PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1150422)

Clipboard (0)
None

Related Articles

1.  DNA Methylation Analysis of Chromosome 21 Gene Promoters at Single Base Pair and Single Allele Resolution 
PLoS Genetics  2009;5(3):e1000438.
Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation.
Author Summary
Epigenetics is defined as the inheritance of changes in gene function without changing the DNA sequence. Epigenetic signals comprise methylation of cytosine bases of the DNA and chemical modifications of the histone proteins. DNA methylation plays important roles in development and disease processes. To investigate the biological role of DNA methylation, we analyzed DNA methylation patterns of 190 gene promoter regions on chromosome 21 in five human cell types. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, indicating that DNA methylation acts in a switch-like manner. Consistent with the well-established role of DNA methylation in gene silencing, we found DNA methylation in promoter regions strongly correlated with absence of gene expression and low levels of additional activating epigenetic marks. Although methylation levels of individual cells in one tissue are very similar, we observed differences in DNA methylation when comparing different cell types in 43% of all regions analyzed. This finding is in agreement with a role of DNA methylation in cellular development. We identified three cases of genes that are differentially methylated in both alleles that illustrate the tight interplay of genetic and epigenetic processes.
doi:10.1371/journal.pgen.1000438
PMCID: PMC2653639  PMID: 19325872
2.  A Genome-Wide Screen for Promoter Methylation in Lung Cancer Identifies Novel Methylation Markers for Multiple Malignancies  
PLoS Medicine  2006;3(12):e486.
Background
Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The “rules” governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets.
Methods and Findings
In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5′ CpG islands, are induced from undetectable levels by 5-aza-2′-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors.
Conclusions
By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation pattern we observed for these novel markers suggests that we have identified a partial promoter hypermethylation signature for these common malignancies. These data suggest that while tumors in different tissues vary substantially with respect to gene expression, there may be commonalities in their promoter methylation profiles that represent targets for early detection screening or therapeutic intervention.
John Minna and colleagues report that a group of genes are commonly methylated in primary lung, breast, colon, and prostate cancer.
Editors' Summary
Background.
Tumors or cancers contain cells that have lost many of the control mechanisms that normally regulate their behavior. Unlike normal cells, which only divide to repair damaged tissues, cancer cells divide uncontrollably. They also gain the ability to move round the body and start metastases in secondary locations. These changes in behavior result from alterations in their genetic material. For example, mutations (permanent changes in the sequence of nucleotides in the cell's DNA) in genes known as oncogenes stimulate cells to divide constantly. Mutations in another group of genes—tumor suppressor genes—disable their ability to restrain cell growth. Key tumor suppressor genes are often completely lost in cancer cells. But not all the genetic changes in cancer cells are mutations. Some are “epigenetic” changes—chemical modifications of genes that affect the amount of protein made from them. In cancer cells, methyl groups are often added to CG-rich regions—this is called hypermethylation. These “CpG islands” lie near gene promoters—sequences that control the transcription of DNA into RNA, the template for protein production—and their methylation switches off the promoter. Methylation of the promoter of one copy of a tumor suppressor gene, which often coincides with the loss of the other copy of the gene, is thought to be involved in cancer development.
Why Was This Study Done?
The rules that govern which genes are hypermethylated during the development of different cancer types are not known, but it would be useful to identify any DNA methylation events that occur regularly in common cancers for two reasons. First, specific DNA methylation markers might be useful for the early detection of cancer. Second, identifying these epigenetic changes might reveal cellular pathways that are changed during cancer development and so identify new therapeutic targets. In this study, the researchers have used a systematic biological screen to identify genes that are methylated in many lung, breast, colon, and prostate cancers—all cancers that form in “epithelial” tissues.
What Did the Researchers Do and Find?
The researchers used microarray expression profiling to examine gene expression patterns in several lung cancer and normal lung cell lines. In this technique, labeled RNA molecules isolated from cells are applied to a “chip” carrying an array of gene fragments. Here, they stick to the fragment that represents the gene from which they were made, which allows the genes that the cells express to be catalogued. By comparing the expression profiles of lung cancer cells and normal lung cells before and after treatment with a chemical that inhibits DNA methylation, the researchers identified genes that were methylated in the cancer cells—that is, genes that were expressed in normal cells but not in cancer cells unless methylation was inhibited. 132 of these genes contained CpG islands. The researchers examined the promoters of 45 of these genes in lung cancer cells taken straight from patients and found that 31 of the promoters were methylated in tumor tissues but not in adjacent normal tissues. Finally, the researchers looked at promoter methylation of the eight genes most frequently and specifically methylated in the lung cancer samples in breast, colon, and prostate cancers. Seven of the genes were frequently methylated in both lung and breast cancers; four were extensively methylated in all the tumor types.
What Do These Findings Mean?
These results identify several new genes that are often methylated in four types of epithelial tumor. The observation that these genes are methylated in multiple independent tumors strongly suggests, but does not prove, that loss of expression of the proteins that they encode helps to convert normal cells into cancer cells. The frequency and diverse patterning of promoter methylation in different tumor types also indicates that methylation is not a random event, although what controls the patterns of methylation is not yet known. The identification of these genes is a step toward building a promoter hypermethylation profile for the early detection of human cancer. Furthermore, although tumors in different tissues vary greatly with respect to gene expression patterns, the similarities seen in this study in promoter methylation profiles might help to identify new therapeutic targets common to several cancer types.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030486.
US National Cancer Institute, information for patients on understanding cancer
CancerQuest, information provided by Emory University about how cancer develops
Cancer Research UK, information for patients on cancer biology
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence, background information and latest news about epigenetics
doi:10.1371/journal.pmed.0030486
PMCID: PMC1716188  PMID: 17194187
3.  Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion 
PLoS Genetics  2014;10(3):e1004160.
Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3′UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼7%) and overrepresented in the open sea (∼60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D.
Author Summary
Epigenetic modifications such as DNA methylation are implicated in the development of human disease. However, genome-wide epigenetic analyses in patients with type 2 diabetes (T2D) remain scarce. In this study we aimed to unravel the epigenetic basis of T2D by analyzing DNA methylation of 479,927 CpG sites in human pancreatic islets from T2D and non-diabetic donors. We identified 1,649 CpG sites and 853 genes with differential DNA methylation (fold change 6–59%) in T2D islets. These include reported diabetes loci, such as TCF7L2, FTO and KCNQ1. Furthermore, we found 102 genes that showed both differential DNA methylation and gene expression in T2D islets, including CDKN1A, PDE7B, SEPT9 and EXOC3L2. Finally, we provide functional proof that identified candidate genes directly affect insulin secretion and exocytosis in pancreatic β-cells as well as glucagon secretion in α-cells. Overall, this study provides a detailed map of the methylome in human pancreatic islets and demonstrates that altered DNA methylation in human islets contributes to perturbed hormone secretion and the pathogenesis of T2D.
doi:10.1371/journal.pgen.1004160
PMCID: PMC3945174  PMID: 24603685
4.  CpG Island Methylation in Human Lymphocytes Is Highly Correlated with DNA Sequence, Repeats, and Predicted DNA Structure  
PLoS Genetics  2006;2(3):e26.
CpG island methylation plays an important role in epigenetic gene control during mammalian development and is frequently altered in disease situations such as cancer. The majority of CpG islands is normally unmethylated, but a sizeable fraction is prone to become methylated in various cell types and pathological situations. The goal of this study is to show that a computational epigenetics approach can discriminate between CpG islands that are prone to methylation from those that remain unmethylated. We develop a bioinformatics scoring and prediction method on the basis of a set of 1,184 DNA attributes, which refer to sequence, repeats, predicted structure, CpG islands, genes, predicted binding sites, conservation, and single nucleotide polymorphisms. These attributes are scored on 132 CpG islands across the entire human Chromosome 21, whose methylation status was previously established for normal human lymphocytes. Our results show that three groups of DNA attributes, namely certain sequence patterns, specific DNA repeats, and a particular DNA structure, are each highly correlated with CpG island methylation (correlation coefficients of 0.64, 0.66, and 0.49, respectively). We predicted, and subsequently experimentally examined 12 CpG islands from human Chromosome 21 with unknown methylation patterns and found more than 90% of our predictions to be correct. In addition, we applied our prediction method to analyzing Human Epigenome Project methylation data on human Chromosome 6 and again observed high prediction accuracy. In summary, our results suggest that DNA composition of CpG islands (sequence, repeats, and structure) plays a significant role in predisposing CpG islands for DNA methylation. This finding may have a strong impact on our understanding of changes in CpG island methylation in development and disease.
Synopsis
DNA methylation is the only epigenetic mechanism in eukaryotes that is known to directly modify the DNA. It plays an important role for gene control during development and cell differentiation, and it is a promising therapeutic target in cancer research. While a genome-wide picture of DNA methylation patterns is currently emerging, we have only fragmentary knowledge about the linkage between DNA methylation and other genomic attributes such as DNA sequence and structure, repetitive elements, or sequence conservation. The authors fill this gap by reporting on a comprehensive bioinformatical analysis of DNA methylation on human Chromosome 21—and in part, extending to other regions of the human genome. They report new associations that will help elucidate the functions of DNA methylation along the human genome. Furthermore, the authors show that their findings can be applied to predicting DNA methylation patterns from genome sequence. Such predictions have the potential of speeding up genome-wide epigenetic profiling: It may be possible to focus experimental resources on a few selected areas while bioinformatics procedures are applied to the bulk of the genome.
doi:10.1371/journal.pgen.0020026
PMCID: PMC1386721  PMID: 16520826
5.  Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates 
eLife  2013;2:e00348.
Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution.
DOI: http://dx.doi.org/10.7554/eLife.00348.001
eLife digest
DNA methylation—the addition of a methyl group to cytosine, one of the four bases found in DNA—is a central process in genetics. By preventing genes from being expressed as proteins, DNA methylation is one of a number of epigenetic mechanisms that can determine which proteins are made in different cell types without changing the underlying DNA sequence.
In warm-blooded vertebrates such as mammals most of the genome is methylated, however short regions of non-methylated DNA are known to be associated with gene promoters (regions of DNA that act as binding sites for the enzymes and transcription factors that transcribe the DNA in the gene into RNA). Much of our current understanding of the role of these islands of non-methylated DNA is based on computational predictions rather than experimental data. In cold-blooded vertebrates, for example, computer models often predict that non-methylated islands are not associated with gene promoters, which potentially suggests an evolutionary divergence in the role of methylation amongst vertebrates. However, this idea has not been confirmed by experimental data.
Long et al. have performed experiments to compare the location of non-methylated islands in seven different vertebrate species. In general they find that computational models are not a reliable method for identifying non-methylated islands. Moreover they find that non-methylated islands are a central epigenetic feature of gene promoters in all vertebrates analysed–including three mammals, a bird, a lizard, a frog and a fish—and not just in warm-blooded vertebrates as suggested by computational models. This shows that the epigenetic function of these non-methylated islands has been conserved over more than 450 million years of evolution.
In addition to the non-methylated islands associated with gene promoters, Long et al. identify two other types: intergenic non-methylated islands that are found away from gene promoters and are said to be ‘plastic’ because the DNA in these islands can acquire methyl groups, and ‘broad’ non-methylated islands that span many of the genes that are involved in embryonic development.
By showing that the epigenetic role of non-methylated islands has been conserved over time, and identifying three specific types of island, the work of Long et al. marks an important change in our understanding of epigenetics in vertebrates.
DOI: http://dx.doi.org/10.7554/eLife.00348.002
doi:10.7554/eLife.00348
PMCID: PMC3583005  PMID: 23467541
CpG islands; DNA methylation; Epigenetics; Chromatin; Evolutionary conservation; Chicken; Human; Mouse; Xenopus; Zebrafish
6.  The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers 
PLoS Biology  2010;8(11):e1000506.
Using genome-wide methylation profiles in honey bee queen and worker brains to understand how contrasting organismal outputs are generated from the same genotype.
In honey bees (Apis mellifera) the behaviorally and reproductively distinct queen and worker female castes derive from the same genome as a result of differential intake of royal jelly and are implemented in concert with DNA methylation. To determine if these very different diet-controlled phenotypes correlate with unique brain methylomes, we conducted a study to determine the methyl cytosine (mC) distribution in the brains of queens and workers at single-base-pair resolution using shotgun bisulfite sequencing technology. The whole-genome sequencing was validated by deep 454 sequencing of selected amplicons representing eight methylated genes. We found that nearly all mCs are located in CpG dinucleotides in the exons of 5,854 genes showing greater sequence conservation than non-methylated genes. Over 550 genes show significant methylation differences between queens and workers, revealing the intricate dynamics of methylation patterns. The distinctiveness of the differentially methylated genes is underscored by their intermediate CpG densities relative to drastically CpG-depleted methylated genes and to CpG-richer non-methylated genes. We find a strong correlation between methylation patterns and splicing sites including those that have the potential to generate alternative exons. We validate our genome-wide analyses by a detailed examination of two transcript variants encoded by one of the differentially methylated genes. The link between methylation and splicing is further supported by the differential methylation of genes belonging to the histone gene family. We propose that modulation of alternative splicing is one mechanism by which DNA methylation could be linked to gene regulation in the honey bee. Our study describes a level of molecular diversity previously unknown in honey bees that might be important for generating phenotypic flexibility not only during development but also in the adult post-mitotic brain.
Author Summary
The queen honey bee and her worker sisters do not seem to have much in common. Workers are active and intelligent, skillfully navigating the outside world in search of food for the colony. They never reproduce; that task is left entirely to the much larger and longer-lived queen, who is permanently ensconced within the colony and uses a powerful chemical influence to exert control. Remarkably, these two female castes are generated from identical genomes. The key to each female's developmental destiny is her diet as a larva: future queens are raised on royal jelly. This specialized diet is thought to affect a particular chemical modification, methylation, of the bee's DNA, causing the same genome to be deployed differently. To document differences in this epigenomic setting and hypothesize about its effects on behavior, we performed high-resolution bisulphite sequencing of whole genomes from the brains of queen and worker honey bees. In contrast to the heavily methylated human genome, we found that only a small and specific fraction of the honey bee genome is methylated. Most methylation occurred within conserved genes that provide critical cellular functions. Over 550 genes showed significant methylation differences between the queen and the worker, which may contribute to the profound divergence in behavior. How DNA methylation works on these genes remains unclear, but it may change their accessibility to the cellular machinery that controls their expression. We found a tantalizing clue to a mechanism in the clustering of methylation within parts of genes where splicing occurs, suggesting that methylation could control which of several versions of a gene is expressed. Our study provides the first documentation of extensive molecular differences that may allow honey bees to generate different phenotypes from the same genome.
doi:10.1371/journal.pbio.1000506
PMCID: PMC2970541  PMID: 21072239
7.  The DNA Methylome of Human Peripheral Blood Mononuclear Cells 
PLoS Biology  2010;8(11):e1000533.
Analysis across the genome of patterns of DNA methylation reveals a rich landscape of allele-specific epigenetic modification and consequent effects on allele-specific gene expression.
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.
Author Summary
Epigenetic modifications such as addition of methyl groups to cytosine in DNA play a role in regulating gene expression. To better understand these processes, knowledge of the methylation status of all cytosine bases in the genome (the methylome) is required. DNA methylation can differ between the two gene copies (alleles) in each cell. Such allele-specific methylation (ASM) can be due to parental origin of the alleles (imprinting), X chromosome inactivation in females, and other as yet unknown mechanisms. This may significantly alter the expression profile arising from different allele combinations in different individuals. Using advanced sequencing technology, we have determined the methylome of human peripheral blood mononuclear cells (PBMC). Importantly, the PBMC were obtained from the same male Han Chinese individual whose complete genome had previously been determined. This allowed us, for the first time, to study genome-wide differences in ASM. Our analysis shows that ASM in PBMC is higher than can be accounted for by regions known to undergo parent-of-origin imprinting and frequently (>80%) correlates with allele-specific expression (ASE) of the corresponding gene. In addition, our data reveal a rich landscape of epigenomic variation for 20 genomic features, including regulatory, coding, and non-coding sequences, and provide a valuable resource for future studies. Our work further establishes whole-genome sequencing as an efficient method for methylome analysis.
doi:10.1371/journal.pbio.1000533
PMCID: PMC2976721  PMID: 21085693
8.  Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease 
PLoS Genetics  2014;10(12):e1004813.
Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes.
Author Summary
Epigenetic marks provide information that is not encoded in the primary DNA sequence itself but in modifications of genomic DNA and of the associated proteins. Methylation of genomic DNA at cytosine residues is an important epigenetic modification that is associated with developmental processes, carcinogenesis and other diseases. Genome-wide extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. To address these questions we have determined and compared the genome-wide methylation patterns in heart tissue of two inbred rat strains, the spontaneously hypertensive rat, an animal model of human disease and a control rat strain. Comparison of methylation differences between genetically identical animals from the same strain and differences between animals from different strains allowed us to quantify association of epigenetic and genetic differences. We show that differences in an individual's germline DNA sequence are important determinants of the variability in methylation between individuals. Comparison with previous reports implicates common mechanisms for regulation of cytosine methylation that are highly conserved across species. Finally, we find correlation between a proposed blood biomarker for heart failure and variation in DNA methylation, suggesting a link between germline DNA sequence variation, methylation and a disease-related phenotype.
doi:10.1371/journal.pgen.1004813
PMCID: PMC4256262  PMID: 25474312
9.  Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia 
Molecular Human Reproduction  2013;19(10):697-708.
Pre-eclampsia is a serious complication of pregnancy that can affect both maternal and fetal outcomes. Early-onset pre-eclampsia (EOPET) is a severe form of pre-eclampsia that is associated with altered physiological characteristics and gene expression in the placenta. DNA methylation is a relatively stable epigenetic modification to DNA that can reflect gene expression, and can provide insight into the mechanisms underlying such expression changes. This case–control study focused on DNA methylation and gene expression of whole chorionic villi samples from 20 EOPET placentas and 20 gestational age-matched controls from pre-term births. DNA methylation was also assessed in placentas affected by late-onset pre-eclampsia (LOPET) and normotensive intrauterine growth restriction (nIUGR). The Illumina HumanMethylation450 BeadChip was used to assess DNA methylation at >480 000 cytosine-guanine dinucleotide (CpG) sites. The Illumina HT-12v4 Expression BeadChip was used to assess gene expression of >45 000 transcripts in a subset of cases and controls. DNA methylation analysis by pyrosequencing was used to follow-up the initial findings in four genes with a larger cohort of cases and controls, including nIUGR and LOPET placentas. Bioinformatic analysis was used to identify overrepresentation of gene ontology categories and transcription factor binding motifs. We identified 38 840 CpG sites with significant (false discovery rate <0.01) DNA methylation alterations in EOPET, of which 282 had >12.5% methylation difference compared with the controls. Significant sites were enriched at the enhancers and low CpG density regions of the associated genes and the majority (74.5%) of these sites were hypomethylated in EOPET. EOPET, but not associated clinical features, such as intrauterine growth restriction (IUGR), presented a distinct DNA methylation profile. CpG sites from four genes relevant to pre-eclampsia (INHBA, BHLHE40, SLC2A1 and ADAM12) showed different extent of changes in LOPET and nIUGR. Genome-wide expression in a subset of samples showed that some of the gene expression changes were negatively correlated with DNA methylation changes, particularly for genes that are responsible for angiogenesis (such as EPAS1 and FLT1). Results could be confounded by altered cell populations in abnormal placentas. Larger sample sizes are needed to fully address the possibility of sub-profiles of methylation within the EOPET cohort. Based on DNA methylation profiling, we conclude that there are widespread DNA methylation alterations in EOPET that may be associated with changes in placental function. This property may provide a useful tool for early screening of such placentas. This study identifies DNA methylation changes at many loci previously reported to have altered gene expression in EOPET placentas, as well as in novel biologically relevant genes we confirmed to be differentially expressed. These results may be useful for DNA- methylation-based non-invasive prenatal diagnosis of at-risk pregnancies.
doi:10.1093/molehr/gat044
PMCID: PMC3779005  PMID: 23770704
pre-eclampsia; DNA methylation; placenta; 450 K array
10.  Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks 
PLoS Genetics  2012;8(1):e1002440.
Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.
Author Summary
In mammals, germ-cell–specific methylation patterns and genomic imprints are established throughout large-scale de novo DNA methylation in oogenesis and spermatogenesis. These steps are required for normal germline differentiation and embryonic development; however, current DNA methylation analyses only provide us a partial picture of germ cell methylome. To the best of our knowledge, this is the first study to generate comprehensive maps of DNA methylomes and transcriptomes at single base resolution for mouse germ cells. These methylome maps revealed genome-wide opposing DNA methylation patterns and differential correlation between methylation and gene expression levels in oocyte and sperm genomes. In addition, our results indicate the presence of 2 types of methylation patterns in the oocytes: (i) methylation across the transcribed regions, which might be required for the establishment of maternal methylation imprints and normal embryogenesis, and (ii) retroviral methylation, which might be essential for silencing of retrotransposons and normal oogenesis. We believe that an extension of this work would lead to a better understanding of the epigenetic reprogramming in germline cells and of the role for gene regulations.
doi:10.1371/journal.pgen.1002440
PMCID: PMC3252278  PMID: 22242016
11.  Genomic Distribution and Inter-Sample Variation of Non-CpG Methylation across Human Cell Types 
PLoS Genetics  2011;7(12):e1002389.
DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG) dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative sample set.
Author Summary
Epigenetic modifications including DNA methylation at the position 5 of the cytosine base provide regulatory information to the genome sequence. The primary target of cytosine methylation in mammals is the CpG dinucleotide. However, previous studies in the mouse and more recent work in humans have highlighted the presence of non-CpG methylation in pluripotent cells. Currently, little is known about the role of this type of DNA methylation. We sought to further characterize non-CpG methylation by employing a comprehensive data set of genome-scale methylation maps across various human cell types. Our analysis reveals that non-CpG methylation varies dramatically between pluripotent cells and is closely linked to CpG methylation. Moreover, we show that depletion of the de novo DNA methyltransferases results in a global reduction of non-CpG methylation levels. Taken together, these findings further advance our understanding of cytosine methylation and describe its distribution among a large number of human cell types.
doi:10.1371/journal.pgen.1002389
PMCID: PMC3234221  PMID: 22174693
12.  Analysis of DNA Methylation in a Three-Generation Family Reveals Widespread Genetic Influence on Epigenetic Regulation 
PLoS Genetics  2011;7(8):e1002228.
The methylation of cytosines in CpG dinucleotides is essential for cellular differentiation and the progression of many cancers, and it plays an important role in gametic imprinting. To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS) to somatic DNA from six members of a three-generation family. We observed that 8.1% of heterozygous SNPs are associated with differential methylation in cis, which provides a robust signature for Mendelian transmission and relatedness. The vast majority of differential methylation between homologous chromosomes (>92%) occurs on a particular haplotype as opposed to being associated with the gender of the parent of origin, indicating that genotype affects DNA methylation of far more loci than does gametic imprinting. We found that 75% of genotype-dependent differential methylation events in the family are also seen in unrelated individuals and that overall genotype can explain 80% of the variation in DNA methylation. These events are under-represented in CpG islands, enriched in intergenic regions, and located in regions of low evolutionary conservation. Even though they are generally not in functionally constrained regions, 22% (twice as many as expected by chance) of genes harboring genotype-dependent DNA methylation exhibited allele-specific gene expression as measured by RNA-seq of a lymphoblastoid cell line, indicating that some of these events are associated with gene expression differences. Overall, our results demonstrate that the influence of genotype on patterns of DNA methylation is widespread in the genome and greatly exceeds the influence of imprinting on genome-wide methylation patterns.
Author Summary
DNA methylation is a dynamic epigenetic mark that is essential for mammalian organismal development. DNA methylation levels can be influenced by environment, a chromosome's parental origin, and genome sequence. In this study, we evaluated the impact that DNA sequence has on DNA methylation by analyzing methylation levels in a three-generation family as well as unrelated individuals. By following DNA methylation patterns through the family along with nearby SNPs, we found that allelic differences between chromosomes play a much larger role in determining DNA methylation than the parental origin of the chromosome, indicating that DNA sequence has a larger impact on DNA methylation than gametic imprinting. We also found that allelic differences in DNA methylation found in the family can also be observed in unrelated individuals. In fact, the majority of variation in DNA methylation can be explained by genotype. Our results emphasize the importance of genome sequence in setting patterns of DNA methylation and indicate that genotype will need to be taken into account when assessing DNA methylation in the context of disease.
doi:10.1371/journal.pgen.1002228
PMCID: PMC3154961  PMID: 21852959
13.  Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context 
PLoS Genetics  2009;5(8):e1000602.
Epigenetic control of gene transcription is critical for normal human development and cellular differentiation. While alterations of epigenetic marks such as DNA methylation have been linked to cancers and many other human diseases, interindividual epigenetic variations in normal tissues due to aging, environmental factors, or innate susceptibility are poorly characterized. The plasticity, tissue-specific nature, and variability of gene expression are related to epigenomic states that vary across individuals. Thus, population-based investigations are needed to further our understanding of the fundamental dynamics of normal individual epigenomes. We analyzed 217 non-pathologic human tissues from 10 anatomic sites at 1,413 autosomal CpG loci associated with 773 genes to investigate tissue-specific differences in DNA methylation and to discern how aging and exposures contribute to normal variation in methylation. Methylation profile classes derived from unsupervised modeling were significantly associated with age (P<0.0001) and were significant predictors of tissue origin (P<0.0001). In solid tissues (n = 119) we found striking, highly significant CpG island–dependent correlations between age and methylation; loci in CpG islands gained methylation with age, loci not in CpG islands lost methylation with age (P<0.001), and this pattern was consistent across tissues and in an analysis of blood-derived DNA. Our data clearly demonstrate age- and exposure-related differences in tissue-specific methylation and significant age-associated methylation patterns which are CpG island context-dependent. This work provides novel insight into the role of aging and the environment in susceptibility to diseases such as cancer and critically informs the field of epigenomics by providing evidence of epigenetic dysregulation by age-related methylation alterations. Collectively we reveal key issues to consider both in the construction of reference and disease-related epigenomes and in the interpretation of potentially pathologically important alterations.
Author Summary
The causes and extent of tissue-specific interindividual variation in human epigenomes are underappreciated and, hence, poorly characterized. We surveyed over 200 carefully annotated human tissue samples from ten anatosites at 1,413 CpGs for methylation alterations to appraise the nature of phenotypically, and hence potentially clinically important epigenomic alterations. Within tissue types, across individuals, we found variation in methylation that was significantly related to aging and environmental exposures such as tobacco smoking. Individual variation in age- and exposure-related methylation may significantly contribute to increased susceptibility to several diseases. As the NIH–funded HapMap project is critically contributing to annotating the human reference genome defining normal genetic variability, our work raises key issues to consider in the construction of reference epigenomes. It is well recognized that understanding genetic variation is essential to understanding disease. Our work, and the known interplay of epigenetics and genetics, makes it equally clear that a more complete characterization of epigenetic variation and its sources must be accomplished to reach the goal of a complete understanding of disease. Additional research is absolutely necessary to define the mechanisms controlling epigenomic variation. We have begun to lay the foundations for essential normal tissue controls for comparison to diseased tissue, which will allow the identification of the most crucial disease-related alterations and provide more robust targets for novel treatments.
doi:10.1371/journal.pgen.1000602
PMCID: PMC2718614  PMID: 19680444
14.  Genome-Wide Profiling of DNA Methylation Reveals a Class of Normally Methylated CpG Island Promoters 
PLoS Genetics  2007;3(10):e181.
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X–linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.
Author Summary
About half of all human genes contain a CpG-rich region called a “CpG island” in the 5′ area, often encompassing the promoter and transcription start site of the associated gene. DNA methylation was initially suggested to control tissue-specific gene expression in mammalian cells, but most promoter region CpG islands were found to be unmethylated regardless of tissue specificity of expression. In this study, we discovered an exceptional subset of autosomal genes associated with dense promoter CpG islands that is methylated in normal tissues. We observed tissue-specific gene silencing correlated with hypermethylation in this class of genes, and provided evidence for a direct role of methylation in maintaining the silencing state. Furthermore, we identified five sequence motifs significantly enriched in this class of genes, suggesting the influence of cis-regulatory elements on the establishment and/or stability of DNA methylation. Together, these results provide important new insights into the role of CpG island methylation in normal development and differentiation.
doi:10.1371/journal.pgen.0030181
PMCID: PMC2041996  PMID: 17967063
15.  Function and Evolution of DNA Methylation in Nasonia vitripennis 
PLoS Genetics  2013;9(10):e1003872.
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5′ regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5′ and 3′ UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression.
Author Summary
Insects use methylation to modulate genome function in a different manner from vertebrates. Here, we quantified the global methylation profile in a parasitic wasp species, Nasonia vitripennis, a model with some advantages over ant and honeybee for functional and genetic analyses of methylation, such as short generation time, inbred lines, and inter-fertile species. Using a highly inbred line permitted us to precisely characterize DNA methylation, which is compared to gene expression variation across developmental stages, and contrasted to other insect species. DNA methylation is almost exclusively on the 5′-most 1 kbp coding exons, and ∼1/3 of protein coding genes are methylated. Methylated genes tend to occur in small clusters in the genome. Unlike many organisms, Nasonia leaves nearly all transposable element genes non-methylated. Methylated genes exhibit more uniform expression across developmental stages for both moderately and highly expressed genes, suggesting that DNA methylation is marking the genes for constitutive expression. Among pairs of differentially methylated duplicated genes, the paralogs that lose DNA methylation after duplication in the Nasonia lineage show lower expression and greater specialization of expression. Finally, by comparative analysis, we show that methylated genes are more conserved at three different time scales during evolution.
doi:10.1371/journal.pgen.1003872
PMCID: PMC3794928  PMID: 24130511
16.  Tissue-specific variation in DNA methylation levels along human chromosome 1 
Background
DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Most methods to scan the genome in different tissues for differentially methylated sites have focused on the methylation of CpGs in CpG islands, which are concentrations of CpGs often associated with gene promoters.
Results
Here, we use a methylation profiling strategy that is predominantly responsive to methylation differences outside of CpG islands. The method compares the yield from two samples of size-selected fragments generated by a methylation-sensitive restriction enzyme. We then profile nine different normal tissues from two human donors relative to spleen using a custom array of genomic clones covering the euchromatic portion of human chromosome 1 and representing 8% of the human genome. We observe gross regional differences in methylation states across chromosome 1 between tissues from the same individual, with the most striking differences detected in the comparison of cerebellum and spleen. Profiles of the same tissue from different donors are strikingly similar, as are the profiles of different lobes of the brain. Comparing our results with published gene expression levels, we find that clones exhibiting extreme ratios reflecting low relative methylation are statistically enriched for genes with high expression ratios, and vice versa, in most pairs of tissues examined.
Conclusion
The varied patterns of methylation differences detected between tissues by our methylation profiling method reinforce the potential functional significance of regional differences in methylation levels outside of CpG islands.
doi:10.1186/1756-8935-2-7
PMCID: PMC2706828  PMID: 19505295
17.  A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue 
PLoS Genetics  2013;9(6):e1003572.
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.
Author Summary
Given the important role of epigenetics in gene regulation and disease development, we here present the genome-wide DNA methylation pattern of 476,753 CpG sites in adipose tissue obtained from healthy men. Since environmental factors potentially change metabolism through epigenetic modifications, we examined if a six months exercise intervention alters the DNA methylation pattern as well as gene expression in human adipose tissue. Our results show that global DNA methylation changes and 17,975 individual CpG sites alter the levels of DNA methylation in response to exercise. We also found differential DNA methylation of 39 candidate genes for obesity and type 2 diabetes in human adipose tissue after exercise. Additionally, we provide functional proof that genes, which exhibit both differential DNA methylation and gene expression in human adipose tissue in response to exercise, influence adipocyte metabolism. Together, this study provides the first detailed map of the genome-wide DNA methylation pattern in human adipose tissue and links exercise to altered adipose tissue DNA methylation, potentially affecting adipocyte metabolism.
doi:10.1371/journal.pgen.1003572
PMCID: PMC3694844  PMID: 23825961
18.  Putative Zinc Finger Protein Binding Sites Are Over-Represented in the Boundaries of Methylation-Resistant CpG Islands in the Human Genome 
PLoS ONE  2007;2(11):e1184.
Background
Majority of CpG dinucleotides in mammalian genomes tend to undergo DNA methylation, but most CpG islands are resistant to such epigenetic modification. Understanding about mechanisms that may lead to the methylation resistance of CpG islands is still very poor.
Methodology/Principal Findings
Using the genome-scale in vivo DNA methylation data from human brain, we investigated the flanking sequence features of methylation-resistant CpG islands, and discovered that there are several over-represented putative Transcription Factor Binding Sites (TFBSs) in methylation-resistant CpG islands, and a specific group of zinc finger protein binding sites are over-represented in boundary regions (∼400 bp) flanking such CpG islands. About 77% of the over-represented putative TFBSs are conserved among human, mouse and rat. We also observed the enrichment of 4 histone methylations in methylation-resistant CpG islands or their boundaries.
Conclusions/Significance
Our results suggest a possible mechanism that certain putative zinc finger protein binding sites over-represented in the boundary regions of the methylation-resistant CpG islands may block the spreading of methylation into these islands, and those TFBSs over-represented within the islands may both reinforce the methylation blocking and promote transcription. Some histone modifications may also enhance the immunity of the CpG islands against DNA methylation by augmenting these TFs' binding. We speculate that the dynamical equilibrium between methylation spreading and blocking is likely to be responsible for the establishment and maintenance of the relatively stable DNA methylation pattern in human somatic cells.
doi:10.1371/journal.pone.0001184
PMCID: PMC2065907  PMID: 18030324
19.  DNA methylation presents distinct binding sites for human transcription factors 
eLife  2013;2:e00726.
DNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences. To elucidate the underlying mechanism, we focused on Kruppel-like factor 4 (KLF4), and decoupled its mCpG- and CpG-binding activities via site-directed mutagenesis. Furthermore, KLF4 binds specific methylated or unmethylated motifs in human embryonic stem cells in vivo. Our study suggests that mCpG-dependent TF binding activity is a widespread phenomenon and provides a new framework to understand the role and mechanism of TFs in epigenetic regulation of gene transcription.
DOI: http://dx.doi.org/10.7554/eLife.00726.001
eLife digest
DNA methylation—the addition of a methyl group to a cytosine or adenine base within DNA—has a key role in regulating the expression of genes as proteins. It contributes to processes such as X-inactivation, in which one copy of the X chromosome is silenced in females, and genomic imprinting, in which the expression of a gene depends upon which parent it was inherited from. DNA methylation has also been implicated in the development of cancer. However, the molecular mechanisms by which it produces these effects are not fully understood.
In mammals, the methylation of CpG sites—which consist of a cytosine base next to a guanine base—is typically thought to reduce gene expression by preventing proteins called transcription factors from binding to regions of DNA called promoters. This can occur directly if methylation disrupts interactions between the DNA and the transcription factors, or indirectly if other proteins that bind to the methylated DNA compete with the transcription factors for binding sites. However, only a small number of proteins that bind to methylated DNA have so far been identified.
Now, Hu et al. have screened the entire family of roughly 1300 human transcription factors and 210 co-factors (proteins that interact with transcription factors) for their ability to bind to some 150 different stretches of methylated DNA. They found that 47 of the proteins could bind to methylated CpG sites, with the majority showing a preference for specific DNA sequences. Moreover, some transcription factors and co-factors bind to methylated and non-methylated DNA targets with distinct sequences. These two types of binding are largely independent, as illustrated by the fact that mutations that prevent a transcription factor called KLF4 from binding to methylated DNA do not prevent it binding to unmethylated DNA, and vice versa.
The work of Hu et al. suggests that methylated cytosine can effectively act as a ‘fifth base’—in addition to adenine, cytosine, guanine and thymine—and emphasizes the importance of DNA methylation for regulating gene expression.
DOI: http://dx.doi.org/10.7554/eLife.00726.002
doi:10.7554/eLife.00726
PMCID: PMC3762332  PMID: 24015356
DNA methylation; protein-DNA interactions; protein microarray; transcription factors; epigenetics; transcription regulation; Human
20.  Functional complementation between transcriptional methylation regulation and post-transcriptional microRNA regulation in the human genome 
BMC Genomics  2011;12(Suppl 5):S15.
Background
DNA methylation in the 5' promoter regions of genes and microRNA (miRNA) regulation at the 3' untranslated regions (UTRs) are two major epigenetic regulation mechanisms in most eukaryotes. Both DNA methylation and miRNA regulation can suppress gene expression and their corresponding protein product; thus, they play critical roles in cellular processes. Although there have been numerous investigations of gene regulation by methylation changes and miRNAs, there is no systematic genome-wide examination of their coordinated effects in any organism.
Results
In this study, we investigated the relationship between promoter methylation at the transcription level and miRNA regulation at the post-transcription level by taking advantage of recently released human methylome data and high quality miRNA and other gene annotation data. We found methylation level in the promoter regions and expression level was negatively correlated. Then, we showed that miRNAs tended to target the genes with a low DNA methylation level in their promoter regions. We further demonstrated that this observed pattern was not attributed to the gene expression level, expression broadness, or the number of transcription factor binding sites. Interestingly, we found miRNA target sites were significantly enriched in the genes located in differentially methylated regions or partially methylated domains. Finally, we explored the features of DNA methylation and miRNA regulation in cancer genes and found cancer genes tended to have low methylation level and more miRNA target sites.
Conclusion
This is the first genome-wide investigation of the combined regulation of gene expression. Our results supported a complementary regulation between DNA methylation (transcriptional level) and miRNA function (post-transcriptional level) in the human genome. The results were helpful for our understanding of the evolutionary forces towards organisms' complexity beyond traditional sequence level investigation.
doi:10.1186/1471-2164-12-S5-S15
PMCID: PMC3287497  PMID: 22369656
21.  Aberrant DNA Methylation of OLIG1, a Novel Prognostic Factor in Non-Small Cell Lung Cancer 
PLoS Medicine  2007;4(3):e108.
Background
Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset.
Methods and Findings
In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels.
Conclusions
Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77–0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Christopher Plass and colleagues find thatOLIG1 expression correlates with survival in lung cancer patients and suggest that it could be used in deciding which patients are likely to benefit from more aggressive therapy.
Editors' Summary
Background.
Lung cancer is the commonest cause of cancer-related death worldwide. Most cases are of a type called non-small cell lung cancer (NSCLC). Like other cancers, treatment of NCSLC depends on the “TNM stage” at which the cancer is detected. Staging takes into account the size and local spread of the tumor (its T classification), whether nearby lymph nodes contain tumor cells (its N classification), and whether tumor cells have spread (metastasized) throughout the body (its M classification). Stage I tumors are confined to the lung and are removed surgically. Stage II tumors have spread to nearby lymph nodes and are treated with a combination of surgery and chemotherapy. Stage III tumors have spread throughout the chest, and stage IV tumors have metastasized around the body; patients with both of these stages are treated with chemotherapy alone. About 70% of patients with stage I or II lung cancer, but only 2% of patients with stage IV lung cancer, survive for five years after diagnosis.
Why Was This Study Done?
TNM staging is the best way to predict the likely outcome (prognosis) for patients with NSCLC, but survival times for patients with stage I and II tumors vary widely. Another prognostic marker—maybe a “molecular signature”—that could distinguish patients who are likely to respond to treatment from those whose cancer will inevitably progress would be very useful. Unlike normal cells, cancer cells divide uncontrollably and can move around the body. These behavioral changes are caused by alterations in the pattern of proteins expressed by the cells. But what causes these alterations? The answer in some cases is “epigenetic changes” or chemical modifications of genes. In cancer cells, methyl groups are aberrantly added to GC-rich gene regions. These so-called “CpG islands” lie near gene promoters (sequences that control the transcription of DNA into mRNA, the template for protein production), and their methylation stops the promoters working and silences the gene. In this study, the researchers have investigated whether aberrant methylation patterns vary between NSCLC subtypes and whether specific aberrant methylations are associated with survival and can, therefore, be used prognostically.
What Did the Researchers Do and Find?
The researchers used “restriction landmark genomic scanning” (RLGS) to catalog global aberrant DNA methylation patterns in human lung tumor samples. In RLGS, DNA is cut into fragments with a restriction enzyme (a protein that cuts at specific DNA sequences), end-labeled, and separated using two-dimensional gel electrophoresis to give a pattern of spots. Because methylation stops some restriction enzymes cutting their target sequence, normal lung tissue and lung tumor samples yield different patterns of spots. The researchers used these patterns to identify 47 DNA methylation targets (many in CpG islands) that together distinguished between adenocarcinomas and squamous cell carcinomas, two major types of NSCLCs. Next, they measured mRNA production from the genes with the greatest difference in methylation between adenocarcinomas and squamous cell carcinomas. OLIG1 (the gene that encodes a protein involved in nerve cell development) had one of the highest differences in mRNA production between these tumor types. Furthermore, three-quarters of NSCLCs had reduced or no expression of OLIG1 protein and, when the researchers analyzed the association between OLIG1 protein expression and overall survival in patients with NSCLC, reduced OLIG1 protein expression was associated with reduced survival.
What Do These Findings Mean?
These findings indicate that different types of NSCLC can be distinguished by examining their aberrant methylation patterns. This suggests that the establishment of different DNA methylation patterns might be related to the cell type from which the tumors developed. Alternatively, the different aberrant methylation patterns might reflect the different routes that these cells take to becoming tumor cells. This research identifies a potential new prognostic marker for NSCLC by showing that OLIG1 protein expression correlates with overall survival in patients with NSCLC. This correlation needs to be tested in a clinical setting to see if adding OLIG1 expression to the current prognostic parameters can lead to better treatment choices for early-stage lung cancer patients and ultimately improve these patients' overall survival.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040108.
Patient and professional information on lung cancer, including staging (in English and Spanish), is available from the US National Cancer Institute
The MedlinePlus encyclopedia has pages on non-small cell lung cancer (in English and Spanish)
Cancerbackup provides patient information on lung cancer
CancerQuest, provided by Emory University, has information about how cancer develops (in English, Spanish, Chinese and Russian)
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence gives background information and the latest news about epigenetics (in several European languages)
doi:10.1371/journal.pmed.0040108
PMCID: PMC1831740  PMID: 17388669
22.  A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci 
PLoS Biology  2008;6(1):e22.
CpG islands (CGIs) are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%–8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.
Author Summary
The human genome contains about 22,000 genes, each encoding one of the proteins required for human life. A particular cell type (e.g., blood, skin, etc.) expresses a specific subset of protein genes and silences the remainder. To shed light on the mechanisms that cause genes to be activated or shut down, we studied DNA sequences called “CpG islands” (CGIs). These sequences are found at over half of all human genes and can exist in either the active or silent state depending on the presence or absence of methyl groups on the DNA. We devised a method for purifying all CGIs and showed that, unexpectedly, only half occur at the beginning of genes near the promoter, the rest occurring within or between genes. Notably, methylation of CGIs causes stable gene silencing. We tested 17,000 CGIs in four human tissues and found that 6%–8% were methylated in each. Genes whose protein products play an essential role during embryonic development were preferentially methylated, suggesting that gene expression during development could be regulated by CGI methylation.
CpG island methylation, an epigenetic phenomenon usually associated with abnormality in disease, is little characterised in the context of "normal" human cells. Here we highlight tissue-specific CpG Island methylation, which frequently associates with developmental genes.
doi:10.1371/journal.pbio.0060022
PMCID: PMC2214817  PMID: 18232738
23.  Passive and active DNA methylation and the interplay with genetic variation in gene regulation 
eLife  2013;2:e00523.
DNA methylation is an essential epigenetic mark whose role in gene regulation and its dependency on genomic sequence and environment are not fully understood. In this study we provide novel insights into the mechanistic relationships between genetic variation, DNA methylation and transcriptome sequencing data in three different cell-types of the GenCord human population cohort. We find that the association between DNA methylation and gene expression variation among individuals are likely due to different mechanisms from those establishing methylation-expression patterns during differentiation. Furthermore, cell-type differential DNA methylation may delineate a platform in which local inter-individual changes may respond to or act in gene regulation. We show that unlike genetic regulatory variation, DNA methylation alone does not significantly drive allele specific expression. Finally, inferred mechanistic relationships using genetic variation as well as correlations with TF abundance reveal both a passive and active role of DNA methylation to regulatory interactions influencing gene expression.
DOI: http://dx.doi.org/10.7554/eLife.00523.001
eLife digest
Variations occur throughout our genome. These variations can cause genes to be expressed (switched on) in slightly different ways among individuals. Moreover, the same gene can also be expressed in different ways in different cells within an individual. A third level of variation is supplied by epigenetic markers: these are molecules that bind to the DNA at specific points and can have profound effects on the expression of nearby genes. One such epigenetic marker is the addition of a methyl group to a cytosine base, a process that is known as DNA methylation.
DNA methylation usually happens when a cytosine base is next to a guanine base, forming a CpG site. In mammals, most CpG sites have methyl groups attached, although regions with a lot of CpG sites (called CpG islands) are mostly unmethylated. Initial studies suggested that methylation prevented particular genes from being expressed, but more recent work has indicated that methylation can be associated with both reduced and increased expression of genes. Moreover, it is not clear if this association is active (i.e., changes in methylation drive changes in gene expression) or passive (DNA methylation is the result of gene regulation).
Now, Gutierrez-Arcelus et al. have carried out a large-scale study to clarify the relationships between three different types of gene-related variations among individuals. They extracted fibroblasts, T-cells and lymphoblastoid cells from the umbilical cords of 204 babies, and analysed them for variations in DNA sequence, gene expression and DNA methylation. Their results show that the associations between the three are more complex than was previously thought.
Gutierrez-Arcelus et al. show that the mechanisms that control the association between the variations in DNA methylation and gene expression in individuals are likely to be different to those that are responsible for the establishment of methylation patterns during the process of cell differentiation. They also find that the association between DNA methylation and gene expression can be either active or passive, and can depend on the context in which they occur in our genome. Finally, where the two copies or alleles of a gene are not equally expressed in a given cell, the difference in expression is primarily regulated by DNA sequence variation, with DNA methylation having little or no role on its own. Equally complex interactions and effects are expected in further studies of genetic and epigenetic variation.
DOI: http://dx.doi.org/10.7554/eLife.00523.002
doi:10.7554/eLife.00523
PMCID: PMC3673336  PMID: 23755361
methylation; gene regulation; epigenetics; genome variation; Human
24.  Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics 
Addiction Biology  2011;16(3):499-509.
The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single-nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG-SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl-PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol-dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG-SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl-PFC of alcoholics, methylation levels of the C, non-risk variant of 3′-untranslated region (3′-UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA-binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism-associated PDYN 3′-UTR CpG-SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non-risk allele(s) to develop alcohol dependence.
doi:10.1111/j.1369-1600.2011.00323.x
PMCID: PMC3391609  PMID: 21521424
alcohol dependence; CpG-SNPs; DNA methylation; epigenetics; prodynorphin; single-nucleotide polymorphisms
25.  Progressive Region-Specific De Novo Methylation of the p16 CpG Island in Primary Human Mammary Epithelial Cell Strains during Escape from M0 Growth Arrest 
Molecular and Cellular Biology  1999;19(8):5642-5651.
CpG island methylation plays an important role in normal cellular processes, such as genomic imprinting and X-chromosome inactivation, as well as in abnormal processes, such as neoplasia. However, the dynamics of de novo CpG island methylation, during which a CpG island is converted from an unmethylated, active state to a densely methylated, inactive state, are largely unknown. It is unclear whether the development of de novo CpG island methylation is a progressive process, in which a subset of CpG sites are initially methylated with a subsequent increase in methylation density, or a single event, in which the initial methylation event encompasses the entire CpG island. The tumor suppressor gene p16/CDKN2a/INK4a (p16) is inactivated by CpG island methylation during neoplastic progression in a variety of human cancers. We investigated the development of methylation in the p16 CpG island in primary human mammary epithelial cell strains during escape from mortality stage 0 (M0) growth arrest. The methylation status of 47 CpG sites in the p16 CpG island on individual DNA molecules was determined by sequencing PCR clones of bisulfite-treated genomic DNA. The p16 CpG island was initially methylated at a subset of sites in three discrete regions in association with p16 transcriptional repression and escape from M0 growth arrest. With continued passage, methylation gradually increased in density and methylation expanded to sites in adjacent regions. Thus, de novo methylation in the p16 CpG island is a progressive process that is neither site specific nor completely random but instead is region specific. Our results suggest that early detection of methylation in the CpG island of the p16 gene will require methylation analysis of the three regions and that the identification of region-specific methylation patterns in other genes may be essential for an accurate assessment of methylation-mediated transcriptional silencing.
PMCID: PMC84416  PMID: 10409753

Results 1-25 (1150422)