Search tips
Search criteria

Results 1-25 (1045142)

Clipboard (0)

Related Articles

1.  Aberrant Methylation of Multiple Tumor Suppressor Genes in Aging Liver, Chronic Hepatitis, and Hepatocellular Carcinoma 
Hepatology (Baltimore, Md.)  2008;47(3):908-918.
Aberrant DNA methylation is an important epigenetic alteration in hepatocellular carcinoma (HCC). However, the molecular processes underlying the methylator phenotype and the contribution of hepatitis viruses are poorly understood. The current study is a comprehensive methylation analysis of human liver tissue specimens. A total of 176 liver tissues, including 77 pairs of HCCs and matching noncancerous liver and 22 normal livers, were analyzed for methylation. Methylation of 19 epigenetic markers was quantified, and the results were correlated with different disease states and the presence or absence of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Based on methylation profiles, the 19 loci were categorized into 3 groups. Normal liver tissues showed methylation primarily in group 1 loci (HIC-1, CASP8, GSTP1, SOCS1, RASSF1A, p16, APC), which was significantly higher than group 2 (CDH1, RUNX3, RIZ1, SFRP2, MINT31) and group 3 markers (COX2, MINT1, CACNA1G, RASSF2, MINT2, Reprimo, DCC) (P < 0.0001). Noncancerous livers demonstrated increased methylation in both group 1 and group 2 loci. Methylation was significantly more abundant in HCV-positive livers compared with normal liver tissues. Conversely, HCC showed frequent methylation at each locus investigated in all 3 groups. However, the group 3 loci showed more dense and frequent methylation in HCV-positive cancers compared with both HBV-positive cancers and virus-negative cancers (P < 0.0001).
Methylation in HCC is frequent but occurs in a gene-specific and disease-specific manner. Methylation profiling allowed us to determine that aberrant methylation is commonly present in normal aging livers, and sequentially progresses with advancing stages of chronic viral infection. Finally, our data provide evidence that HCV infection may accelerate the methylation process and suggests a continuum of increasing methylation with persistent viral infection and carcinogenesis in the liver.
PMCID: PMC2865182  PMID: 18161048
2.  Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma 
Journal of Advanced Research  2013;5(1):27-40.
We studied promoter methylation (PM) of 11 genes in Peripheral Blood Lymphocytes (PBLs) and tissues of hepatitis C virus (HCV) associated hepatocellular carcinoma (HCC) and chronic hepatitis (CH) Egyptian patients. The present study included 31 HCC with their ANT, 38 CH and 13 normal hepatic tissue (NHT) samples. In all groups, PM of APC, FHIT, p15, p73, p14, p16, DAPK1, CDH1, RARβ, RASSF1A, O6MGMT was assessed by methylation-specific PCR (MSP). APC and O6-MGMT protein expression was assessed by immunohistochemistry (IHC) in the studied HCC and CH (20 samples each) as well as in a different HCC and CH set for confirmation of MSP results. PM was associated with progression from CH to HCC. Most genes showed high methylation frequency (MF) and the methylation index (MI) increased with disease progression. MF of p14, p73, RASSF1A, CDH1 and O6MGMT was significantly higher in HCC and their ANT. MF of APC was higher in CH. We reported high concordance between MF in HCC and their ANT, MF in PBL and CH tissues as well as between PM and protein expression of APC and O6MGMT. A panel of 4 genes (APC, p73, p14, O6MGMT) classifies the cases independently into HCC and CH with high accuracy (89.9%), sensitivity (83.9%) and specificity (94.7%). HCV infection may contribute to hepatocarcinogenesis through enhancing PM of multiple genes. PM of APC occurs early in the cascade while PM of p14, p73, RASSF1A, RARB, CDH1 and O6MGMT are late changes. A panel of APC, p73, p14, O6-MGMT could be used in monitoring CH patients for early detection of HCC. Also, we found that, the methylation status is not significantly affected by whether the tissue was from the liver or PBL, indicating the possibility of use PBL as indicator to genetic profile instead of liver tissue regardless the stage of disease.
PMCID: PMC4294722
Hepatitis C virus-genotype 4; Chronic hepatitis; Hepatocellular carcinoma; Promoter methylation
3.  Comparative analysis of promoter methylation and gene expression endpoints between tumorous and non-tumorous tissues from HCV-positive patients with hepatocellular carcinoma 
Mutation research  2010;692(1-2):26-33.
Transcriptional silencing of tumor suppressor genes and other cancer-related genes induced by promoter CpG island hypermethylation is an important epigenetic mechanism of hepatocarcinogenesis. Previous studies have established methylation profiles of hepatocellular carcinomas (HCCs) and demonstrated that methylation of several candidate genes in resected tissues may be associated with time to recurrence. The goals of our study were to test whether specific promoter methylation and mRNA levels of candidate genes, as well as global changes in DNA methylation, can be linked with time to recurrence and clinicopathological variables in a homogenous study group of HCC patients. Forty-three tumorous and 45 non-tumorous liver tissue samples from the surgical margin were obtained from HCV-positive, HBV-negative HCC patients who underwent tumor resection surgery and who were monitored for tumor recurrence thereafter (median follow-up time: 16 months (range, 0 – 79 months)). Methylation-specific PCR was used to assess the promoter methylation status of P16(INK4a), SOCS-1, RASSF1A, APC, GSTP1, RIZ1, and MGMT genes, while the level of LINE-1 methylation was used as marker of global DNA methylation levels. Methylation frequencies in P16(INK4a), RASSF1A, APC, GSTP1, and RIZ1 genes were significantly greater in tumorous versus non-tumorous tissues. Methylation of RIZ1 in non-tumorous tissues was significantly associated with time to recurrence. Additionally, genomic DNA was significantly more hypomethylated in tumorous tissues, and this change was associated with shorter recurrence, but not with clinicopathological features. In conclusion, this study supports the role of aberrant methylation in the pathobiology of HCV-positive HCCs. The finding that RIZ1 methylation and increased levels of LINE-1 hypomethylation in non-tumorous tissues are associated with time to recurrence underscores the importance of assessing the epigenetic state of the liver remnant.
PMCID: PMC2948626  PMID: 20736025
hepatocellular carcinoma; epigenetics; time to recurrence
4.  Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma 
Hepatology International  2010;4(1):423-432.
Protein downregulation and hypermethylation of Ras association domain family 1A (RASSF1A) has been recognized as an important early event in different classes of carcinogenesis, but clinicopathological significance of RASSF1A protein expression and methylation in hepatocellular carcinoma (HCC) remains largely unknown. The aim of the study was to investigate the expression of RASSF1A protein and methylation in HCC and their clinical significance.
Immunohistochemistry was employed to detect the expression of RASSF1A proteins in liver tissue microarrays. Aberrant promoter hypermethylation of RASSF1A was investigated in DNA from HCC, matching noncancerous tissues and serum of 35 HCC patients by methylation-specific PCR.
RASSF1A protein expression in HCC was significantly lower than that in noncancerous (p = 0.015) and paracancerous tissues (p = 0.017). In addition, reduced RASSF1A protein expression is related to TNM stage, metastasis, α-fetoprotein, portal vein embolus, capsular infiltration, and multiple tumor nodes. Furthermore, RASSF1A promoter methylation in HCC was significantly higher than that in noncancerous liver tissues (p < 0.05). Meanwhile, RASSF1A promoter hypermethylation was detected in 14 in the serum DNA from HCC patients, whereas no hypermethylation was detected in the normal controls. Hypermethylation of RASSF1A in HCC serum and tissues was negatively correlated with the expression of RASSF1A protein expression (p < 0.05).
The loss or abnormal protein downregulation and the promoter hypermethylation of RASSF1A could play important roles in the tumorigenesis development and metastases of HCC. The detection of the promoter hypermethylation of RASSF1A in serum DNA could be a valuable biomarker for early-stage diagnosis in populations at high risk of HCC.
PMCID: PMC2836437  PMID: 20305761
RASSF1A; Hepatocellular carcinoma; Immunohistochemistry; Promoter hypermethylation; Tissue microarrays (TMAs); DNA
5.  Frequent and Distinct Aberrations of DNA Methylation Patterns in Fibrolamellar Carcinoma of the Liver 
PLoS ONE  2010;5(10):e13688.
Gene silencing due to aberrant DNA methylation is a frequent event in hepatocellular carcinoma (HCC) and also in hepatocellular adenoma (HCA). However, very little is known about epigenetic defects in fibrolamellar carcinoma (FLC), a rare variant of hepatocellular carcinoma that displays distinct clinical and morphological features.
Methodology/Principal Findings
We analyzed the methylation status of the APC, CDH1, cyclinD2, GSTπ1, hsa-mir-9-1, hsa-mir-9-2, and RASSF1A gene in a series of 15 FLC and paired normal liver tissue specimens by quantitative high-resolution pyrosequencing. Results were compared with common HCC arising in non-cirrhotic liver (n = 10). Frequent aberrant hypermethylation was found for the cyclinD2 (19%) and the RASSF1A (38%) gene as well as for the microRNA genes mir-9-1 (13%) and mir-9-2 (33%). In contrast to common HCC the APC and CDH1 (E-cadherin) genes were found devoid of any DNA methylation in FLC, whereas the GSTπ1 gene showed comparable DNA methylation in tumor and surrounding tissue at a moderate level. Changes in global DNA methylation level were measured by analyzing methylation status of the highly repetitive LINE-1 sequences. No evidence of global hypomethylation could be found in FLCs, whereas HCCs without cirrhosis showed a significant reduction in global methylation level as described previously.
FLCs display frequent and distinct gene-specific hypermethylation in the absence of significant global hypomethylation indicating that these two epigenetic aberrations are induced by different pathways and that full-blown malignancy can develop in the absence of global loss of DNA methylation. Only quantitative DNA methylation detection methodology was able to identify these differences.
PMCID: PMC2966398  PMID: 21060828
6.  DNA Methylation in Tumor and Matched Normal Tissues from Non-Small Cell Lung Cancer Patients 
We used MethyLight assays to analyze DNA methylation status of 27 genes on 49 paired cancerous and noncancerous tissue samples from non-small cell lung cancer (NSCLC) patients who underwent surgical resection. Seven genes (RARB, BVES, CDKN2A, KCNH5, RASSF1, CDH13, and RUNX) were found to be methylated significantly more frequently in tumor tissues than in noncancerous tissues. Only methylation of CCND2 and APC was frequently detected in both cancerous and noncancerous tissues, supporting the hypothesis that the methylation of these two genes is a preneoplastic change and may be associated with tobacco smoking exposure. Methylation of any one of eight genes (RASSF1, DAPK1, BVES, CDH13, MGMT, KCNH5, RARB, or CDH1) was present in 80% of NSCLC tissues but only in 14% of noncancerous tissues. Detection of methylation of these genes in blood might have utility in monitoring and detecting tumor recurrence in early-stage NSCLC after curative surgical resection.
PMCID: PMC2798850  PMID: 18349282
7.  Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis 
BMC Cancer  2002;2:29.
Hepatocellular carcinoma (HCC) presents one of the major health threats in China today. A better understanding of the molecular genetics underlying malignant transformation of hepatocytes is critical to success in the battle against this disease. The methylation state of C5 of the cytosine in the CpG di-nucleotide that is enriched within or near the promoter region of over 50 % of the polymerase II genes has a drastic effect on transcription of these genes. Changes in the methylation profile of the promoters represent an alternative to genetic lesions as causative factors for the tumor-specific aberrant expression of the genes.
We have used the methylation specific PCR method in conjunction with DNA sequencing to assess the methylation state of the promoter CpG islands of twenty genes. Aberrant expression of these genes have been attributed to the abnormal methylation profile of the corresponding promoter CpG islands in human tumors.
While the following sixteen genes remained the unmethylated in all tumor and normal tissues: CDH1, APAF1, hMLH1, BRCA1, hTERC, VHL, RARβ, TIMP3, DAPK1, SURVIVIN, p14ARF, RB1, p15INK4b, APC, RASSF1c and PTEN, varying degrees of tumor specific hypermethylation were associated with the p16INK4a , RASSF1a, CASP8 and CDH13 genes. For instance, the p16INK4a was highly methylated in HCC (17/29, 58.6%) and less significantly methylated in non-cancerous tissue (4/29. 13.79%). The RASSF1a was fully methylated in all tumor tissues (29/29, 100%), and less frequently methylated in corresponding non-cancerous tissue (24/29, 82.75%).
Furthermore, co-existence of methylated with unmethylated DNA in some cases suggested that both genetic and epigenetic (CpG methylation) mechanisms may act in concert to inactivate the p16INK4a and RASSF1a in HCC. Finally, we found a significant association of cirrhosis with hypermethylation of the p16INK4a and hypomethylation of the CDH13 genes. For the first time, the survey was carried out on such an extent that it would not only provide new insights into the molecular mechanisms underscoring the aberrant expression of the genes in this study in HCC, but also offer essential information required for a good methylation-based diagnosis of HCC.
PMCID: PMC139988  PMID: 12433278
8.  Unique Association between Global DNA Hypomethylation and Chromosomal Alterations in Human Hepatocellular Carcinoma 
PLoS ONE  2013;8(9):e72312.
Global DNA hypomethylation is a characteristic feature of cancer cells that closely associates with chromosomal instability (CIN). However, the association between these characteristics during hepatocarcinogenesis remains unclear. Herein, we determined the relationship between hypomethylation and CIN in human hepatocellular carcinoma (HCC) by analyzing 179 HCCs, 178 matched non-tumor livers and 23 normal liver tissues. Hypomethylation at three different repetitive DNA (rDNA) sequences and hypermethylation of 12 CpG loci, including 11 tumor suppressor gene (TSG) promoters, were quantified using MethyLight or combined bisulfite restriction analysis. Fractional allelic loss (FAL) was used as a marker for CIN, calculated by analyzing 400 microsatellite markers. Gains and losses at each chromosome were also determined using semi-quantitative microsatellite analysis. The associations between rDNA hypomethylation and FAL, as well as between TSG hypermethylation and FAL were investigated. Significantly more hypomethylation was observed in HCC tissues than in normal liver samples. Progression of hypomethylation during carcinogenesis was more prominent in hepatitis C virus (HCV)-negative cases, which was in contrast to our previous reports of significantly increased TSG methylation levels in HCV-positive tumors. Absence of liver cirrhosis and higher FAL scores were identified as independent contributors to significant hypomethylation of rDNA in HCC. Among the chromosomal alterations frequently observed in HCC, loss of 8p, which was unique in the earliest stages of hepatocarcinogenesis, was significantly associated with hypomethylation of rDNA by multivariable analysis (p = 0.0153). rDNA hypomethylation was also associated with a high FAL score regardless of tumor differentiation (p = 0.0011, well-differentiated; p = 0.0089, moderately/poorly-differentiated HCCs). We conclude that DNA hypomethylation is an important cause of CIN in the earliest step of HCC, especially in a background of non-cirrhotic liver.
PMCID: PMC3759381  PMID: 24023736
9.  Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma 
BMC Cancer  2010;10:317.
The product of CDKN2A, p16 is an essential regulator of the cell cycle controlling the entry into the S-phase. Herein, we evaluated CDKN2A promoter methylation and p16 protein expression for the differentiation of hepatocellular carcinoma (HCC) from other liver tumors.
Tumor and corresponding non-tumor liver tissue samples were obtained from 85 patients with liver tumors. CDKN2A promoter methylation was studied using MethyLight technique and methylation-specific PCR (MSP). In the MethyLight analysis, samples with ≥ 4% of PMR (percentage of methylated reference) were regarded as hypermethylated. p16 expression was evaluated by immunohistochemistry in tissue sections (n = 148) obtained from 81 patients using an immunoreactivity score (IRS) ranging from 0 (no expression) to 6 (strong expression).
Hypermethylation of the CDKN2A promoter was found in 23 HCCs (69.7%; mean PMR = 42.34 ± 27.8%), six (20.7%; mean PMR = 31.85 ± 18%) liver metastases and in the extralesional tissue of only one patient. Using MSP, 32% of the non-tumor (n = 85), 70% of the HCCs, 40% of the CCCs and 24% of the liver metastases were hypermethylated. Correspondingly, nuclear p16 expression was found immunohistochemically in five (10.9%, mean IRS = 0.5) HCCs, 23 (92%; mean IRS = 4.9) metastases and only occasionally in hepatocytes of non-lesional liver tissues (mean IRS = 1.2). The difference of CDKN2A-methylation and p16 protein expression between HCCs and liver metastases was statistically significant (p < 0.01, respectively).
Promoter methylation of CDKN2A gene and lack of p16 expression characterize patients with HCC.
PMCID: PMC2927998  PMID: 20569442
10.  DNA Methylation Changes in Atypical Adenomatous Hyperplasia, Adenocarcinoma In Situ, and Lung Adenocarcinoma 
PLoS ONE  2011;6(6):e21443.
Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation.
Methodology/Principal Findings
We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer.
The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions.
PMCID: PMC3121768  PMID: 21731750
11.  Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease 
Tumor-related methylated DNA and circulating tumor cells (CTC) in the peripheral blood might be of prognostic importance in breast cancer. Thus, the aim of our study was to examine free methylated DNA and CTC in the blood from breast cancer patients and to correlate it with clinicopathological features known to influence prognosis.
Materials and methods
We prospectively obtained serum samples from 85 patients with breast cancer and 22 healthy volunteers. Sera were analysed by methylation specific PCR (MethyLight PCR) for five genes: adenomatous polyposis coli (APC), ras association domain family protein 1A (RASSF1A), estrogen receptor 1 (ESR1), CDKN2A (p16) and glutathione s-transferase pi 1 (GSTP1). Beta actin (ACTB) served as control. In parallel matched peripheral blood of 63 patients was used to assay for circulating tumor cells in the peripheral blood by a modified immunomagnetic AdnaTest BreastCancerSelect with PCR detection for EPCAM, MUC1, MGB1 and SPDEF.
We found a hypermethylation in the APC gene in 29% (25/85), in RASSF1A in 26% (22/85), in GSTP1 in 18% (14/76) and in ESR1 in 38% (32/85) of all breast cancer patients. No hypermethylation of CDKN2A was found (0/25). Blood samples of patients were defined CTC positive by detecting the EPCAM 13% (8/63), MUC1 16% (10/63), MGB 9% (5/55), SPDEF 12% (7/58) and in 27% detecting one or more genes (15/55). A significant difference was seen in methylated APC DNA between cancer patients and healthy volunteers. Moreover, methylated APC, RASSF1 and CTC were significantly different in metastatic versus non-metastatic disease. In addition, the presence of methylated APC, RASSF1A and CTC correlated significantly with AJCC-staging (p = 0.001, p = 0.031 and 0.002, respectively). High incidences of methylations were found for the genes RASSF1 and ESR1 in healthy individuals (both 23% 5/22). Methylated GSTP1 was predominantly found in the serum of patients with large primaries (p = 0.023) and was highly significantly correlated with positive Her2/neu status (p = 0.003). Elevated serum CA15.3 was strongly correlated with methylated APC and CTC detection (both p = 0.000). Methylated ESR1 failed to exhibit significant correlations with any of the above mentioned parameters. The presence of CTC in peripheral blood was significantly associated with methylated APC (p = 0.012) and methylated GSTP1 (p = 0.001).
The detection of methylated APC and GSTP1 DNA in serum correlated with the presence of CTC in the blood of breast cancer patients. Both methylated DNA and CTC correlated with a more aggressive tumor biology and advanced disease.
PMCID: PMC3351951  PMID: 20696638
methylated genes; circulating tumor cells; circulating DNA; breast cancer
12.  microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma 
A moderate loss of miR-122 function correlates with up-regulation of seed-matched genes and down-regulation of mitochondrially localized genes in both human hepatocellular carcinoma and in normal mice treated with anti-miR-122 antagomir.Putative direct targets up-regulated with loss of miR-122 and secondary targets down-regulated with loss of miR-122 are conserved between human beings and mice and are rapidly regulated in vitro in response to miR-122 over- and under-expression.Loss of miR-122 secondary target expression in either tumorous or adjacent non-tumorous tissue predicts poor survival of heptatocellular carcinoma patients.
Hepatocellular carcinoma (HCC) is one of the most aggressive human malignancies, common in Asia, Africa, and in areas with endemic infections of hepatitis-B or -C viruses (HBV or HCV) (But et al, 2008). Globally, the 5-year survival rate of HCC is <5% and about 600 000 HCC patients die each year. The high mortality associated with this disease is mainly attributed to the failure to diagnose HCC patients at an early stage and a lack of effective therapies for patients with advanced stage HCC. Understanding the relationships between phenotypic and molecular changes in HCC is, therefore, of paramount importance for the development of improved HCC diagnosis and treatment methods.
In this study, we examined mRNA and microRNA (miRNA)-expression profiles of tumor and adjacent non-tumor liver tissue from HCC patients. The patient population was selected from a region of endemic HBV infection, and HBV infection appears to contribute to the etiology of HCC in these patients. A total of 96 HCC patients were included in the study, of which about 88% tested positive for HBV antigen; patients testing positive for HCV antigen were excluded. Among the 220 miRNAs profiled, miR-122 was the most highly expressed miRNA in liver, and its expression was decreased almost two-fold in HCC tissue relative to adjacent non-tumor tissue, confirming earlier observations (Lagos-Quintana et al, 2002; Kutay et al, 2006; Budhu et al, 2008).
Over 1000 transcripts were correlated and over 1000 transcripts were anti-correlated with miR-122 expression. Consistent with the idea that transcripts anti-correlated with miR-122 are potential miR-122 targets, the most highly anti-correlated transcripts were highly enriched for the presence of the miR-122 central seed hexamer, CACTCC, in the 3′UTR. Although the complete set of negatively correlated genes was enriched for cell-cycle genes, the subset of seed-matched genes had no significant KEGG Pathway annotation, suggesting that miR-122 is unlikely to directly regulate the cell cycle in these patients. In contrast, transcripts positively correlated with miR-122 were not enriched for 3′UTR seed matches to miR-122. Interestingly, these 1042 transcripts were enriched for genes coding for mitochondrially localized proteins and for metabolic functions.
To analyze the impact of loss of miR-122 in vivo, silencing of miR-122 was performed by antisense inhibition (anti-miR-122) in wild-type mice (Figure 3). As with the genes negatively correlated with miR-122 in HCC patients, no significant biological annotation was associated with the seed-matched genes up-regulated by anti-miR-122 in mouse livers. The most significantly enriched biological annotation for anti-miR-122 down-regulated genes, as for positively correlated genes in HCC, was mitochondrial localization; the down-regulated mitochondrial genes were enriched for metabolic functions. Putative direct and downstream targets with orthologs on both the human and mouse microarrays showed significant overlap for regulations in the same direction. These overlaps defined sets of putative miR-122 primary and secondary targets. The results were further extended in the analysis of a separate dataset from 180 HCC, 40 cirrhotic, and 6 normal liver tissue samples (Figure 4), showing anti-correlation of proposed primary and secondary targets in non-healthy tissues.
To validate the direct correlation between miR-122 and some of the primary and secondary targets, we determined the expression of putative targets after transfection of miR-122 mimetic into PLC/PRF/5 HCC cells, including the putative direct targets SMARCD1 and MAP3K3 (MEKK3), a target described in the literature, CAT-1 (SLC7A1), and three putative secondary targets, PPARGC1A (PGC-1α) and succinate dehydrogenase subunits A and B. As expected, the putative direct targets showed reduced expression, whereas the putative secondary target genes showed increased expression in cells over-expressing miR-122 (Figure 4).
Functional classification of genes using the total ancestry method (Yu et al, 2007) identified PPARGC1A (PGC-1α) as the most connected secondary target. PPARGC1A has been proposed to function as a master regulator of mitochondrial biogenesis (Ventura-Clapier et al, 2008), suggesting that loss of PPARGC1A expression may contribute to the loss of mitochondrial gene expression correlated with loss of miR-122 expression. To further validate the link of miR-122 and PGC-1α protein, we transfected PLC/PRF/5 cells with miR-122-expression vector, and observed an increase in PGC-1α protein levels. Importantly, transfection of both miR-122 mimetic and miR-122-expression vector significantly reduced the lactate content of PLC/PRF/5 cells, whereas anti-miR-122 treatment increased lactate production. Together, the data support the function of miR-122 in mitochondrial metabolic functions.
Patient survival was not directly associated with miR-122-expression levels. However, miR-122 secondary targets were expressed at significantly higher levels in both tumor and adjacent non-tumor tissues among survivors as compared with deceased patients, providing supporting evidence for the potential relevance of loss of miR-122 function in HCC patient morbidity and mortality.
Overall, our findings reveal potentially new biological functions for miR-122 in liver physiology. We observed decreased expression of miR-122, a liver-specific miRNA, in HBV-associated HCC, and loss of miR-122 seemed to correlate with the decrease of mitochondrion-related metabolic pathway gene expression in HCC and in non-tumor liver tissues, a result that is consistent with the outcome of treatment of mice with anti-miR-122 and is of prognostic significance for HCC patients. Further investigation will be conducted to dissect the regulatory function of miR-122 on mitochondrial metabolism in HCC and to test whether increasing miR-122 expression can improve mitochondrial function in liver and perhaps in liver tumor tissues. Moreover, these results support the idea that primary targets of a given miRNA may be distributed over a variety of functional categories while resulting in a coordinated secondary response, potentially through synergistic action (Linsley et al, 2007).
Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)–gene interaction network in carcinogenesis, we examined their genome-wide expression profiles in 96 pairs of tumor/non-tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-122 is under-expressed in HCC and that increased expression of miR-122 seed-matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR-122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti-correlation of miR-122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR-122 with antagomir treatment followed by gene-expression microarray analysis. In vitro miR-122 data further provided a direct link between induction of miR-122-controlled genes and impairment of mitochondrial metabolism. In conclusion, miR-122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.
PMCID: PMC2950084  PMID: 20739924
hepatocellular carcinoma; microarray; miR-122; mitochondrial; survival
13.  Elucidating the Landscape of Aberrant DNA Methylation in Hepatocellular Carcinoma 
PLoS ONE  2013;8(2):e55761.
Hepatocellular carcinoma (HCC) is one of the most common cancers and frequently presents with an advanced disease at diagnosis. There is only limited knowledge of genome-scale methylation changes in HCC.
Methods and Findings
We performed genome-wide methylation profiling in a total of 47 samples including 27 HCC and 20 adjacent normal liver tissues using the Illumina HumanMethylation450 BeadChip. We focused on differential methylation patterns in the promoter CpG islands as well as in various less studied genomic regions such as those surrounding the CpG islands, i.e. shores and shelves. Of the 485,577 loci studied, significant differential methylation (DM) was observed between HCC and adjacent normal tissues at 62,692 loci or 13% (p<1.03e-07). Of them, 61,058 loci (97%) were hypomethylated and most of these loci were located in the intergenic regions (43%) or gene bodies (33%). Our analysis also identified 10,775 differentially methylated (DM) loci (17% out of 62,692 loci) located in or surrounding the gene promoters, 4% of which reside in known Differentially Methylated Regions (DMRs) including reprogramming specific DMRs and cancer specific DMRs, while the rest (10,315) involving 4,106 genes could be potential new HCC DMR loci. Interestingly, the promoter-related DM loci occurred twice as frequently in the shores than in the actual CpG islands. We further characterized 982 DM loci in the promoter CpG islands to evaluate their potential biological function and found that the methylation changes could have effect on the signaling networks of Cellular development, Gene expression and Cell death (p = 1.0e-38), with BMP4, CDKN2A, GSTP1, and NFATC1 on the top of the gene list.
Substantial changes of DNA methylation at a genome-wide level were observed in HCC. Understanding epigenetic changes in HCC will help to elucidate the pathogenesis and may eventually lead to identification of molecular markers for liver cancer diagnosis, treatment and prognosis.
PMCID: PMC3577824  PMID: 23437062
14.  Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver 
BMC Cancer  2006;6:89.
Epigenetic changes during ageing and their relationship with cancer are under the focus of intense research. RASSF1A and NORE1A are novel genes acting in concert in the proapoptotic pathway of the RAS signalling. While NORE1A has not been previously investigated in the human liver, recent reports have suggested that RASSF1A is frequently epigenetically methylated not only in HCC but also in the cirrhotic liver.
To address whether epigenetic changes take place in connection to age and/or to the underlying disease, we investigated RASSF1A and NORE1A gene promoter methylation by conventional methylation specific PCR and Real-Time MSP in a series of hepatitic and non-hepatitic livers harboring regenerative/hyperplastic (cirrhosis/focal nodular hyperplasia), dysplastic (large regenerative, low and high grade dysplastic nodules) and neoplastic (hepatocellular adenoma and carcinoma) growths.
In the hepatitic liver (chronic hepatitic/cirrhosis, hepatocellular nodules and HCC) we found widespread RASSF1A gene promoter methylation with a methylation index that increased from regenerative conditions (cirrhosis) to hepatocellular nodules (p < 0.01) to HCC (p < 0.001). In the non-hepatitic liver a consistent pattern of gene methylation was also found in both lesional (focal nodular hyperplasia and hepatocellular adenoma) and non-lesional tissue. Specifically, hepatocellular adenomas (HA) showed a methylation index significantly higher than that detected in focal nodular hyperplasia (FNH) (p < 0.01) and in non-lesional tissue (p < 0.001). In non-lesional liver also the methylation index gradually increased by ageing (p = 0.002), suggesting a progressive spreading of methylated cells over time. As opposed to RASSF1A gene promoter methylation, NORE1A gene was never found epigenetically alterated in both hepatitic and non-hepatitic liver.
We have shown that in non-lesional, regenerative and neoplastic liver the RASSF1A gene is increasingly methylated, that this condition takes place as an age-related phenomenon and that the early setting and spreading over time of an epigenetically methylated hepatocyte subpopulation, might be related to liver tumorigenesis.
PMCID: PMC1479360  PMID: 16606445
15.  Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma 
British Journal of Cancer  2007;97(9):1260-1265.
Hepatocellular carcinoma (HCC) is highly malignant and prone to multicentric occurrence. Differentiation between a true relapse of HCC and a second primary tumour appearing is of clinical importance. At this point, no convenient method is available to determine the origin of these HCCs. Tissue samples were obtained from 19 patients and analysed for the promoter hypermethylation status of multiple tumour suppressor genes (p16, DAP-Kinase, MGMT, GSTP1, APC, RIZ1, SFRP1, SFRP2, SFRP5, RUNX3, and SOCS1) using methylation-specific PCR (MSP). Methylation status was used to determine tumour clonality. In each of the 19 cases, at least one tumour was recognised as having an aberrantly methylated gene. The frequency of the methylation in tumour tissue was 57.1% in p16, 2.4% in DAP-kinase, 23.8% in GSTP1, 90.5% in APC, 45.2% in RIZ1, 64.3% in SFRP1, 59.5% in SFRP2, 28.6% in SFRP5, 47.6% in RUNX3, and 54.8% in SOCS1, while in MGMT, no aberrant methylation was detected. The methylation status of these genes was assessed using MSP as being either positive or negative, and was used to determine the tumour clonality. The clonality of every tumour could be decided even with lesions that could not be judged by clinical diagnosis or by another molecular method (mt DNA mutation). Determining the methylation status of multiple genes in multicentric HCC was useful as a clonal marker and provided useful information for characterising the tumour. From our findings, multicentric HCCs tend to occur more independently than metastatically from the original tumour. Expanded study should be pursued further for a better understanding of the molecular mechanism of hepatocarcinogenesis.
PMCID: PMC2360457  PMID: 17968429
hepatocellular carcinoma; multicentric occurrence; promoter hypermethylation; clonality; real-time methylation specific PCR
16.  Promoter hypermethylation of Wnt pathway inhibitors in hepatitis C virus - induced multistep hepatocarcinogenesis 
Virology Journal  2014;11:117.
Aberrant DNA methylation profiles are a characteristic feature of almost all types of cancers including hepatocellular carcinoma (HCC) and play an important role in carcinogenesis. In spite of the accumulating evidence that suggests appearance of such aberrations at precancerous stages, very little effort has been invested to investigate such possible methylation events in patients at risk of developing HCC i.e. those suffering from chronic hepatitis C virus (HCV) infection and liver cirrhosis (LC). We reasoned that such an analysis could lead to the identification of novel predictive biomarkers as well as potential drug targets.
Promoter methylation status of two Wnt inhibitors SFRP2 and DKK1 was quantitatively analyzed by bisulfite pyrosequencing in a series of liver biopsy samples. These biopsies were collected from HCV-infected individuals suffering from chronic hepatitis (CH; n = 15), liver cirrhosis (LC; n = 13) and hepatocellular carcinoma (HCC; n = 41). DNA isolated from infection free normal livers (N; n =10) was used as control.
Our analysis revealed that both of the genomic loci were significantly hypermethylated in CH patients’ livers as compared to normal controls (p = 0.0136 & 0.0084 for SFRP2 and DKK1, respectively; Mann–Whitney U test). DNA methylation levels for both loci were also significantly higher in all the diseased cohorts as compared to normal controls (p < 0.0001 and = 0.0011 for SFRP2 and DKK1, respectively; Kruskal-Wallis test). However, a comparison between three disease cohorts (CH, LC & HCC) revealed no significant difference in levels of DNA methylation at DKK1 promoter. In contrast, a progressive increase in DNA methylation levels was observed at the SFRP2 promoter (i.e. N < CH & LC < HCC).
This study demonstrated that in HCV infected liver tissues hypermethylation at promoter regions of key cancer related genes SFRP2 and DKK1, appears early at CH and LC stages, long before the appearance of HCC.
PMCID: PMC4076499  PMID: 24947038
Hypermethylation; Wnt pathway; HCV; SFRP2; DKK1; Hepatocarcinogenesis
17.  CpG island methylator phenotype in plasma is associated with hepatocellular carcinoma prognosis 
AIM: To evaluate the clinical significance of CpG island methylator phenotype (CIMP) in plasma and its association with hepatocellular carcinoma (HCC) progress.
METHODS: CIMP status of 108 HCC patients was analyzed using a methylation marker panel in tumor tissues and plasma with methylation-specific polymerase chain reaction. Fifteen samples of non-neoplastic liver tissues and 60 of plasma from healthy persons were examined simultaneously. Examined genes included APC, WIF-1, RUNX-3, DLC-1, SFRP-1, DKK and E-cad.
RESULTS: The frequencies of high-level methylation in HCC tissue and plasma were at least 15% for the seven genes: APC, 48/108, 44.44% in tissue and 26/108, 24.07% in plasma; WIF-1, 53/108, 49.07% in tissue and 35/108, 32.41% in plasma; RUNX-3, 52/108, 48.14% in tissue and 42/108, 38.89% in plasma; DLC-1, 38/108, 35.18% in tissue and 23/108, 21.30% in plasma; SFRP-1, 40/108, 37.04% in tissue and 31/108, 28.7% in plasma; DKK, 39/108, 36.1% in tissue and 25/108, 23.14% in plasma; and E-cad, 37/108, 34.3% in tissue and 18/108, 16.67% in plasma. CIMP+ (≥ 3 methylated genes) was detected in 68 (60.2%) tumor tissue samples and 62 (57.4%) plasma samples. CIMP was not detected in non-neoplastic liver tissues or plasma of healthy persons. CIMP status in tumor tissues differed significantly in gender, hepatitis B surface antigen, alpha-fetoprotein, and tumor-node-metastasis stage (P < 0.05). Similar results were obtained with plasma samples (P < 0.05). There was no difference in CIMP status in age, presence of hepatitis C virus antibody, cirrhosis, number of nodes, number of tumors, tumor size, or Edmondson-Steiner stage. A one-year follow-up found that the metastatic rate and recurrence rate in the CIMP+ group were significantly higher than in the CIMP- group as assessed with plasma samples (P < 0.05).
CONCLUSION: Plasma DNA can be a reliable sample source for CIMP analysis. CIMP in plasma may serve as a molecular marker of late-stage and poor-prognosis HCC.
PMCID: PMC3237302  PMID: 22180715
CpG island methylator phenotype; Methylation; Plasma; Prognosis; Hepatocellular carcinoma
18.  Hypermethylation of CCND2 May Reflect a Smoking-Induced Precancerous Change in the Lung 
Journal of Oncology  2011;2011:950140.
It remains unknown whether tobacco smoke induces DNA hypermethylation as an early event in carcinogenesis or as a late event, specific to overt cancer tissue. Using MethyLight assays, we analyzed 316 lung tissue samples from 151 cancer-free subjects (121 ever-smokers and 30 never-smokers) for hypermethylation of 19 genes previously observed to be hypermethylated in nonsmall cell lung cancers. Only APC (39%), CCND2 (21%), CDH1 (7%), and RARB (4%) were hypermethylated in >2% of these cancer-free subjects. CCND2 was hypermethylated more frequently in ever-smokers (26%) than in never-smokers (3%). CCND2 hypermethylation was also associated with increased age and upper lobe sample location. APC was frequently hypermethylated in both ever-smokers (41%) and never-smokers (30%). BVES, CDH13, CDKN2A (p16), CDKN2B, DAPK1, IGFBP3, IGSF4, KCNH5, KCNH8, MGMT, OPCML, PCSK6, RASSF1, RUNX, and TMS1 were rarely hypermethylated (<2%) in all subjects. Hypermethylation of CCND2 may reflect a smoking-induced precancerous change in the lung.
PMCID: PMC3090638  PMID: 21577262
19.  Impact of the Location of CpG Methylation within the GSTP1 Gene on Its Specificity as a DNA Marker for Hepatocellular Carcinoma 
PLoS ONE  2012;7(4):e35789.
Hypermethylation of the glutathione S-transferase π 1 (GSTP1) gene promoter region has been reported to be a potential biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite–PCR sequencing. We found that the 5′ region of the position −48 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC, whereas the 3′ region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly, when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we found that methylation of the 3′ region of the promoter appeared to be liver-specific. A methylation-specific PCR assay targeting the 5′ region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased liver tissues including HCC. When we used an assay targeting the 3′ region, we found that the methylation of the 5′-end of the GSTP1 promoter was significantly more specific than that of the 3′-end (97.1% vs. 60%, p<0.0001 by Fisher's exact test) for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA marker is studied for detection of HCC.
PMCID: PMC3335004  PMID: 22536438
20.  Delineating an Epigenetic Continuum for Initiation, Transformation and Progression to Breast Cancer 
Cancers  2011;3(2):1580-1592.
Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies thepathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer.
PMCID: PMC3138135  PMID: 21776373
benign; premalignant; transformation; DNA methylation; progression; continuum
21.  Delineating an Epigenetic Continuum for Initiation, Transformation and Progression to Breast Cancer 
Cancers  2011;3(2):1580-1592.
Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies the pathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer.
PMCID: PMC3138135  PMID: 21776373
benign; premalignant; transformation; DNA methylation; progression; continuum
22.  DNA hypermethylation of tumors from non-small cell lung cancer (NSCLC) patients is associated with gender and histologic type 
We previously identified a number of genes which were methylated significantly more frequently in the tumor compared to the non-cancerous lung tissues from non-small cell lung cancer (NSCLC) patients. Detection of methylation profiles of genes in NSCLC could provide insight into differential pathways to malignancy and lead to strategies for better treatment of individuals with NSCLC.
We determined the DNA methylation status of 27 genes using quantitative MethyLight assays in lung tumor samples from 117 clinically well-characterized NSCLC patients.
Hypermethylation was detected in one of more of the genes in 106 (91%) of 117 cases and was detected at high levels (Percentage of Methylation Reference (PMR)≥4%) in 79% of NSCLC cases. Methylation of APC, CCND2, KCNH5 and, RUNX was significantly more frequent in adenocarcinomas compared to squamous cell carcinomas (SCC), while methylation of CDKN2A was more common in SCC. Hypermethylation of KCNH5, KCNH8, and RARB was more frequent in females compared to males. Hypermethylation of APC and CCND2 was inversely associated with proliferation score assessed by Ki-67 level.
Our findings of differential gene hypermethylation frequencies in tumor tissues from patients with adenocarcinoma or squamous cell cancers and in females compared to males suggests that further investigation is warranted in order to more fully understand the potential disparate pathways and/or risk factors for NSCLC associated with histologic type and gender.
PMCID: PMC2888601  PMID: 19945765
hypermethylation; lung cancer; gender; histology
23.  Hypermethylation Leads to Bone Morphogenetic Protein 6 Downregulation in Hepatocellular Carcinoma 
PLoS ONE  2014;9(1):e87994.
In the liver, bone morphogenetic protein 6 (BMP-6) maintains balanced iron metabolism. However, the mechanism that underlies greater BMP-6 expression in hepatocellular carcinoma (HCC) tissue than adjacent non-cancerous tissue is unclear. This study sought to investigate the epigenetic mechanisms of BMP-6 expression by analysing the relationship between the DNA methylation status of BMP-6 and the expression of BMP-6.
Methylation-specific polymerase chain reaction (PCR), bisulphite sequencing PCR, the MethyLight assay, and quantitative real-time PCR were performed to examine BMP-6 methylation and mRNA expression levels. Immunohistochemistry (IHC) was performed on tissue arrays to evaluate the BMP-6 protein level.
BMP-6 mRNA expression was approximately 84.09% lower in HCC tissues than in adjacent non-cancerous tissues, and this low level of expression was associated with a poor prognosis. Moreover, the hypermethylation observed in HCC cell lines and HCC tissues was correlated with the BMP-6 mRNA expression level, and this correlation was validated following treatment with 5-aza-CdR, a demethylation agent. In addition, BMP-6 DNA methylation was upregulated by 68.42% in 114 clinical HCC tissue samples compared to adjacent normal tissues, whereas the BMP-6 staining intensity was downregulated by 77.03% in 75 clinical HCC tissue samples in comparison to adjacent normal tissues. Furthermore, elevated expression of BMP-6 in HCC cell lines inhibited cell colony formation.
Our results suggest that BMP-6 CpG island hypermethylation leads to decreased BMP-6 expression in HCC tissues.
PMCID: PMC3907571  PMID: 24498236
24.  Transcriptional Suppression of miR-181c by Hepatitis C Virus Enhances Homeobox A1 Expression 
Journal of Virology  2014;88(14):7929-7940.
Hepatitis C virus (HCV)-induced chronic liver disease is one of the leading causes of hepatocellular carcinoma (HCC). The molecular events leading to HCC following chronic HCV infection remain poorly defined. MicroRNAs (miRNAs) have been implicated in the control of many biological processes, and their deregulation is associated with different viral infections. In this study, we observed that HCV infection of hepatocytes transcriptionally downregulates miR-181c expression by modulating CCAAT/enhancer binding protein β (C/EBP-β). Reduced expression of the pri-miR-181c transcript was noted following HCV infection. In silico prediction suggests that homeobox A1 (HOXA1) is a direct target of miR-181c. HOXA1 is a member of the homeodomain-containing transcription factor family and possesses pivotal roles in normal growth, development, and differentiation of mammalian tissues. Our results demonstrated that HOXA1 expression is enhanced in HCV-infected hepatocytes. Exogenous expression of the miR-181c mimic inhibits HOXA1 and its downstream molecules STAT3 and STAT5, which are involved in cell growth regulation. Interestingly, overexpression of miR-181c inhibited HCV replication by direct binding with E1 and NS5A sequences. Furthermore, accumulation of HCV genotype 2a RNA with miR-181c was observed in an RNA-induced silencing complex in Huh7.5 cells. Our results provide new mechanistic insights into the role of miR-181c in HCV-hepatocyte interactions, and miR-181c may act as a target for therapeutic intervention.
IMPORTANCE Chronic HCV infection is one of the major causes of end-stage liver disease, including hepatocellular carcinoma. An understanding of the molecular mechanisms of HCV-mediated hepatocyte growth promotion is necessary for therapeutic intervention against HCC. In this study, we have provided evidence of HCV-mediated transcriptional downregulation of miR-181c. HCV-infected liver biopsy specimens also displayed lower expression levels of miR-181c. We have further demonstrated that inhibition of miR-181c upregulates homeobox A1 (HOXA1), which is important for hepatocyte growth promotion. Exogenous expression of miR-181c inhibited HCV replication by directly binding with HCV E1 and NS5A sequences. Taken together, our results provided new mechanistic insights for an understanding of the role of miR-181c in HCV-hepatocyte interactions and revealed miR-181c as a potential target for therapeutic intervention.
PMCID: PMC4097774  PMID: 24789793
25.  Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis 
Oncotarget  2014;5(19):9425-9443.
Hepatocellular carcinoma (HCC) is the second most common cause of cancer deaths worldwide. Deregulated DNA methylation landscapes are ubiquitous in human cancers. Interpretation of epigenetic aberrations in HCC is confounded by multiple etiologic drivers and underlying cirrhosis. We globally profiled the DNA methylome of 34 normal and 122 liver disease tissues arising in settings of hepatitis B (HBV) or C (HCV) viral infection, alcoholism (EtOH), and other causes to examine how these environmental agents impact DNA methylation in a manner that contributes to liver disease. Our results demonstrate that each ‘exposure’ leaves unique and overlapping signatures on the methylome. CpGs aberrantly methylated in cirrhosis-HCV and conserved in HCC were enriched for cancer driver genes, suggesting a pathogenic role for HCV-induced methylation changes. Additionally, large genomic regions displaying stepwise hypermethylation or hypomethylation during disease progression were identified. HCC-HCV/EtOH methylomes overlap highly with cryptogenic HCC, suggesting shared epigenetically deregulated pathways for hepatocarcinogenesis. Finally, overlapping methylation abnormalities between primary and cultured tumors unveil conserved epigenetic signatures in HCC. Taken together, this study reveals profound epigenome deregulation in HCC beginning during cirrhosis and influenced by common environmental agents. These results lay the foundation for defining epigenetic drivers and clinically useful methylation markers for HCC.
PMCID: PMC4253444  PMID: 25294808
hepatocellular carcinoma; cirrhosis; etiology; epigenetics; DNA methylation

Results 1-25 (1045142)