PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1342201)

Clipboard (0)
None

Related Articles

1.  Brain cancer prognosis: independent validation of a clinical bioinformatics approach 
Translational and evidence based medicine can take advantage of biotechnology advances that offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. The clinical information hidden in these data can be clarified with clinical bioinformatics approaches. We have recently proposed a method to analyze different layers of high-throughput (omic) data to preserve the emergent properties that appear in the cellular system when all molecular levels are interacting. We show here that this method applied to brain cancer data can uncover properties (i.e. molecules related to protective versus risky features in different types of brain cancers) that have been independently validated as survival markers, with potential important application in clinical practice.
doi:10.1186/2043-9113-2-2
PMCID: PMC3296594  PMID: 22297051
glioblastoma; survival; system; emergent property; high-throughput biology
2.  Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques 
By integrating genotype information, microRNA transcript abundances and mRNA expression levels, Eric Schadt and colleagues provide insights into the genetic basis of microRNA gene expression and the role of microRNAs within the liver gene-regulatory network.
This article demonstrates how integrative genomics techniques can be used to investigate novel classes of RNA molecules. Moreover, it represents one of the first examinations of the genetic basis of variation in miRNA gene expression.Our results suggest that miRNA transcript abundances are under more complex regulation than previously observed for mRNA abundances.We also demonstrate that miRNAs typically exist as highly connected hub nodes and function as key sensors within the liver transcriptional network.Additionally, our results provide support for two key hypotheses—namely, that miRNAs can act cooperatively or redundantly to regulate a given pathway, and that miRNAs play a subtle role by dampening expression of their target gene through the use of feedback loops.
Since their discovery less than two decades ago, microRNAs (miRNAs) have repeatedly been shown to play a regulatory role in important biological processes. These small single-stranded molecules have been found to regulate multiple pathways—such as developmental timing in worms; fat metabolism in flies; and stress response in plants—and have been established as key regulatory molecules with potential widespread influence on both fundamental biology and various diseases. In the past decade, a new approach referred to by a number of names (‘integrative genomics', ‘systems genetics' or ‘genetical genomics') has shown increasing levels of success in elucidating the complex relationships found in gene regulatory networks. This approach leverages multiple layers of information (such as genotype, gene expression and phenotype) to infer causal associations that are then used for a number of different purposes, including identifying drivers of diseases and characterizing molecular networks. More importantly, many of the causal relationships that have been identified using this approach have been experimentally tested and verified. By integrating miRNA transcript abundances with messenger RNA (mRNA) expression data and genetic data, we have demonstrated how integrative genomics approaches can be used to characterize the global role played by miRNAs within complex gene regulatory networks. Overall, we investigated approximately 30% of the registered mouse miRNAs with a focus on liver networks. Our analysis reveals that miRNAs exist as highly connected hub nodes and function as key sensors within the gene regulatory network. Further comparisons between the regulatory loci contributing to the variation observed in miRNA and mRNA expression levels indicate that while miRNAs are controlled by more loci than have previously been observed for mRNAs, the contribution from each locus is on average smaller for miRNAs. We also provide evidence supporting two key hypotheses in the field: (i) miRNAs can act cooperatively or redundantly to regulate a given pathway; and (ii) miRNAs may regulate expression of their target gene through the use of feedback loops.
Integrative genomics and genetics approaches have proven to be a useful tool in elucidating the complex relationships often found in gene regulatory networks. More importantly, a number of studies have provided the necessary experimental evidence confirming the validity of the causal relationships inferred using such an approach. By integrating messenger RNA (mRNA) expression data with microRNA (miRNA) (i.e. small non-coding RNA with well-established regulatory roles in a myriad of biological processes) expression data, we show how integrative genomics approaches can be used to characterize the role played by approximately a third of registered mouse miRNAs within the context of a liver gene regulatory network. Our analysis reveals that the transcript abundances of miRNAs are subject to regulatory control by many more loci than previously observed for mRNA expression. Moreover, our results indicate that miRNAs exist as highly connected hub-nodes and function as key sensors within the transcriptional network. We also provide evidence supporting the hypothesis that miRNAs can act cooperatively or redundantly to regulate a given pathway and that miRNAs play a subtle role by dampening expression of their target gene through the use of feedback loops.
doi:10.1038/msb.2011.23
PMCID: PMC3130556  PMID: 21613979
causal associations; eQTL mapping; expression QTL; microRNA
3.  Analyzing miRNA co-expression networks to explore TF-miRNA regulation 
BMC Bioinformatics  2009;10:163.
Background
Current microRNA (miRNA) research in progress has engendered rapid accumulation of expression data evolving from microarray experiments. Such experiments are generally performed over different tissues belonging to a specific species of metazoan. For disease diagnosis, microarray probes are also prepared with tissues taken from similar organs of different candidates of an organism. Expression data of miRNAs are frequently mapped to co-expression networks to study the functions of miRNAs, their regulation on genes and to explore the complex regulatory network that might exist between Transcription Factors (TFs), genes and miRNAs. These directions of research relating miRNAs are still not fully explored, and therefore, construction of reliable and compatible methods for mining miRNA co-expression networks has become an emerging area. This paper introduces a novel method for mining the miRNA co-expression networks in order to obtain co-expressed miRNAs under the hypothesis that these might be regulated by common TFs.
Results
Three co-expression networks, configured from one patient-specific, one tissue-specific and a stem cell-based miRNA expression data, are studied for analyzing the proposed methodology. A novel compactness measure is introduced. The results establish the statistical significance of the sets of miRNAs evolved and the efficacy of the self-pruning phase employed by the proposed method. All these datasets yield similar network patterns and produce coherent groups of miRNAs. The existence of common TFs, regulating these groups of miRNAs, is empirically tested. The results found are very promising. A novel visual validation method is also proposed that reflects the homogeneity as well as statistical properties of the grouped miRNAs. This visual validation method provides a promising and statistically significant graphical tool for expression analysis.
Conclusion
A heuristic mining methodology that resembles a clustering motivation is proposed in this paper. However, there remains a basic difference between the mining method and a clustering approach. The heuristic approach can produce priority modules (PM) from an miRNA co-expression network, by employing a self-pruning phase, which are analyzed for statistical and biological significance. The mining algorithm minimizes the space/time complexity of the analysis, and also handles noise in the data. In addition, the mining method reveals promising results in the unsupervised analysis of TF-miRNA regulation.
doi:10.1186/1471-2105-10-163
PMCID: PMC2707367  PMID: 19476620
4.  Evidence for Antisense Transcription Associated with MicroRNA Target mRNAs in Arabidopsis 
PLoS Genetics  2009;5(4):e1000457.
Antisense transcription is a pervasive phenomenon, but its source and functional significance is largely unknown. We took an expression-based approach to explore microRNA (miRNA)-related antisense transcription by computational analyses of published whole-genome tiling microarray transcriptome and deep sequencing small RNA (smRNA) data. Statistical support for greater abundance of antisense transcription signatures and smRNAs was observed for miRNA targets than for paralogous genes with no miRNA cleavage site. Antisense smRNAs were also found associated with MIRNA genes. This suggests that miRNA-associated “transitivity” (production of small interfering RNAs through antisense transcription) is more common than previously reported. High-resolution (3 nt) custom tiling microarray transcriptome analysis was performed with probes 400 bp 5′ upstream and 3′ downstream of the miRNA cleavage sites (direction relative to the mRNA) for 22 select miRNA target genes. We hybridized RNAs labeled from the smRNA pathway mutants, including hen1-1, dcl1-7, hyl1-2, rdr6-15, and sgs3-14. Results showed that antisense transcripts associated with miRNA targets were mainly elevated in hen1-1 and sgs3-14 to a lesser extent, and somewhat reduced in dcl11-7, hyl11-2, or rdr6-15 mutants. This was corroborated by semi-quantitative reverse transcription PCR; however, a direct correlation of antisense transcript abundance in MIR164 gene knockouts was not observed. Our overall analysis reveals a more widespread role for miRNA-associated transitivity with implications for functions of antisense transcription in gene regulation. HEN1 and SGS3 may be links for miRNA target entry into different RNA processing pathways.
Author Summary
Antisense transcription is a pervasive but poorly understood phenomenon in a wide variety of organisms. We have found evidence for a novel source of antisense transcription in Arabidopsis thaliana associated with miRNA targets via computational analyses of published whole-genome tiling microarray data, deep sequencing smRNA datasets, and from custom high-resolution (3 nt) tiling microarray analysis. Our data show increased antisense transcription for select miRNA targets in the hua enhancer1-1 (hen1-1), a smRNA methyltransferase mutant, and the suppressor of gene silencing3-14 (sgs3-14) mutant that affects post-transcriptional gene silencing and leaf development. Additional results suggest that miRNA targets and MIRNA genes are subject to the activities of both the miRNA and RNA silencing pathways in which HEN1 and SGS3 may represent associated nodes. The analysis of sense–antisense transcripts using high-resolution tiling microarrays and genetic mutants provides a precise and sensitive means to study epigenetic activities. Our method of mining expression data of plant miRNAs targets and smRNAs is potentially applicable to the identification of epigenetic targets in metazoans, where computational methods for prediction of miRNAs and their targets lack power because of sequence degeneracy, and to identify loci producing antisense transcripts by triggers other than miRNA-directed cleavage.
doi:10.1371/journal.pgen.1000457
PMCID: PMC2664332  PMID: 19381263
5.  microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma 
A moderate loss of miR-122 function correlates with up-regulation of seed-matched genes and down-regulation of mitochondrially localized genes in both human hepatocellular carcinoma and in normal mice treated with anti-miR-122 antagomir.Putative direct targets up-regulated with loss of miR-122 and secondary targets down-regulated with loss of miR-122 are conserved between human beings and mice and are rapidly regulated in vitro in response to miR-122 over- and under-expression.Loss of miR-122 secondary target expression in either tumorous or adjacent non-tumorous tissue predicts poor survival of heptatocellular carcinoma patients.
Hepatocellular carcinoma (HCC) is one of the most aggressive human malignancies, common in Asia, Africa, and in areas with endemic infections of hepatitis-B or -C viruses (HBV or HCV) (But et al, 2008). Globally, the 5-year survival rate of HCC is <5% and about 600 000 HCC patients die each year. The high mortality associated with this disease is mainly attributed to the failure to diagnose HCC patients at an early stage and a lack of effective therapies for patients with advanced stage HCC. Understanding the relationships between phenotypic and molecular changes in HCC is, therefore, of paramount importance for the development of improved HCC diagnosis and treatment methods.
In this study, we examined mRNA and microRNA (miRNA)-expression profiles of tumor and adjacent non-tumor liver tissue from HCC patients. The patient population was selected from a region of endemic HBV infection, and HBV infection appears to contribute to the etiology of HCC in these patients. A total of 96 HCC patients were included in the study, of which about 88% tested positive for HBV antigen; patients testing positive for HCV antigen were excluded. Among the 220 miRNAs profiled, miR-122 was the most highly expressed miRNA in liver, and its expression was decreased almost two-fold in HCC tissue relative to adjacent non-tumor tissue, confirming earlier observations (Lagos-Quintana et al, 2002; Kutay et al, 2006; Budhu et al, 2008).
Over 1000 transcripts were correlated and over 1000 transcripts were anti-correlated with miR-122 expression. Consistent with the idea that transcripts anti-correlated with miR-122 are potential miR-122 targets, the most highly anti-correlated transcripts were highly enriched for the presence of the miR-122 central seed hexamer, CACTCC, in the 3′UTR. Although the complete set of negatively correlated genes was enriched for cell-cycle genes, the subset of seed-matched genes had no significant KEGG Pathway annotation, suggesting that miR-122 is unlikely to directly regulate the cell cycle in these patients. In contrast, transcripts positively correlated with miR-122 were not enriched for 3′UTR seed matches to miR-122. Interestingly, these 1042 transcripts were enriched for genes coding for mitochondrially localized proteins and for metabolic functions.
To analyze the impact of loss of miR-122 in vivo, silencing of miR-122 was performed by antisense inhibition (anti-miR-122) in wild-type mice (Figure 3). As with the genes negatively correlated with miR-122 in HCC patients, no significant biological annotation was associated with the seed-matched genes up-regulated by anti-miR-122 in mouse livers. The most significantly enriched biological annotation for anti-miR-122 down-regulated genes, as for positively correlated genes in HCC, was mitochondrial localization; the down-regulated mitochondrial genes were enriched for metabolic functions. Putative direct and downstream targets with orthologs on both the human and mouse microarrays showed significant overlap for regulations in the same direction. These overlaps defined sets of putative miR-122 primary and secondary targets. The results were further extended in the analysis of a separate dataset from 180 HCC, 40 cirrhotic, and 6 normal liver tissue samples (Figure 4), showing anti-correlation of proposed primary and secondary targets in non-healthy tissues.
To validate the direct correlation between miR-122 and some of the primary and secondary targets, we determined the expression of putative targets after transfection of miR-122 mimetic into PLC/PRF/5 HCC cells, including the putative direct targets SMARCD1 and MAP3K3 (MEKK3), a target described in the literature, CAT-1 (SLC7A1), and three putative secondary targets, PPARGC1A (PGC-1α) and succinate dehydrogenase subunits A and B. As expected, the putative direct targets showed reduced expression, whereas the putative secondary target genes showed increased expression in cells over-expressing miR-122 (Figure 4).
Functional classification of genes using the total ancestry method (Yu et al, 2007) identified PPARGC1A (PGC-1α) as the most connected secondary target. PPARGC1A has been proposed to function as a master regulator of mitochondrial biogenesis (Ventura-Clapier et al, 2008), suggesting that loss of PPARGC1A expression may contribute to the loss of mitochondrial gene expression correlated with loss of miR-122 expression. To further validate the link of miR-122 and PGC-1α protein, we transfected PLC/PRF/5 cells with miR-122-expression vector, and observed an increase in PGC-1α protein levels. Importantly, transfection of both miR-122 mimetic and miR-122-expression vector significantly reduced the lactate content of PLC/PRF/5 cells, whereas anti-miR-122 treatment increased lactate production. Together, the data support the function of miR-122 in mitochondrial metabolic functions.
Patient survival was not directly associated with miR-122-expression levels. However, miR-122 secondary targets were expressed at significantly higher levels in both tumor and adjacent non-tumor tissues among survivors as compared with deceased patients, providing supporting evidence for the potential relevance of loss of miR-122 function in HCC patient morbidity and mortality.
Overall, our findings reveal potentially new biological functions for miR-122 in liver physiology. We observed decreased expression of miR-122, a liver-specific miRNA, in HBV-associated HCC, and loss of miR-122 seemed to correlate with the decrease of mitochondrion-related metabolic pathway gene expression in HCC and in non-tumor liver tissues, a result that is consistent with the outcome of treatment of mice with anti-miR-122 and is of prognostic significance for HCC patients. Further investigation will be conducted to dissect the regulatory function of miR-122 on mitochondrial metabolism in HCC and to test whether increasing miR-122 expression can improve mitochondrial function in liver and perhaps in liver tumor tissues. Moreover, these results support the idea that primary targets of a given miRNA may be distributed over a variety of functional categories while resulting in a coordinated secondary response, potentially through synergistic action (Linsley et al, 2007).
Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)–gene interaction network in carcinogenesis, we examined their genome-wide expression profiles in 96 pairs of tumor/non-tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-122 is under-expressed in HCC and that increased expression of miR-122 seed-matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR-122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti-correlation of miR-122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR-122 with antagomir treatment followed by gene-expression microarray analysis. In vitro miR-122 data further provided a direct link between induction of miR-122-controlled genes and impairment of mitochondrial metabolism. In conclusion, miR-122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.
doi:10.1038/msb.2010.58
PMCID: PMC2950084  PMID: 20739924
hepatocellular carcinoma; microarray; miR-122; mitochondrial; survival
6.  Reduced Expression of Brain-Enriched microRNAs in Glioblastomas Permits Targeted Regulation of a Cell Death Gene 
PLoS ONE  2011;6(9):e24248.
Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs) made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK) gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.
doi:10.1371/journal.pone.0024248
PMCID: PMC3166303  PMID: 21912681
7.  A regression model approach to enable cell morphology correction in high-throughput flow cytometry 
Large variations in cell size and shape can undermine traditional gating methods for analyzing flow cytometry data. Correcting for these effects enables analysis of high-throughput data sets, including >5000 yeast samples with diverse cell morphologies.
The regression model approach corrects for the effects of cell morphology on fluorescence, as well as an extremely small and restrictive gate, but without removing any of the cells.In contrast to traditional gating, this approach enables the quantitative analysis of high-throughput flow cytometry experiments, since the regression model can compare between biological samples that show no or little overlap in terms of the morphology of the cells.The analysis of a high-throughput yeast flow cytometry data set consisting of >5000 biological samples identified key proteins that affect the time and intensity of the bifurcation event that happens after the carbon source transition from glucose to fatty acids. Here, some yeast cells undergo major structural changes, while others do not.
Flow cytometry is a widely used technique that enables the measurement of different optical properties of individual cells within large populations of cells in a fast and automated manner. For example, by targeting cell-specific markers with fluorescent probes, flow cytometry is used to identify (and isolate) cell types within complex mixtures of cells. In addition, fluorescence reporters can be used in conjunction with flow cytometry to measure protein, RNA or DNA concentration within single cells of a population.
One of the biggest advantages of this technique is that it provides information of how each cell behaves instead of just measuring the population average. This can be essential when analyzing complex samples that consist of diverse cell types or when measuring cellular responses to stimuli. For example, there is an important difference between a 50% expression increase of all cells in a population after stimulation and a 100% increase in only half of the cells, while the other half remains unresponsive. Another important advantage of flow cytometry is automation, which enables high-throughput studies with thousands of samples and conditions. However, current methods are confounded by populations of cells that are non-uniform in terms of size and granularity. Such variability affects the emitted fluorescence of the cell and adds undesired variability when estimating population fluorescence. This effect also frustrates a sensible comparison between conditions, where not only fluorescence but also cell size and granularity may be affected.
Traditionally, this problem has been addressed by using ‘gates' that restrict the analysis to cells with similar morphological properties (i.e. cell size and cell granularity). Because cells inside the gate are morphologically similar to one another, they will show a smaller variability in their response within the population. Moreover, applying the same gate in all samples assures that observed differences between these samples are not due to differential cell morphologies.
Gating, however, comes with costs. First, since only a subgroup of cells is selected, the final number of cells analyzed can be significantly reduced. This means that in order to have sufficient statistical power, more cells have to be acquired, which, if even possible in the first place, increases the time and cost of the experiment. Second, finding a good gate for all samples and conditions can be challenging if not impossible, especially in cases where cellular morphology changes dramatically between conditions. Finally, gating is a very user-dependent process, where both the size and shape of the gate are determined by the researcher and will affect the outcome, introducing subjectivity in the analysis that complicates reproducibility.
In this paper, we present an alternative method to gating that addresses the issues stated above. The method is based on a regression model containing linear and non-linear terms that estimates and corrects for the effect of cell size and granularity on the observed fluorescence of each cell in a sample. The corrected fluorescence thus becomes ‘free' of the morphological effects.
Because the model uses all cells in the sample, it assures that the corrected fluorescence is an accurate representation of the sample. In addition, the regression model can predict the expected fluorescence of a sample in areas where there are no cells. This makes it possible to compare between samples that have little overlap with good confidence. Furthermore, because the regression model is automated, it is fully reproducible between labs and conditions. Finally, it allows for a rapid analysis of big data sets containing thousands of samples.
To probe the validity of the model, we performed several experiments. We show how the regression model is able to remove the morphological-associated variability as well as an extremely small and restrictive gate, but without the caveat of removing cells. We test the method in different organisms (yeast and human) and applications (protein level detection, separation of mixed subpopulations). We then apply this method to unveil new biological insights in the mechanistic processes involved in transcriptional noise.
Gene transcription is a process subjected to the randomness intrinsic to any molecular event. Although such randomness may seem to be undesirable for the cell, since it prevents consistent behavior, there are situations where some degree of randomness is beneficial (e.g. bet hedging). For this reason, each gene is tuned to exhibit different levels of randomness or noise depending on its functions. For core and essential genes, the cell has developed mechanisms to lower the level of noise, while for genes involved in the response to stress, the variability is greater.
This gene transcription tuning can be determined at many levels, from the architecture of the transcriptional network, to epigenetic regulation. In our study, we analyze the latter using the response of yeast to the presence of fatty acid in the environment. Fatty acid can be used as energy by yeast, but it requires major structural changes and commitments. We have observed that at the population level, there is a bifurcation event whereby some cells undergo these changes and others do not. We have analyzed this bifurcation event in mutants for all the non-essential epigenetic regulators in yeast and identified key proteins that affect the time and intensity of this bifurcation. Even though fatty acid triggers major morphological changes in the cell, the regression model still makes it possible to analyze the over 5000 flow cytometry samples in this data set in an automated manner, whereas a traditional gating approach would be impossible.
Cells exposed to stimuli exhibit a wide range of responses ensuring phenotypic variability across the population. Such single cell behavior is often examined by flow cytometry; however, gating procedures typically employed to select a small subpopulation of cells with similar morphological characteristics make it difficult, even impossible, to quantitatively compare cells across a large variety of experimental conditions because these conditions can lead to profound morphological variations. To overcome these limitations, we developed a regression approach to correct for variability in fluorescence intensity due to differences in cell size and granularity without discarding any of the cells, which gating ipso facto does. This approach enables quantitative studies of cellular heterogeneity and transcriptional noise in high-throughput experiments involving thousands of samples. We used this approach to analyze a library of yeast knockout strains and reveal genes required for the population to establish a bimodal response to oleic acid induction. We identify a group of epigenetic regulators and nucleoporins that, by maintaining an ‘unresponsive population,' may provide the population with the advantage of diversified bet hedging.
doi:10.1038/msb.2011.64
PMCID: PMC3202802  PMID: 21952134
flow cytometry; high-throughput experiments; statistical regression model; transcriptional noise
8.  A microRNA activity map of human mesenchymal tumors: connections to oncogenic pathways; an integrative transcriptomic study 
BMC Genomics  2012;13:332.
Background
MicroRNAs (miRNAs) are nucleic acid regulators of many human mRNAs, and are associated with many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic pathways in mesenchymal tumors – a very heterogeneous class of malignancies.
Results
Using a computational method, we identified differentially activated miRNAs between 77 normal tissue specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence alterations which may explain differential activity. We then analyzed miRNA activity changes related to the RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation. Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may attenuate their own biogenesis.
Conclusions
Our study represents the first gene expression-based investigation of miRNA regulatory activity in human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic data are reproducible and biologically informative in cancer. We identified an association between RAS signaling and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity. Finally, our study highlights the value of systems level integrative miRNA/mRNA assessment with high-throughput genomic data, and the applicability of paraffin-tissue-derived RNA for validation of novel findings.
doi:10.1186/1471-2164-13-332
PMCID: PMC3443663  PMID: 22823907
MicroRNA; Microarray; RAS; Mesenchymal tumors; MicroRNA biogenesis
9.  Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data 
PLoS Computational Biology  2011;7(11):e1002190.
We present a network framework for analyzing multi-level regulation in higher eukaryotes based on systematic integration of various high-throughput datasets. The network, namely the integrated regulatory network, consists of three major types of regulation: TF→gene, TF→miRNA and miRNA→gene. We identified the target genes and target miRNAs for a set of TFs based on the ChIP-Seq binding profiles, the predicted targets of miRNAs using annotated 3′UTR sequences and conservation information. Making use of the system-wide RNA-Seq profiles, we classified transcription factors into positive and negative regulators and assigned a sign for each regulatory interaction. Other types of edges such as protein-protein interactions and potential intra-regulations between miRNAs based on the embedding of miRNAs in their host genes were further incorporated. We examined the topological structures of the network, including its hierarchical organization and motif enrichment. We found that transcription factors downstream of the hierarchy distinguish themselves by expressing more uniformly at various tissues, have more interacting partners, and are more likely to be essential. We found an over-representation of notable network motifs, including a FFL in which a miRNA cost-effectively shuts down a transcription factor and its target. We used data of C. elegans from the modENCODE project as a primary model to illustrate our framework, but further verified the results using other two data sets. As more and more genome-wide ChIP-Seq and RNA-Seq data becomes available in the near future, our methods of data integration have various potential applications.
Author Summary
The precise control of gene expression lies at the heart of many biological processes. In eukaryotes, the regulation is performed at multiple levels, mediated by different regulators such as transcription factors and miRNAs, each distinguished by different spatial and temporal characteristics. These regulators are further integrated to form a complex regulatory network responsible for the orchestration. The construction and analysis of such networks is essential for understanding the general design principles. Recent advances in high-throughput techniques like ChIP-Seq and RNA-Seq provide an opportunity by offering a huge amount of binding and expression data. We present a general framework to combine these types of data into an integrated network and perform various topological analyses, including its hierarchical organization and motif enrichment. We find that the integrated network possesses an intrinsic hierarchical organization and is enriched in several network motifs that include both transcription factors and miRNAs. We further demonstrate that the framework can be easily applied to other species like human and mouse. As more and more genome-wide ChIP-Seq and RNA-Seq data are going to be generated in the near future, our methods of data integration have various potential applications.
doi:10.1371/journal.pcbi.1002190
PMCID: PMC3219617  PMID: 22125477
10.  Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control 
Combining translating ribosome affinity purification with RNA-seq for cell-specific profiling of translating RNAs in developing flowers.Cell type comparisons of cell type-specific hormone responses, promoter motifs, coexpressed cognate binding factor candidates, and splicing isoforms.Widespread post-transcriptional regulation at both the intron splicing and translational stages.A new class of noncoding RNAs associated with polysomes.
What constitutes a differentiated cell type? How much do cell types differ in their transcription of genes? The development and functions of tissues rely on constant interactions among distinct and nonequivalent cell types. Answering these questions will require quantitative information on transcriptomes, proteomes, protein–protein interactions, protein–nucleic acid interactions, and metabolomes at cellular resolution. The systems approaches emerging in biology promise to explain properties of biological systems based on genome-wide measurements of expression, interaction, regulation, and metabolism. To facilitate a systems approach, it is essential first to capture such components in a global manner, ideally at cellular resolution.
Recently, microarray analysis of transcriptomes has been extended to a cellular level of resolution by using laser microdissection or fluorescence-activated sorting (for review, see Nelson et al, 2008). These methods have been limited by stresses associated with cellular separation and isolation procedures, and biases associated with mandatory RNA amplification steps. A newly developed method, translating ribosome affinity purification (TRAP; Zanetti et al, 2005; Heiman et al, 2008; Mustroph et al, 2009), circumvents these problems by epitopetagging a ribosomal protein in specific cellular domains to selectively purify polysomes. We combined TRAP with deep sequencing, which we term TRAP-seq, to provide cell-level spatiotemporal maps for Arabidopsis early floral development at single-base resolution.
Flower development in Arabidopsis has been studied extensively and is one of the best understood aspects of plant development (for review, see Krizek and Fletcher, 2005). Genetic analysis of homeotic mutants established the ABC model, in which three classes of regulatory genes, A, B and C, work in a combinatorial manner to confer organ identities of four whorls (Coen and Meyerowitz, 1991). Each class of regulatory gene is expressed in a specific and evolutionarily conserved domain, and the action of the class A, B and C genes is necessary for specification of organ identity (Figure 1A).
Using TRAP-seq, we purified cell-specific translating mRNA populations, which we and others call the translatome, from the A, B and C domains of early developing flowers, in which floral patterning and the specification of floral organs is established. To achieve temporal specificity, we used a floral induction system to facilitate collection of early stage flowers (Wellmer et al, 2006). The combination of TRAP-seq with domain-specific promoters and this floral induction system enabled fine spatiotemporal isolation of translating mRNA in specific cellular domains, and at specific developmental stages.
Multiple lines of evidence confirmed the specificity of this approach, including detecting the expression in expected domains but not in other domains for well-studied flower marker genes and known physiological functions (Figures 1B–D and 2A–C). Furthermore, we provide numerous examples from flower development in which a spatiotemporal map of rigorously comparable cell-specific translatomes makes possible new views of the properties of cell domains not evident in data obtained from whole organs or tissues, including patterns of transcription and cis-regulation, new physiological differences among cell domains and between flower stages, putative hormone-active centers, and splicing events specific for flower domains (Figure 2A–D). Such findings may provide new targets for reverse genetics studies and may aid in the formulation and validation of interaction and pathway networks.
Beside cellular heterogeneity, the transcriptome is regulated at several steps through the life of mRNA molecules, which are not directly available through traditional transcriptome profiling of total mRNA abundance. By comparing the translatome and transcriptome, we integratively profiled two key posttranscriptional control points, intron splicing and translation state. From our translatome-wide profiling, we (i) confirmed that both posttranscriptional regulation control points were used by a large portion of the transcriptome; (ii) identified a number of cis-acting features within the coding or noncoding sequences that correlate with splicing or translation state; and (iii) revealed correlation between each regulation mechanism and gene function. Our transcriptome-wide surveys have highlighted target genes transcripts of which are probably under extensive posttranscriptional regulation during flower development.
Finally, we reported the finding of a large number of polysome-associated ncRNAs. About one-third of all annotated ncRNA in the Arabidopsis genome were observed co-purified with polysomes. Coding capacity analysis confirmed that most of them are real ncRNA without conserved ORFs. The group of polysome-associated ncRNA reported in this study is a potential new addition to the expanding riboregulator catalog; they could have roles in translational regulation during early flower development.
Determining both the expression levels of mRNA and the regulation of its translation is important in understanding specialized cell functions. In this study, we describe both the expression profiles of cells within spatiotemporal domains of the Arabidopsis thaliana flower and the post-transcriptional regulation of these mRNAs, at nucleotide resolution. We express a tagged ribosomal protein under the promoters of three master regulators of flower development. By precipitating tagged polysomes, we isolated cell type-specific mRNAs that are probably translating, and quantified those mRNAs through deep sequencing. Cell type comparisons identified known cell-specific transcripts and uncovered many new ones, from which we inferred cell type-specific hormone responses, promoter motifs and coexpressed cognate binding factor candidates, and splicing isoforms. By comparing translating mRNAs with steady-state overall transcripts, we found evidence for widespread post-transcriptional regulation at both the intron splicing and translational stages. Sequence analyses identified structural features associated with each step. Finally, we identified a new class of noncoding RNAs associated with polysomes. Findings from our profiling lead to new hypotheses in the understanding of flower development.
doi:10.1038/msb.2010.76
PMCID: PMC2990639  PMID: 20924354
Arabidopsis; flower; intron; transcriptome; translation
11.  miRFANs: an integrated database for Arabidopsis thaliana microRNA function annotations 
BMC Plant Biology  2012;12:68.
Background
Plant microRNAs (miRNAs) have been revealed to play important roles in developmental control, hormone secretion, cell differentiation and proliferation, and response to environmental stresses. However, our knowledge about the regulatory mechanisms and functions of miRNAs remains very limited. The main difficulties lie in two aspects. On one hand, the number of experimentally validated miRNA targets is very limited and the predicted targets often include many false positives, which constrains us to reveal the functions of miRNAs. On the other hand, the regulation of miRNAs is known to be spatio-temporally specific, which increases the difficulty for us to understand the regulatory mechanisms of miRNAs.
Description
In this paper we present miRFANs, an online database for Arabidopsis thalianamiRNA function annotations. We integrated various type of datasets, including miRNA-target interactions, transcription factor (TF) and their targets, expression profiles, genomic annotations and pathways, into a comprehensive database, and developed various statistical and mining tools, together with a user-friendly web interface. For each miRNA target predicted by psRNATarget, TargetAlign and UEA target-finder, or recorded in TarBase and miRTarBase, the effect of its up-regulated or down-regulated miRNA on the expression level of the target gene is evaluated by carrying out differential expression analysis of both miRNA and targets expression profiles acquired under the same (or similar) experimental condition and in the same tissue. Moreover, each miRNA target is associated with gene ontology and pathway terms, together with the target site information and regulating miRNAs predicted by different computational methods. These associated terms may provide valuable insight for the functions of each miRNA.
Conclusion
First, a comprehensive collection of miRNA targets for Arabidopsis thaliana provides valuable information about the functions of plant miRNAs. Second, a highly informative miRNA-mediated genetic regulatory network is extracted from our integrative database. Third, a set of statistical and mining tools is equipped for analyzing and mining the database. And fourth, a user-friendly web interface is developed to facilitate the browsing and analysis of the collected data.
doi:10.1186/1471-2229-12-68
PMCID: PMC3489716  PMID: 22583976
12.  Genome-Wide Transcriptional Profiling Reveals MicroRNA-Correlated Genes and Biological Processes in Human Lymphoblastoid Cell Lines 
PLoS ONE  2009;4(6):e5878.
Background
Expression level of many genes shows abundant natural variation in human populations. The variations in gene expression are believed to contribute to phenotypic differences. Emerging evidence has shown that microRNAs (miRNAs) are one of the key regulators of gene expression. However, past studies have focused on the miRNA target genes and used loss- or gain-of-function approach that may not reflect natural association between miRNA and mRNAs.
Methodology/Principal Findings
To examine miRNA regulatory effect on global gene expression under endogenous condition, we performed pair-wise correlation coefficient analysis on expression levels of 366 miRNAs and 14,174 messenger RNAs (mRNAs) in 90 immortalized lymphoblastoid cell lines, and observed significant correlations between the two species of RNA transcripts. We identified a total of 7,207 significantly correlated miRNA-mRNA pairs (false discovery rate q<0.01). Of those, 4,085 pairs showed positive correlations while 3,122 pairs showed negative correlations. Gene ontology analyses on the miRNA-correlated genes revealed significant enrichments in several biological processes related to cell cycle, cell communication and signal transduction. Individually, each of three miRNAs (miR-331, -98 and -33b) demonstrated significant correlation with the genes in cell cycle-related biological processes, which is consistent with important role of miRNAs in cell cycle regulation.
Conclusions/Significance
This study demonstrates feasibility of using naturally expressed transcript profiles to identify endogenous correlation between miRNA and miRNA. By applying this genome-wide approach, we have identified thousands of miRNA-correlated genes and revealed potential role of miRNAs in several important cellular functions. The study results along with accompanying data sets will provide a wealth of high-throughput data to further evaluate the miRNA-regulated genes and eventually in phenotypic variations of human populations.
doi:10.1371/journal.pone.0005878
PMCID: PMC2691578  PMID: 19517021
13.  The Role of the Toxicologic Pathologist in the Post-Genomic Era# 
Journal of Toxicologic Pathology  2013;26(2):105-110.
An era can be defined as a period in time identified by distinctive character, events, or practices. We are now in the genomic era. The pre-genomic era: There was a pre-genomic era. It started many years ago with novel and seminal animal experiments, primarily directed at studying cancer. It is marked by the development of the two-year rodent cancer bioassay and the ultimate realization that alternative approaches and short-term animal models were needed to replace this resource-intensive and time-consuming method for predicting human health risk. Many alternatives approaches and short-term animal models were proposed and tried but, to date, none have completely replaced our dependence upon the two-year rodent bioassay. However, the alternative approaches and models themselves have made tangible contributions to basic research, clinical medicine and to our understanding of cancer and they remain useful tools to address hypothesis-driven research questions. The pre-genomic era was a time when toxicologic pathologists played a major role in drug development, evaluating the cancer bioassay and the associated dose-setting toxicity studies, and exploring the utility of proposed alternative animal models. It was a time when there was shortage of qualified toxicologic pathologists. The genomic era: We are in the genomic era. It is a time when the genetic underpinnings of normal biological and pathologic processes are being discovered and documented. It is a time for sequencing entire genomes and deliberately silencing relevant segments of the mouse genome to see what each segment controls and if that silencing leads to increased susceptibility to disease. What remains to be charted in this genomic era is the complex interaction of genes, gene segments, post-translational modifications of encoded proteins, and environmental factors that affect genomic expression. In this current genomic era, the toxicologic pathologist has had to make room for a growing population of molecular biologists. In this present era newly emerging DVM and MD scientists enter the work arena with a PhD in pathology often based on some aspect of molecular biology or molecular pathology research. In molecular biology, the almost daily technological advances require one’s complete dedication to remain at the cutting edge of the science. Similarly, the practice of toxicologic pathology, like other morphological disciplines, is based largely on experience and requires dedicated daily examination of pathology material to maintain a well-trained eye capable of distilling specific information from stained tissue slides - a dedicated effort that cannot be well done as an intermezzo between other tasks. It is a rare individual that has true expertise in both molecular biology and pathology. In this genomic era, the newly emerging DVM-PhD or MD-PhD pathologist enters a marketplace without many job opportunities in contrast to the pre-genomic era. Many face an identity crisis needing to decide to become a competent pathologist or, alternatively, to become a competent molecular biologist. At the same time, more PhD molecular biologists without training in pathology are members of the research teams working in drug development and toxicology. How best can the toxicologic pathologist interact in the contemporary team approach in drug development, toxicology research and safety testing? Based on their biomedical training, toxicologic pathologists are in an ideal position to link data from the emerging technologies with their knowledge of pathobiology and toxicology. To enable this linkage and obtain the synergy it provides, the bench-level, slide-reading expert pathologist will need to have some basic understanding and appreciation of molecular biology methods and tools. On the other hand, it is not likely that the typical molecular biologist could competently evaluate and diagnose stained tissue slides from a toxicology study or a cancer bioassay. The post-genomic era: The post-genomic era will likely arrive approximately around 2050 at which time entire genomes from multiple species will exist in massive databases, data from thousands of robotic high throughput chemical screenings will exist in other databases, genetic toxicity and chemical structure-activity-relationships will reside in yet other databases. All databases will be linked and relevant information will be extracted and analyzed by appropriate algorithms following input of the latest molecular, submolecular, genetic, experimental, pathology and clinical data. Knowledge gained will permit the genetic components of many diseases to be amenable to therapeutic prevention and/or intervention. Much like computerized algorithms are currently used to forecast weather or to predict political elections, computerized sophisticated algorithms based largely on scientific data mining will categorize new drugs and chemicals relative to their health benefits versus their health risks for defined human populations and subpopulations. However, this form of a virtual toxicity study or cancer bioassay will only identify probabilities of adverse consequences from interaction of particular environmental and/or chemical/drug exposure(s) with specific genomic variables. Proof in many situations will require confirmation in intact in vivo mammalian animal models. The toxicologic pathologist in the post-genomic era will be the best suited scientist to confirm the data mining and its probability predictions for safety or adverse consequences with the actual tissue morphological features in test species that define specific test agent pathobiology and human health risk.
doi:10.1293/tox.26.105
PMCID: PMC3695332  PMID: 23914052
genomic era; history of toxicologic pathology; molecular biology
14.  Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties 
BMC Systems Biology  2013;7:14.
Background
High-throughput (omic) data have become more widespread in both quantity and frequency of use, thanks to technological advances, lower costs and higher precision. Consequently, computational scientists are confronted by two parallel challenges: on one side, the design of efficient methods to interpret each of these data in their own right (gene expression signatures, protein markers, etc.) and, on the other side, realization of a novel, pressing request from the biological field to design methodologies that allow for these data to be interpreted as a whole, i.e. not only as the union of relevant molecules in each of these layers, but as a complex molecular signature containing proteins, mRNAs and miRNAs, all of which must be directly associated in the results of analyses that are able to capture inter-layers connections and complexity.
Results
We address the latter of these two challenges by testing an integrated approach on a known cancer benchmark: the NCI-60 cell panel. Here, high-throughput screens for mRNA, miRNA and proteins are jointly analyzed using factor analysis, combined with linear discriminant analysis, to identify the molecular characteristics of cancer. Comparisons with separate (non-joint) analyses show that the proposed integrated approach can uncover deeper and more precise biological information. In particular, the integrated approach gives a more complete picture of the set of miRNAs identified and the Wnt pathway, which represents an important surrogate marker of melanoma progression. We further test the approach on a more challenging patient-dataset, for which we are able to identify clinically relevant markers.
Conclusions
The integration of multiple layers of omics can bring more information than analysis of single layers alone. Using and expanding the proposed integrated framework to integrate omic data from other molecular levels will allow researchers to uncover further systemic information. The application of this approach to a clinically challenging dataset shows its promising potential.
doi:10.1186/1752-0509-7-14
PMCID: PMC3610285  PMID: 23418673
Multi-omic; Emergent property; Factor analysis; Linear discriminant analysis; NCI-60 cell panel
15.  Highly Dynamic and Sex-Specific Expression of microRNAs During Early ES Cell Differentiation 
PLoS Genetics  2009;5(8):e1000620.
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of the mammalian blastocyst. Cellular differentiation entails loss of pluripotency and gain of lineage-specific characteristics. However, the molecular controls that govern the differentiation process remain poorly understood. We have characterized small RNA expression profiles in differentiating ES cells as a model for early mammalian development. High-throughput 454 pyro-sequencing was performed on 19–30 nt RNAs isolated from undifferentiated male and female ES cells, as well as day 2 and 5 differentiating derivatives. A discrete subset of microRNAs (miRNAs) largely dominated the small RNA repertoire, and the dynamics of their accumulation could be readily used to discriminate pluripotency from early differentiation events. Unsupervised partitioning around meloids (PAM) analysis revealed that differentiating ES cell miRNAs can be divided into three expression clusters with highly contrasted accumulation patterns. PAM analysis afforded an unprecedented level of definition in the temporal fluctuations of individual members of several miRNA genomic clusters. Notably, this unravelled highly complex post-transcriptional regulations of the key pluripotency miR-290 locus, and helped identify miR-293 as a clear outlier within this cluster. Accordingly, the miR-293 seed sequence and its predicted cellular targets differed drastically from those of the other abundant cluster members, suggesting that previous conclusions drawn from whole miR-290 over-expression need to be reconsidered. Our analysis in ES cells also uncovered a striking male-specific enrichment of the miR-302 family, which share the same seed sequence with most miR-290 family members. Accordingly, a miR-302 representative was strongly enriched in embryonic germ cells derived from primordial germ cells of male but not female mouse embryos. Identifying the chromatin remodelling and E2F-dependent transcription repressors Ari4a and Arid4b as additional targets of miR-302 and miR-290 supports and possibly expands a model integrating possible overlapping functions of the two miRNA families in mouse cell totipotency during early development. This study demonstrates that small RNA sampling throughout early ES cell differentiation enables the definition of statistically significant expression patterns for most cellular miRNAs. We have further shown that the transience of some of these miRNA patterns provides highly discriminative markers of particular ES cell states during their differentiation, an approach that might be broadly applicable to the study of early mammalian development.
Author Summary
The discovery of the first microRNA (lin-4) in C. elegans in 1993 and the increasing realization that small RNAs are at the heart of many biological processes have led to a revolution in our thinking about development and disease. In animals, several hundred microRNAs (miRNAs) have been identified that regulate diverse biological processes ranging from cell metabolism to cell differentiation and growth, apoptosis, and cancer. Moreover, it has been shown that many miRNAs are characterized by highly specific spatial and temporal expression patterns supporting their role in such processes. However, the dynamics of small RNA patterns in male and female embryonic stem (ES) cells in the course of early differentiation has not been investigated so far. Our work represents the first study of this kind. Notably, we have identified new classes of miRNAs that show extremely defined temporal profiles during ES cell differentiation, as well as sex-specificity. Our results are of broad interest and importance because they raise the power of ES cells in defining the repertoire of small RNAs and their dynamics in mammals, and underline the importance of integrating miRNA expression patterns into the transcription factor networks and epigenomic maps defined in ES cells in order to provide a better understanding of the control of pluripotency and lineage commitment.
doi:10.1371/journal.pgen.1000620
PMCID: PMC2725319  PMID: 19714213
16.  Antagonism Pattern Detection between MicroRNA and Target Expression in Ewing’s Sarcoma 
PLoS ONE  2012;7(7):e41770.
MicroRNAs (miRNAs) have emerged as fundamental regulators that silence gene expression at the post-transcriptional and translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes. The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it has been applied to analyze expression data from Ewing’s sarcoma patients. The antagonism relationship is evaluated as a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA binding site motifs in their 3′UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing’s sarcoma disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms.
doi:10.1371/journal.pone.0041770
PMCID: PMC3404966  PMID: 22848594
17.  Microarray and deep sequencing cross-platform analysis of the mirRNome and isomiR variation in response to epidermal growth factor 
BMC Genomics  2013;14:371.
Background
Epidermal Growth Factor (EGF) plays an important function in the regulation of cell growth, proliferation, and differentiation by binding to its receptor (EGFR) and providing cancer cells with increased survival responsiveness. Signal transduction carried out by EGF has been extensively studied at both transcriptional and post-transcriptional levels. Little is known about the involvement of microRNAs (miRNAs) in the EGF signaling pathway. miRNAs have emerged as major players in the complex networks of gene regulation, and cancer miRNA expression studies have evidenced a direct involvement of miRNAs in cancer progression.
Results
In this study, we have used an integrative high content analysis approach to identify the specific miRNAs implicated in EGF signaling in HeLa cells as potential mediators of cancer mediated functions. We have used microarray and deep-sequencing technologies in order to obtain a global view of the EGF miRNA transcriptome with a robust experimental cross-validation. By applying a procedure based on Rankprod tests, we have delimited a solid set of EGF-regulated miRNAs. After validating regulated miRNAs by reverse transcription quantitative PCR, we have derived protein networks and biological functions from the predicted targets of the regulated miRNAs to gain insight into the potential role of miRNAs in EGF-treated cells. In addition, we have analyzed sequence heterogeneity due to editing relative to the reference sequence (isomiRs) among regulated miRNAs.
Conclusions
We propose that the use of global genomic miRNA cross-validation derived from high throughput technologies can be used to generate more reliable datasets inferring more robust networks of co-regulated predicted miRNA target genes.
doi:10.1186/1471-2164-14-371
PMCID: PMC3680220  PMID: 23724959
18.  Ago HITS-CLIP Expands Understanding of Kaposi's Sarcoma-associated Herpesvirus miRNA Function in Primary Effusion Lymphomas 
PLoS Pathogens  2012;8(8):e1002884.
KSHV is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and a subset of multicentricCastleman's disease (MCD). The fact that KSHV-encoded miRNAs are readily detectable in all KSHV-associated tumors suggests a potential role in viral pathogenesis and tumorigenesis. MiRNA-mediated regulation of gene expression is a complex network with each miRNA having many potential targets, and to date only few KSHV miRNA targets have been experimentally determined. A detailed understanding of KSHV miRNA functions requires high-through putribonomics to globally analyze putative miRNA targets in a cell type-specific manner. We performed Ago HITS-CLIP to identify viral and cellular miRNAs and their cognate targets in two latently KSHV-infected PEL cell lines. Ago HITS-CLIP recovered 1170 and 950 cellular KSHVmiRNA targets from BCBL-1 and BC-3, respectively. Importantly, enriched clusters contained KSHV miRNA seed matches in the 3′UTRs of numerous well characterized targets, among them THBS1, BACH1, and C/EBPβ. KSHV miRNA targets were strongly enriched for genes involved in multiple pathways central for KSHV biology, such as apoptosis, cell cycle regulation, lymphocyte proliferation, and immune evasion, thus further supporting a role in KSHV pathogenesis and potentially tumorigenesis. A limited number of viral transcripts were also enriched by HITS-CLIP including vIL-6 expressed only in a subset of PEL cells during latency. Interestingly, Ago HITS-CLIP revealed extremely high levels of Ago-associated KSHV miRNAs especially in BC-3 cells where more than 70% of all miRNAs are of viral origin. This suggests that in addition to seed match-specific targeting of cellular genes, KSHV miRNAs may also function by hijacking RISCs, thereby contributing to a global de-repression of cellular gene expression due to the loss of regulation by human miRNAs. In summary, we provide an extensive list of cellular and viral miRNA targets representing an important resource to decipher KSHV miRNA function.
Author Summary
Kaposi's sarcoma-associated herpesvirus is the etiological agent of KS and two lymphoproliferative diseases: multicentricCastleman's disease and primary effusion lymphomas (PEL). KSHV tumors are the most prevalent AIDS malignancies and within Sub-Saharan Africa KS is the most common cancer in males, both in the presence and absence of HIV infection. KSHV encodes 12 miRNA genes whose function is largely unknown. Viral miRNAs are incorporated into RISCs, which regulate gene expression mostly by binding to 3′UTRs of mRNAs to inhibit their translation and/or induce degradation. The small subset of viral miRNA targets identified to date suggests that these small posttranscriptional regulators target important cellular pathways involved in pathogenesis and tumorgenesis. Using Ago HITS-CLIP, a technique which combines UV cross-linking, immunoprecipitation of Ago-miRNA-mRNA complexes, and high throughput sequencing, we performed a detailed analysis of the KSHV miRNA targetome in two commonly studied PEL cell lines, BCBL-1 and BC-3 and identified 1170 and 950 putative miRNA targets, respectively. This data set provides a valuable resource to decipher how KSHV miRNAs contribute to viral biology and pathogenesis.
doi:10.1371/journal.ppat.1002884
PMCID: PMC3426530  PMID: 22927820
19.  mir-17-92, a cluster of miRNAs in the midst of the cancer network 
MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs (ncRNAs) that function to regulate gene expression at the post-transcriptional level. Although their functions were originally described during normal development, miRNAs have emerged as integral components of the oncogenic and tumor suppressor network, regulating nearly all cellular processes altered during tumor formation. In particular, mir-17-92, a miRNA polycistron also known as oncomir-1, is among the most potent oncogenic miRNAs. Genomic amplification and elevated expression of mir-17-92 were both found in several human B-cell lymphomas, and its enforced expression exhibits strong tumorigenic activity in multiple mouse tumor models. mir-17-92 carries out pleiotropic functions during both normal development and malignant transformation, as it acts to promote proliferation, inhibit differentiation, increase angiogenesis and sustain cell survival. Unlike most protein coding genes, mir-17-92 is a polycistronic miRNA cluster that contains multiple miRNA components, each of which has a potential to regulate hundreds of target mRNAs. This unique gene structure of mir-17-92 may underlie the molecular basis for its pleiotropic functions in a cell type and context dependent manner. Here we review the recent literature on the functional studies of mir-17-92, and highlight its potential impacts on the oncogene network. These findings on mir-17-92 indicate that miRNAs, together with protein coding genes, are integrated components of the molecular pathways that regulate tumor development and tumor maintenance.
doi:10.1016/j.biocel.2010.03.004
PMCID: PMC3681296  PMID: 20227518
miRNAs; cancer; mir-17-92; oncomir-1
20.  A Densely Interconnected Genome-Wide Network of MicroRNAs and Oncogenic Pathways Revealed Using Gene Expression Signatures 
PLoS Genetics  2011;7(12):e1002415.
MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA–pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA–pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA–pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes (“hubs”), most nodes in the miRNA–pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA–pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available.
Author Summary
MicroRNAs (miRNAs) are naturally occurring small RNA molecules of ∼22 nucleotides that regulate gene expression. Recent studies have shown that miRNAs can behave as important components of cellular signaling pathways, as pathway regulators or pathway targets. Currently however, only a few miRNAs have been functionally linked to specific signaling pathways, raising the need for novel approaches to accelerate the identification of miRNA–pathway connections. Here, we show that gene expression signatures, previously used to reflect patterns of pathway activation, can also be used to represent miRNA activities. Using this approach, we constructed a genome-wide miRNA–pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA–pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Besides being the first study to conceptually demonstrate that expression signatures can act as surrogates of miRNA activity, our study provides a large database of candidate pathway-modulating miRNAs, which researchers interested in a particular pathway (e.g. Ras, Myc) are likely to find useful. Moreover, because this approach solely employs gene expression, it is immediately applicable to the thousands of microarray data sets currently available in the public domain.
doi:10.1371/journal.pgen.1002415
PMCID: PMC3240594  PMID: 22194702
21.  An Integrative Genomic Approach to Uncover Molecular Mechanisms of Prokaryotic Traits 
PLoS Computational Biology  2006;2(11):e159.
With mounting availability of genomic and phenotypic databases, data integration and mining become increasingly challenging. While efforts have been put forward to analyze prokaryotic phenotypes, current computational technologies either lack high throughput capacity for genomic scale analysis, or are limited in their capability to integrate and mine data across different scales of biology. Consequently, simultaneous analysis of associations among genomes, phenotypes, and gene functions is prohibited. Here, we developed a high throughput computational approach, and demonstrated for the first time the feasibility of integrating large quantities of prokaryotic phenotypes along with genomic datasets for mining across multiple scales of biology (protein domains, pathways, molecular functions, and cellular processes). Applying this method over 59 fully sequenced prokaryotic species, we identified genetic basis and molecular mechanisms underlying the phenotypes in bacteria. We identified 3,711 significant correlations between 1,499 distinct Pfam and 63 phenotypes, with 2,650 correlations and 1,061 anti-correlations. Manual evaluation of a random sample of these significant correlations showed a minimal precision of 30% (95% confidence interval: 20%–42%; n = 50). We stratified the most significant 478 predictions and subjected 100 to manual evaluation, of which 60 were corroborated in the literature. We furthermore unveiled 10 significant correlations between phenotypes and KEGG pathways, eight of which were corroborated in the evaluation, and 309 significant correlations between phenotypes and 166 GO concepts evaluated using a random sample (minimal precision = 72%; 95% confidence interval: 60%–80%; n = 50). Additionally, we conducted a novel large-scale phenomic visualization analysis to provide insight into the modular nature of common molecular mechanisms spanning multiple biological scales and reused by related phenotypes (metaphenotypes). We propose that this method elucidates which classes of molecular mechanisms are associated with phenotypes or metaphenotypes and holds promise in facilitating a computable systems biology approach to genomic and biomedical research.
Synopsis
A key challenge of the post-genomic era is to conceive large-scale studies of genomes and observable characteristics of organisms (phenotypes) and to interpret the data thus produced. The goal of this “phenomic” study is to improve our understanding of complex biological systems in terms of their molecular underpinnings. In this paper, Liu and colleagues present comprehensive computational and novel visualization methods for discovering biological knowledge spanning multiple scales of biology. The authors were able to predict and visualize new knowledge between clusters of microbiological phenotypes and their molecular mechanisms. To their knowledge, this is the first time this has been done. More specifically, the method integrates microbiological data with genomic-scale data from protein family databases, gene ontology, and biological pathways. Conducted over 59 fully sequenced bacteria, and including significantly more phenotypes than previous studies of its kind, this study enables a “systems biology” view across different classifications of genes and processes. This represents advancement over previous techniques, which are either limited in biological scale or analytical breadth. Visualization of the networks generated by this technique shows the common biological modules shared by related phenotypes. The results of this experiment demonstrate that the fusion of clinical data with genomic information is able to elucidate, in high throughput, a massive number of biological processes underlying phenotypes.
doi:10.1371/journal.pcbi.0020159
PMCID: PMC1636675  PMID: 17112314
22.  The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages 
PLoS ONE  2008;3(8):e2997.
Background
MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species.
Methodology/Principal Findings
We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5′ and/or 3′ ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis.
Conclusions/Significance
Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms.
doi:10.1371/journal.pone.0002997
PMCID: PMC2500172  PMID: 18714353
23.  Brain Expressed microRNAs Implicated in Schizophrenia Etiology 
PLoS ONE  2007;2(9):e873.
Background
Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors. Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation.
Methodology/Principal Findings
We have studied the association between schizophrenia and genetic variants of miRNA genes associated with brain-expression using a case-control study design on three Scandinavian samples. Eighteen known SNPs within or near brain-expressed miRNAs in three samples (Danish, Swedish and Norwegian: 420/163/257 schizophrenia patients and 1006/177/293 control subjects), were analyzed. Subsequently, joint analysis of the three samples was performed on SNPs showing marginal association. Two SNPs rs17578796 and rs1700 in hsa-mir-206 (mir-206) and hsa-mit-198 (mir-198) showed nominal significant allelic association to schizophrenia in the Danish and Norwegian sample respectively (P = 0.0021 & p = 0.038), of which only rs17578796 was significant in the joint sample. In-silico analysis revealed that 8 of the 15 genes predicted to be regulated by both mir-206 and mir-198, are transcriptional targets or interaction partners of the JUN, ATF2 and TAF1 connected in a tight network. JUN and two of the miRNA targets (CCND2 and PTPN1) in the network have previously been associated with schizophrenia.
Conclusions/Significance
We found nominal association between brain-expressed miRNAs and schizophrenia for rs17578796 and rs1700 located in mir-206 and mir-198 respectively. These two miRNAs have a surprising large number (15) of targets in common, eight of which are also connected by the same transcription factors.
doi:10.1371/journal.pone.0000873
PMCID: PMC1964806  PMID: 17849003
24.  Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools 
BMC Bioinformatics  2012;13:311.
Background
MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets.
Results
BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs.
Conclusions
BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single software environment with the added capability to interact with public data sources and visual analytic tools for HTP data analysis at a systems level. BRM is developed using Java™ and other open-source technologies for free distribution (http://www.sysbio.org/dataresources/brm.stm).
doi:10.1186/1471-2105-13-311
PMCID: PMC3534564  PMID: 23174015
Systems biology; Genomics; MicroRNA; Bioinformatics; Zebrafish
25.  The phosphoproteome of toll-like receptor-activated macrophages 
First global and quantitative analysis of phosphorylation cascades induced by toll-like receptor (TLR) stimulation in macrophages identifies nearly 7000 phosphorylation sites and shows extensive and dynamic up-regulation and down-regulation after lipopolysaccharide (LPS).In addition to the canonical TLR-associated pathways, mining of the phosphorylation data suggests an involvement of ATM/ATR kinases in signalling and shows that the cytoskeleton is a hotspot of TLR-induced phosphorylation.Intersecting transcription factor phosphorylation with bioinformatic promoter analysis of genes induced by LPS identified several candidate transcriptional regulators that were previously not implicated in TLR-induced transcriptional control.
Toll-like receptors (TLR) are a family of pattern recognition receptors that enable innate immune cells to sense infectious danger. Recognition of microbial structures, like lipopolysaccharide (LPS) of Gram-negative bacteria by TLR4, causes within hours substantial re-programming of macrophage gene expression, including up-regulation of chemokines driving inflammation, anti-microbial effector molecules and cytokines directing adaptive immune responses. TLR signalling is initiated by the adapter protein Myd88 and leads to the activation of kinase cascades that result in activation of the MAPK and NFkB pathways. Phosphorylation has an essential role in these early steps of TLR signalling, and in addition regulates critical transcription factors (TFs). Although TLR signalling has been extensively studied, a comprehensive analysis of phosphorylation events in TLR-activated macrophages is lacking. It is therefore unknown whether the canonical MAPK and NFkB pathways comprise the main phosphorylation events and which other molecular functions and processes are regulated by phosphorylation after stimulation with LPS.
Recent progress in mass spectrometry-based proteomics has opened the possibility to quantitatively investigate global changes in protein abundance and post-translational modifications. Stable isotope labelling with amino acids in cell culture (SILAC) allows highly accurate quantification, and has proved especially useful for direct comparison of phosphopeptide abundance in time-course or treatment analyses.
Here, we adapted SILAC to primary mouse macrophages, and performed a global, quantitative and kinetic analysis of the macrophage phosphoproteome after LPS stimulation. Bioinformatic analyses were used to identify kinases, pathways and biological processes enriched in the LPS-regulated phosphoproteome. To connect TF phosphorylation with transcription, we generated a parallel dataset of nascent RNA and used in silico promoter analysis to identify transcriptional regulators with binding site enrichment among the LPS-regulated gene set.
After establishing SILAC conditions for efficient labelling of primary bone marrow-derived macrophages in two independent experiments 1850 phosphoproteins with a total of 6956 phosphorylation sites were reproducibly identified. Phosphoproteins were detected from all cellular compartments, with a clear enrichment for nuclear and cytoskeleton-associated proteins. LPS caused major regulation of a large fraction of phosphopeptides, with 24% of all sites up-regulated and 9% down-regulated after stimulation (Figure 3A and B). These changes were highly dynamic, as the majority of the regulated phosphopeptides were up-regulated or down-regulated transiently or in a delayed manner (Figure 3C). Overall, the extent of changes in the phosphoproteome was comparable to the transcriptional re-programming, underscoring the importance of phosphorylation cascades in TLR signalling. Our parallel transcriptome data also showed that widespread phosphorylation precedes massive transcriptional changes.
To obtain footprints of kinase activation in response to TLR ligation, we searched phosphopeptide sequences for known linear sequence motifs of 33 kinases and identified kinase motifs enriched among LPS-regulated phosphorylation sites (compared to non-regulated phosphorylation sites) (Table I). Motif ERK/MAPK was highly enriched, in accordance with the essential role of the MAPK module in TLR signalling. Other kinases with motif enrichment have also recently been linked to TLR signalling (e.g. PKD; AKT and its targets GSK3 and mTOR). However, the DNA damage-actviated kinases ATM/ATR and the cell cycle-associated kinases AURORA and CHK1/2 have not been associated with the macrophage response to TLR activation yet. These finding shed new light on older data on the effect of TLR on macrophage proliferation in response to macrophage colony stimulating factor. Of interest, in follow-up experiments using pharmacological inhibitors of the kinases with motif enrichment, we observed that inhibition of ATM kinase activity caused increased LPS-induced expression of several cytokines and chemokines, suggesting that this pathway regulates inflammatory responses.
In further bioinformatic analyses, the Gene Ontology and signalling pathway annotations of phosphoproteins were used to identify signalling pathways and cellular processes targeted by TLR4-controlled phosphorylation (Table II). Among the expected hits, based on the known TLR pathways, were TLR signalling, MAPK and AKT as well as mTOR signalling. Of interest, the annotation terms ‘Rho GTPase cycle' and ‘cytoskeleton' were significantly enriched among LPS-regulated phosphoproteins, indicating a more prominent role for cytoskeletal proteins in the transduction of TLR signals or in the biological response to it.
We were especially interested in the phosphorylation of TFs and its regulation by LPS (Figure 6A). We hypothesised that functionally important TFs should have an increased frequency of binding sites in the promoters of LPS-regulated genes (Figure 6B). To identify transcriptionally regulated genes with high sensitivity, we isolated nascent RNA after metabolic labelling (Figure 6C–E). In silico promoter scanning using Genomatix software for binding sites for all 50 TF families with phosphorylated members was used to test for enrichment in transciptionally induced genes (Figure 6F). At the early time point, binding site enrichment for the canonical TLR-associated TF NFkB was detected, and in addition we found that several other TF families with an established role in the transcription of individual LPS-target genes showed binding site enrichment (CEBP, MEF2, NFAT and HEAT). In addition, enrichment for OCT and HOXC binding sites at the early time point and SORY matrices later after stimulation indicated an involvement of the phosphorylated members of the respective TF families in the execution of TLR-induced transcriptional responses. An initial test of the function for a few of these candidate transcriptional regulators was performed using siRNA knockdown in primary macrophages. These experiments suggested that knock down of the SORY binding phosphoprotein Capicua homolog (Cic) and to a lesser extent of the CREB family member Atf7 selectively attenuates LPS-induced expression of Il1a and Il1b.
In summary, this study provides a novel and global perspective on innate immune activation by TLR signalling (Figure 5). We quantitatively detected a large number of previously unknown site-specific phosphorylation events, which are now publicly available through the Phosida database. By combining different data mining approaches, we consistently identified canonical and newly implicated TLR-activated signalling modules. In particular, the PI3K/AKT and the related mTOR pathway were highlighted; furthermore, DNA damage–response associated ATM/ATR kinases and the cytoskeleton emerged as unexpected hotspots for phosphorylation. Finally, weaving together corresponding phophoproteome and nascent transcriptome datasets through the loom of in silico promoter analysis we identified TFs with a likely role in mediating TLR-induced gene expression programmes.
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene expression.
doi:10.1038/msb.2010.29
PMCID: PMC2913394  PMID: 20531401
macrophage; nascent RNA; phosphoproteome; SILAC; toll-like receptors

Results 1-25 (1342201)