in testosterone or corticosterone, despite the ability to alter these hormones during other types of social interactions. We discuss the observed decoupling of circulating hormones and aggression in relation to mechanisms of behavior and the cues that may activate the HPA and HPG axes.
doi:10.1016/j.yhbeh.2012.07.009
PMCID: PMC3477244  PMID: 22850247
8.  Neural steroid sensitivity and aggression: comparing individuals of two songbird subspecies 
Journal of evolutionary biology  2013;26(4):820-831.
Hormones coordinate the expression of complex phenotypes and thus may play important roles in evolutionary processes. When populations diverge in hormone-mediated phenotypes, differences may arise via changes in circulating hormones, sensitivity to hormones, or both. Determining the relative importance of signal and sensitivity requires consideration of both inter- and intra-population variation in hormone levels, hormone sensitivity, and phenotype, but such studies are rare, particularly among closely related taxa. We compared males of two subspecies of the dark-eyed junco (Junco hyemalis) for territorial aggression and associations among behavior, circulating testosterone (T), and gene expression of androgen receptor (AR), aromatase (AROM), and estrogen receptor α in three behaviorally relevant brain regions. Thus, we examined the degree to which evolution may shape behavior via changes in plasma T as compared to key sex steroid binding/converting molecules. We found that the white-winged junco (J. h. aikeni) was more aggressive than the smaller, less ornamented Carolina junco (J. h. carolinensis). The subspecies did not differ in circulating testosterone, but did differ significantly in the abundance of AR and AROM mRNA in key areas of the brain. Within populations, both gene expression and circulating T co-varied significantly and positively with individual differences in aggression. Notably, the differences identified between populations were opposite to those predicted by the patterns among individuals within populations. These findings suggest that hormone-phenotype relationships may evolve via multiple pathways, and that changes that have occurred over evolutionary time do not necessarily reflect standing physiological variation on which current evolutionary processes may act.
doi:10.1111/jeb.12094
PMCID: PMC3622748  PMID: 23517519
Testosterone; aggression; androgen receptor; aromatase; individual variation; divergence; hypothalamus; nucleus taeniae; medial amygdala; ventromedial telencephalon
9.  Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds? 
PLoS ONE  2010;5(6):e11315.
Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system.
doi:10.1371/journal.pone.0011315
PMCID: PMC2892510  PMID: 20593026
10.  Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? 
Recently, a shift in preen wax composition, from lower molecular weight monoesters to higher molecular weight diesters, was described for individuals of a sandpiper species (red knot, Calidris canutus) that were about to leave for the tundra breeding grounds. The timing of the shift indicated that diester waxes served as a quality signal during mate choice. Here, this hypothesis is evaluated on the basis of a survey of preen wax composition in 19 sandpiper species. All of these species showed the same shift observed in the high-Arctic breeding red knots. As the shift also occurred in temperate breeding species, it is not specific to tundra-breeding sandpipers. Both sexes produced the diester waxes during the incubation period until hatching, in addition to the short period of courtship, indicating that diesters' functions extend beyond that of a sexually selected 'make-up'. The few non-incubating birds examined (males of curlew sandpipers (C. ferruginea) and ruffs (Philomachus pugnax)) had the lowest likelihood of secreting diesters, indicating a functional role for diester preen waxes during incubation. We propose that diester preen waxes enhance olfactory crypticism at the nest.
doi:10.1098/rspb.2002.2132
PMCID: PMC1691136  PMID: 12396488
11.  Mammalian social odours: attraction and individual recognition 
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.
The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.
doi:10.1098/rstb.2006.1931
PMCID: PMC1764843  PMID: 17118924
amygdala; maternal bonding; olfactory bulb; pregnancy block; social recognition; vomeronasal
12.  De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an ecological model system 
BMC Genomics  2012;13:305.
Background
Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior.
Results
From a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified.
Conclusions
The extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful information for ecological model systems that have historically lacked genomic tools. The junco-specific microarray developed here is allowing investigations of gene expression responses to environmental and hormonal manipulations – extending the historic work on natural history and hormone-mediated phenotypes in this system.
doi:10.1186/1471-2164-13-305
PMCID: PMC3476391  PMID: 22776250
Transcriptome; Aves; pyrosequencing; microarray; Junco; 454 titanium cDNA sequencing; single nucleotide polymorphism.
13.  Costs and Benefits of Competitive Traits in Females: Aggression, Maternal Care and Reproductive Success 
PLoS ONE  2013;8(10):e77816.
Recent research has shown that female expression of competitive traits can be advantageous, providing greater access to limited reproductive resources. In males increased competitive trait expression often comes at a cost, e.g. trading off with parental effort. However, it is currently unclear whether, and to what extent, females also face such tradeoffs, whether the costs associated with that tradeoff overwhelm the potential benefits of resource acquisition, and how environmental factors might alter those relationships. To address this gap, we examine the relationships between aggression, maternal effort, offspring quality and reproductive success in a common songbird, the dark-eyed junco (Junco hyemalis), over two breeding seasons. We found that compared to less aggressive females, more aggressive females spent less time brooding nestlings, but fed nestlings more frequently. In the year with better breeding conditions, more aggressive females produced smaller eggs and lighter hatchlings, but in the year with poorer breeding conditions they produced larger eggs and achieved greater nest success. There was no relationship between aggression and nestling mass after hatch day in either year. These findings suggest that though females appear to tradeoff competitive ability with some forms of maternal care, the costs may be less than previously thought. Further, the observed year effects suggest that costs and benefits vary according to environmental variables, which may help to account for variation in the level of trait expression.
doi:10.1371/journal.pone.0077816
PMCID: PMC3813731  PMID: 24204980
14.  In search of the chemical basis for MHC odourtypes 
Mice can discriminate between chemosignals of individuals based solely on genetic differences confined to the major histocompatibility complex (MHC). Two different sets of compounds have been suggested: volatile compounds and non-volatile peptides. Here, we focus on volatiles and review a number of publications that have identified MHC-regulated compounds in inbred laboratory mice. Surprisingly, there is little agreement among different studies as to the identity of these compounds. One recent approach to specifying MHC-regulated compounds is to study volatile urinary profiles in mouse strains with varying MHC types, genetic backgrounds and different diets. An unexpected finding from these studies is that the concentrations of numerous compounds are influenced by interactions among these variables. As a result, only a few compounds can be identified that are consistently regulated by MHC variation alone. Nevertheless, since trained animals are readily able to discriminate the MHC differences, it is apparent that chemical studies are somehow missing important information underlying mouse recognition of MHC odourtypes. To make progress in this area, we propose a focus on the search for behaviourally relevant odourants rather than a random search for volatiles that are regulated by MHC variation. Furthermore, there is a need to consider a ‘combinatorial odour recognition’ code whereby patterns of volatile metabolites (the basis for odours) specify MHC odourtypes.
doi:10.1098/rspb.2010.0162
PMCID: PMC2894918  PMID: 20356897
MHC odourtypes; volatile chemosignals; genetic variation; environmental variation; combinatorial odour recognition
15.  Effect of Restricted Preen-Gland Access on Maternal Self Maintenance and Reproductive Investment in Mallards 
PLoS ONE  2010;5(10):e13555.
Background
As egg production and offspring care are costly, females should invest resources adaptively into their eggs to optimize current offspring quality and their own lifetime reproductive success. Parasite infections can influence maternal investment decisions due to their multiple negative physiological effects. The act of preening – applying oils with anti-microbial properties to feathers – is thought to be a means by which birds combat pathogens and parasites, but little is known of how preening during the reproductive period (and its expected disease-protecting effects) influences maternal investment decisions at the level of the egg.
Methodology/Principal Findings
Here, we experimentally prevented female mallards (Anas platyrhynchos) from accessing their preen gland during breeding and monitored female immunoresponsiveness (e.g., plasma lysozyme concentration) as well as some egg traits linked to offspring quality (e.g., egg mass, yolk carotenoid content, and albumen lysozyme levels). Females with no access to their preen gland showed an increase in plasma lysozyme level compared to control, normally preening females. In addition, preen-gland-restricted females laid significantly lighter eggs and deposited higher carotenoid concentrations in the yolk compared to control females. Albumen lysozyme activity did not differ significantly between eggs laid by females with or without preen gland access.
Conclusion/Significance
Our results establish a new link between an important avian self-maintenance behaviour and aspects of maternal health and reproduction. We suggest that higher yolk carotenoid levels in eggs laid by preen-gland-restricted females may serve to boost health of offspring that would hatch in a comparatively microbe-rich environment.
doi:10.1371/journal.pone.0013555
PMCID: PMC2965083  PMID: 21048952
16.  Chemosignals, Hormones and Mammalian Reproduction 
Hormones and behavior  2013;63(5):723-741.
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
doi:10.1016/j.yhbeh.2013.03.011
PMCID: PMC3667964  PMID: 23545474
Pheromone; Odor; Scent; Behavior; Physiology; Mammal; Olfactory; Vomeronasal; Sex; Sexual
17.  Mechanistic Drivers of Flexibility in Summit Metabolic Rates of Small Birds 
PLoS ONE  2014;9(7):e101577.
Flexible metabolic phenotypes allow animals to adjust physiology to better fit ecological or environmental demands, thereby influencing fitness. Summit metabolic rate (Msum = maximal thermogenic capacity) is one such flexible trait. Skeletal muscle and heart masses and myocyte metabolic intensity are potential drivers of Msum flexibility in birds. We examined correlations of skeletal muscle and heart masses and pectoralis muscle citrate synthase (CS) activity (an indicator of cellular metabolic intensity) with Msum in house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis) to determine whether these traits are associated with Msum variation. Pectoralis mass was positively correlated with Msum for both species, but no significant correlation remained for either species after accounting for body mass (Mb) variation. Combined flight and leg muscle masses were also not significantly correlated with Msum for either species. In contrast, heart mass was significantly positively correlated with Msum for juncos and nearly so (P = 0.054) for sparrows. Mass-specific and total pectoralis CS activities were significantly positively correlated with Msum for sparrows, but not for juncos. Thus, myocyte metabolic intensity influences Msum variation in house sparrows, although the stronger correlation of total (r = 0.495) than mass-specific (r = 0.378) CS activity with Msum suggests that both pectoralis mass and metabolic intensity impact Msum. In contrast, neither skeletal muscle masses nor pectoralis metabolic intensity varied with Msum in juncos. However, heart mass was associated with Msum variation in both species. These data suggest that drivers of metabolic flexibility are not uniform among bird species.
doi:10.1371/journal.pone.0101577
PMCID: PMC4081579  PMID: 24992186
18.  Sources of variation in HPG axis reactivity and individually consistent elevation of sex steroids in a female songbird 
General and comparative endocrinology  2013;194:10.1016/j.ygcen.2013.09.015.
Understanding sources of individual differences in steroid hormone production has important implications for the evolution of reproductive and social behaviors. In females in particular, little is known about the mechanistic sources of these individual differences, despite established linkages between sex steroids and a variety of fitness-related traits. Using captive female dark-eyed juncos (Junco hyemalis) from two subspecies, we asked how variation in different components of the hypothalamo-pituitary-gonadal (HPG) axis related to variation in testosterone production among females, and we compared females to males in multiple components of the HPG axis. We demonstrated consistent individual differences in testosterone elevation in response to challenges with luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH). These hormone challenges led to more LH production but less testosterone production in females than males, and the sexes differed in some but not all measures of sensitivity to hormones along the HPG axis. Similar to findings in males, variation in testosterone production among females was not related to variation in LH production, gonadal LH-receptor mRNA abundance, or hypothalamic abundance of androgen receptor mRNA or aromatase mRNA. Rather, the primary source of individual variation in circulating steroids appears to the gonad, a conclusion further supported by positive correlations between testosterone and estradiol production. Unlike males, females did not differ by subspecies in any of the endocrine parameters that we assessed, suggesting some degree of independent evolution between the two sexes. Our results highlight the sources of physiological variation that may underlie the evolution of hormone-mediated phenotypes in females.
doi:10.1016/j.ygcen.2013.09.015
PMCID: PMC3852689  PMID: 24090613
testosterone; individual differences; hypothalamo-pituitary-gonadal axis; estrogen
19.  Competitive females are successful females; phenotype, mechanism and selection in a common songbird 
In a variety of taxa, male reproductive success is positively related to expression of costly traits such as large body size, ornaments, armaments, and aggression. These traits are thought to improve male competitive ability, and thus access to limited reproductive resources. Females of many species also express competitive traits. However, we know very little about the consequences of individual variation in competitive traits and the mechanisms that regulate their expression in females. Consequently, it is currently unclear whether females express competitive traits owing to direct selection or as an indirect result of selection on males. Here we examine females of a mildly dimorphic songbird (Junco hyemalis) to determine whether females, show positive covariance in traits (morphology and behavior) that may be important in a competition. We also examine whether trait expression relates either to testosterone (T) in terms of mechanism or to reproductive success in terms of function. We found that larger females were more aggressive and that greater ability to produce T in response to a physiological challenge consisting of a standardized injection of gonadotropin releasing hormone (GnRH) predicted some measures of female body size and aggression. Finally, we found that aggressive females had greater reproductive success. We conclude that testosterone may influence female phenotype and that females may benefit from expressing a competitive phenotype. We also suggest that the mild dimorphism observed in many species may be due in part to direct selection on females rather than simply a correlated response to selection in males.
doi:10.1007/s00265-011-1272-5
PMCID: PMC3278083  PMID: 22345899
competitive phenotype; female aggression; testosterone; Gonadotropin releasing hormone; Junco hyemalis; sexual dimorphism
20.  Two sides of the same coin? Consistency in aggression to conspecifics and predators in a female songbird 
Different forms of aggression have traditionally been treated separately according to function or context (e.g. aggression towards a conspecific versus a predator). However, recent work on individual consistency in behavior predicts that different forms of aggression may be correlated across contexts, suggesting a lack of independence. For nesting birds, aggression towards both conspecifics and nest predators can affect reproductive success, yet the relationship between these behaviors, especially in females, is not known. Here we examine free-living female dark-eyed juncos (Junco hyemalis) and compare their aggressive responses towards three types of simulated intruders near the nest: a same-sex conspecific, an opposite-sex conspecific, and a nest predator. We also examine differences in the strength of response that might relate to the immediacy of the perceived threat the intruder poses for the female or her offspring. We found greater aggression directed towards a predator than a same-sex intruder, and towards a same-sex than an opposite-sex intruder, consistent with a predator being a more immediate threat than a same-sex intruder, followed by an opposite-sex intruder. We also found positive relationships across individuals between responses to a same-sex intruder and a simulated predator, and between responses to a same-sex and an opposite-sex intruder, indicating that individual females are consistent in their relative level of aggression across contexts. If correlated behaviors are mediated by related mechanisms, then different forms of aggression may be expressions of the same behavioral tendency and constrained from evolving independently.
doi:10.1111/j.1439-0310.2011.01932.x
PMCID: PMC3171964  PMID: 21927524
Female aggression; nest defense; behavioral syndrome; personality; Junco; intra- and inter-specific aggression
21.  Coccidial infection does not influence preening behavior in American goldfinches 
Acta Ethologica  2013;17(2):107-111.
Preening behavior in birds is important for the maintenance of thermoregulatory and ornamental functions of plumage. It has been repeatedly demonstrated that birds trade off time between plumage maintenance and other activities. However, the condition-dependent constraints of preening remain virtually unstudied. Here, we present the first experimental test of the hypothesis that intestinal parasite infection impairs preening activity. We studied male American goldfinches (Spinus tristis), a species with carotenoid-based plumage coloration. Following pre-alternate (spring) molt, we manipulated the health of males by infecting some birds with Isospora spp. coccidia and keeping others free of the infection. Although the goldfinches increased preening throughout the captive period, we found no significant effect of coccidial treatment on preening behavior. The effect of coccidia on plumage maintenance may be more pronounced under natural conditions where birds have limited access to food and engage in more activities that might limit time available for preening.
doi:10.1007/s10211-013-0159-z
PMCID: PMC4024122  PMID: 24882939
Feather soiling; Feather grooming; Parasites; Infection; Health
22.  Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict 
PLoS ONE  2013;8(4):e61784.
Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism. Experimental elevation of androgens can modify behavior, physiology, and gene expression, but knowledge of the role of hormones remains incomplete, including how the sexes differ in gene expression in response to hormones. We addressed these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed junco (Junco hyemalis), using a custom microarray. Focusing on two brain regions involved in sexually dimorphic behavior and regulation of hormone secretion, we identified 651 genes that differed in expression by sex in medial amygdala and 611 in hypothalamus. Additionally, we treated individuals of each sex with testosterone implants and identified many genes that may be related to previously identified phenotypic effects of testosterone treatment. Some of these genes relate to previously identified effects of testosterone-treatment and suggest that the multiple effects of testosterone may be mediated by modifying the expression of a small number of genes. Notably, testosterone-treatment tended to alter expression of different genes in each sex: only 4 of the 527 genes identified as significant in one sex or the other were significantly differentially expressed in both sexes. Hormonally regulated gene expression is a key mechanism underlying sexual dimorphism, and our study identifies specific genes that may mediate some of these processes.
doi:10.1371/journal.pone.0061784
PMCID: PMC3627916  PMID: 23613935
23.  Promiscuous mating produces offspring with higher lifetime fitness 
In many species, each female pairs with a single male for the purpose of rearing offspring, but may also engage in extra-pair copulations. Despite the prevalence of such promiscuity, whether and how multiple mating benefits females remains an open question. Multiple mating is typically thought to be favoured primarily through indirect benefits (i.e. heritable effects on the fitness of offspring). This prediction has been repeatedly tested in a variety of species, but the evidence has been equivocal, perhaps because such studies have focused on pre-reproductive survival rather than lifetime fitness of offspring. Here, we show that in a songbird, the dark-eyed junco (Junco hyemalis), both male and female offspring produced by extra-pair fertilizations have higher lifetime reproductive success than do offspring sired within the social pair. Furthermore, adult male offspring sired via extra-pair matings are more likely to sire extra-pair offspring (EPO) themselves, suggesting that fitness benefits to males accrue primarily through enhanced mating success. By contrast, female EPO benefited primarily through enhanced fecundity. Our results provide strong support for the hypothesis that the evolution of extra-pair mating by females is favoured by indirect benefits and shows that such benefits accrue much later in the offspring's life than previously documented.
doi:10.1098/rspb.2011.1547
PMCID: PMC3259935  PMID: 21881136
extra-pair mating; multiple mating; lifetime reproductive success; indirect fitness benefits; sexual selection
24.  Intraspecific Correlations of Basal and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of Endothermy 
PLoS ONE  2012;7(3):e34271.
The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, Msum (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; Msum and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and Msum only) and examined correlations among these variables. We also measured BMR and Msum in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either Msum or MMR in juncos. Moreover, no significant correlation between Msum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and Msum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and Msum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic links between minimal and maximal metabolic output.
doi:10.1371/journal.pone.0034271
PMCID: PMC3313994  PMID: 22479584
25.  Fruit Volatile Analysis Using an Electronic Nose 
Numerous and diverse physiological changes occur during fruit ripening, including the development of a specific volatile blend that characterizes fruit aroma. Maturity at harvest is one of the key factors influencing the flavor quality of fruits and vegetables1. The validation of robust methods that rapidly assess fruit maturity and aroma quality would allow improved management of advanced breeding programs, production practices and postharvest handling.
Over the last three decades, much research has been conducted to develop so-called electronic noses, which are devices able to rapidly detect odors and flavors2-4. Currently there are several commercially available electronic noses able to perform volatile analysis, based on different technologies. The electronic nose used in our work (zNose, EST, Newbury Park, CA, USA), consists of ultra-fast gas chromatography coupled with a surface acoustic wave sensor (UFGC-SAW). This technology has already been tested for its ability to monitor quality of various commodities, including detection of deterioration in apple5; ripeness and rot evaluation in mango6; aroma profiling of thymus species7; C6 volatile compounds in grape berries8; characterization of vegetable oil9 and detection of adulterants in virgin coconut oil10.
This system can perform the three major steps of aroma analysis: headspace sampling, separation of volatile compounds, and detection. In about one minute, the output, a chromatogram, is produced and, after a purging cycle, the instrument is ready for further analysis. The results obtained with the zNose can be compared to those of other gas-chromatographic systems by calculation of Kovats Indices (KI). Once the instrument has been tuned with an alkane standard solution, the retention times are automatically converted into KIs. However, slight changes in temperature and flow rate are expected to occur over time, causing retention times to drift. Also, depending on the polarity of the column stationary phase, the reproducibility of KI calculations can vary by several index units11. A series of programs and graphical interfaces were therefore developed to compare calculated KIs among samples in a semi-automated fashion. These programs reduce the time required for chromatogram analysis of large data sets and minimize the potential for misinterpretation of the data when chromatograms are not perfectly aligned.
We present a method for rapid volatile compound analysis in fruit. Sample preparation, data acquisition and handling procedures are also discussed.
doi:10.3791/3821
PMCID: PMC3460564  PMID: 22491160
Plant Biology;  Issue 61;  zNose;  volatile profiling;  aroma;  Kovats Index;  electronic nose;  gas chromatography;  retention time shift

Results 1-25 (876220)