Search tips
Search criteria

Results 1-25 (1226768)

Clipboard (0)

Related Articles

1.  Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy 
Diabetes  2011;60(11):3055-3066.
To determine whether dietary compounds targeting NFE2-related factor 2 (Nrf2) activation can be used to attenuate renal damage and preserve renal function during the course of streptozotocin (STZ)-induced diabetic nephropathy.
Diabetes was induced in Nrf2+/+ and Nrf2−/− mice by STZ injection. Sulforaphane (SF) or cinnamic aldehyde (CA) was administered 2 weeks after STZ injection and metabolic indices and renal structure and function were assessed (18 weeks). Markers of diabetes including blood glucose, insulin, polydipsia, polyuria, and weight loss were measured. Pathological alterations and oxidative damage in glomeruli were also determined. Changes in protein expression of the Nrf2 pathway, as well as transforming growth factor-β1 (TGF-β1), fibronectin (FN), collagen IV, and p21/WAF1Cip1 (p21) were analyzed. The molecular mechanisms of Nrf2-mediated protection were investigated in an in vitro model using human renal mesangial cells (HRMCs).
SF or CA significantly attenuated common metabolic disorder symptoms associated with diabetes in Nrf2+/+ but not in Nrf2−/− mice, indicating SF and CA function through specific activation of the Nrf2 pathway. Furthermore, SF or CA improved renal performance and minimized pathological alterations in the glomerulus of STZ-Nrf2+/+ mice. Nrf2 activation reduced oxidative damage and suppressed the expression of TGF-β1, extracellular matrix proteins and p21 both in vivo and in HRMCs. In addition, Nrf2 activation reverted p21-mediated growth inhibition and hypertrophy of HRMCs under hyperglycemic conditions.
We provide experimental evidence indicating that dietary compounds targeting Nrf2 activation can be used therapeutically to improve metabolic disorder and relieve renal damage induced by diabetes.
PMCID: PMC3198067  PMID: 22025779
2.  Transcription Factor Nrf2-Mediated Antioxidant Defense System in the Development of Diabetic Retinopathy 
Increase in reactive oxygen species (ROS) is one of the major retinal metabolic abnormalities associated with the development of diabetic retinopathy. NF-E2–related factor 2 (Nrf2), a redox sensitive factor, provides cellular defenses against the cytotoxic ROS. In stress conditions, Nrf2 dissociates from its cytosolic inhibitor, Kelch like-ECH-associated protein 1 (Keap1), and moves to the nucleus to regulate the transcription of antioxidant genes including the catalytic subunit of glutamylcysteine ligase (GCLC), a rate-limiting reduced glutathione (GSH) biosynthesis enzyme. Our aim is to understand the role of Nrf2-Keap1-GCLC in the development of diabetic retinopathy.
Effect of diabetes on Nrf2-Keap1-GCLC pathway, and subcellular localization of Nrf2 and its binding with Keap1 was investigated in the retina of streptozotocin-induced diabetic rats. The binding of Nrf2 at GCLC was quantified by chromatin immunoprecipitation technique. The results were confirmed in isolated retinal endothelial cells, and also in the retina from human donors with diabetic retinopathy.
Diabetes increased retinal Nrf2 and its binding with Keap1, but decreased DNA-binding activity of Nrf2 and also its binding at the promoter region of GCLC. Similar impairments in Nrf2-Keap1-GCLC were observed in the endothelial cells exposed to high glucose and in the retina from donors with diabetic retinopathy. In retinal endothelial cells, glucose-induced impairments in Nrf2-GCLC were prevented by Nrf2 inducer tBHQ and also by Keap1-siRNA.
Due to increased binding of Nrf2 with Keap1, its translocation to the nucleus is compromised contributing to the decreased GSH levels. Thus, regulation of Nrf2-Keap1 by pharmacological or molecular means could serve as a potential adjunct therapy to combat oxidative stress and inhibit the development of diabetic retinopathy.
Diabetes increases retinal Nrf2 levels, but decreases its DNA binding activity. Due to increased binding of Nrf2 with its inhibitor, the recruitment of Nrf2 at the promoter of GCLC, a rate-limiting enzyme in GSH biosynthesis, is decreased, resulting in subnormal antioxidant defense system.
PMCID: PMC3676188  PMID: 23633659
antioxidant defense; diabetic retinopathy; Nrf2
3.  Dimethylfumarate Attenuates Renal Fibrosis via NF-E2-Related Factor 2-Mediated Inhibition of Transforming Growth Factor-β/Smad Signaling 
PLoS ONE  2012;7(10):e45870.
TGF-β plays a key role in the development of renal fibrosis. Suppressing the TGF-β signaling pathway is a possible therapeutic approach for preventing this disease, and reports have suggested that Nrf2 protects against renal fibrosis by inhibiting TGF-β signaling. This study examines whether dimethylfumarate (DMF), which stimulates Nrf2, prevents renal fibrosis via the Nrf2-mediated suppression of TGF-β signaling. Results showed that DMF increased nuclear levels of Nrf2, and both DMF and adenovirus-mediated overexpression of Nrf2 (Ad-Nrf2) decreased PAI-1, alpha-smooth muscle actin (α-SMA), fibronectin and type 1 collagen expression in TGF-β-treated rat mesangial cells (RMCs) and renal fibroblast cells (NRK-49F). Additionally, DMF and Ad-Nrf2 repressed TGF-β-stimulated Smad3 activity by inhibiting Smad3 phosphorylation, which was restored by siRNA-mediated knockdown of Nrf2 expression. However, downregulation of the antioxidant response element (ARE)-driven Nrf2 target genes such as NQO1, HO-1 and glutathione S-transferase (GST) did not reverse the inhibitory effect of DMF on TGF-β-induced upregulation of profibrotic genes or extracellular matrix proteins, suggesting an ARE-independent anti-fibrotic activity of DMF. Finally, DMF suppressed unilateral ureteral obstruction (UUO)-induced renal fibrosis and α-SMA, fibronectin and type 1 collagen expression in the obstructed kidneys from UUO mice, along with increased and decreased expression of Nrf2 and phospho-Smad3, respectively. In summary, DMF attenuated renal fibrosis via the Nrf2-mediated inhibition of TGF-β/Smad3 signaling in an ARE-independent manner, suggesting that DMF could be used to treat renal fibrosis.
PMCID: PMC3466265  PMID: 23056222
4.  Therapeutic potential of digitoflavone on diabetic nephropathy: nuclear factor erythroid 2-related factor 2-dependent anti-oxidant and anti-inflammatory effect 
Scientific Reports  2015;5:12377.
Nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a therapeutic target in many diseases, because it can induce antioxidant enzymes and other cytoprotective enzymes. Moreover, some Nrf2 activators have strong anti-inflammatory activities. Oxidative stress and inflammation are major components involved in the pathology of diabetic nephropathy. In the present study, we evaluated the Nrf2-dependent anti-oxidative and anti-inflammatory effects of digitoflavone in streptozotocin-induced diabetic nephropathy. The molecular mechanisms of digitoflavone were investigated in vitro using SV40-transformed mouse mesangial cells (SV40-Mes13). For the in vivo experiment, diabetes was induced in Nrf2+/+ and Nrf2−/− mice by STZ injection, and digitoflavone was administered 2 weeks after the STZ injection. Digitoflavone induced Nrf2 activation and decreased oxidative damage, inflammation, TGF-β1 expression, extracellular matrix protein expression, and mesangial cell hyperplasia in SV40-Mes13 cells. Digitoflavone-treated Nrf2+/+ mice, but not Nrf2−/− mice, showed attenuated common metabolic disorder symptoms, improved renal performance, minimized pathological alterations, and decreased oxidative damage, inflammatory gene expression, inflammatory cell infiltration, TGF-β1 expression, and extracellular matrix protein expression. Our results show that the anti-oxidative and anti-inflammatory effects of digitoflavone are mediated by Nrf2 activation and that digitoflavone can be used therapeutically to improve metabolic disorders and relieve renal damage induced by diabetes.
PMCID: PMC4513300  PMID: 26205695
5.  NRF2 plays a protective role in diabetic retinopathy in mice 
Diabetologia  2013;57(1):204-213.
Although much is known about the pathophysiological processes contributing to diabetic retinopathy (DR), the role of protective pathways has received less attention. The transcription factor nuclear factor erythroid-2-related factor 2 (also known as NFE2L2 or NRF2) is an important regulator of oxidative stress and also has anti-inflammatory effects. The objective of this study was to explore the potential role of NRF2 as a protective mechanism in DR.
Retinal expression of NRF2 was investigated in human donor and mouse eyes by immunohistochemistry. The effect of NRF2 modulation on oxidative stress was studied in the human Müller cell line MIO-M1. Non-diabetic and streptozotocin-induced diabetic wild-type and Nrf2 knockout mice were evaluated for multiple DR endpoints.
NRF2 was expressed prominently in Müller glial cells and astrocytes in both human and mouse retinas. In cultured MIO-M1 cells, NRF2 inhibition significantly decreased antioxidant gene expression and exacerbated tert-butyl hydroperoxide- and hydrogen peroxide-induced oxidative stress. NRF2 activation strongly increased NRF2 target gene expression and suppressed oxidant-induced reactive oxygen species. Diabetic mice exhibited retinal NRF2 activation, indicated by nuclear translocation. Superoxide levels were significantly increased by diabetes in Nrf2 knockout mice as compared with wild-type mice. Diabetic Nrf2 knockout mice exhibited a reduction in retinal glutathione and an increase in TNF-α protein compared with wild-type mice. Nrf2 knockout mice exhibited early onset of blood–retina barrier dysfunction and exacerbation of neuronal dysfunction in diabetes.
These results indicate that NRF2 is an important protective mechanism regulating the progression of DR and suggest enhancement of the NRF2 pathway as a potential therapeutic strategy.
PMCID: PMC4039644  PMID: 24186494
Diabetic retinopathy; Inflammation; Müller glial cells; Neuronal dysfunction; NF-E2-related factor-2; Reactive oxygen species; Transcription factor; Vascular permeability
6.  Prevention of Diabetic Nephropathy by Sulforaphane: Possible Role of Nrf2 Upregulation and Activation 
The present study was to investigate whether sulforaphane (SFN) can prevent diabetic nephropathy in type 1 diabetic mouse model induced by multiple low-dose streptozotocin. Diabetic and age-matched control mice were given SFN at 0.5 mg/kg body weight daily for 3 months. At the end of 3-month SFN treatment, the diabetic nephropathy, shown by renal inflammation, oxidative damage, fibrosis, and dysfunction, was significantly prevented along with an elevation of renal Nrf2 expression and transcription in diabetes/SFN group compared with diabetic group. However, this renal prevention by SFN was not seen when the 3-month SFN-treated diabetic mice were aged for additional 3 months without further SFN treatment. Nrf2-mediated renal protective effects in diabetes were evaluated in human renal tubular HK11 cells transfected with control and Nrf2 siRNA and treated with 27.5 mM mannitol or high glucose plus palmitate (300 μM). Blockade of Nrf2 expression completely abolished SFN prevention of the profibrotic effect induced by high glucose plus palmitate. These results support that renal Nrf2 expression and its transcription play important roles in SFN prevention of diabetes-induced renal damage. However, the SFN preventive effect on diabetes-induced renal pathogeneses is not sustained, suggesting the requirement of continual use of SFN for its sustained effect.
PMCID: PMC3461640  PMID: 23050040
7.  Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response 
Kidney international  2013;85(2):333-343.
The generation of reactive oxygen species plays a pivotal role in both acute and chronic glomerular injuries in patients with lupus nephritis. Since the transcription factor Nrf2 is a major regulator of the antioxidant response and is a primary cellular defense mechanism we sought to determine a role of Nrf2 in the progression of lupus nephritis. Pathological analyses of renal biopsies from patients with different types of lupus nephritis showed oxidative damage in the glomeruli, accompanied by an active Nrf2 antioxidant response. A murine lupus nephritis model using Nrf2+/+ and Nrf2−/− mice was established using pristine injection. In this model, Nrf2−/− mice suffered from greater renal damage and had more severe pathological alterations in the kidney. In addition, Nrf2+/+ mice showed ameliorative renal function when treated with sulforaphane, an Nrf2 inducer. Nrf2−/− mice had higher expression of TGFβ1, fibronectin and iNOS. In primary mouse mesangial cells, the nephritogenic monoclonal antibody R4A activated the NF-κB pathway and increased the level of reactive oxygen species, iNOS, TGFβ1 and fibronectin. Knockdown of Nrf2 expression aggravated all aforementioned responses induced by R4A. Thus, these results suggest that Nrf2 improves lupus nephritis by neutralizing reactive oxygen species and by negatively regulating the NF-κB and TGFβ1 signaling pathways.
PMCID: PMC3992978  PMID: 24025640
lupus nephritis; Nrf2; ROS; NF-κB; TGFβ1; iNOS
8.  Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage 
Toxicology and applied pharmacology  2012;264(3):315-323.
Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of Type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs3+) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs3+ exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs3+ and monomethylarsonous acid (MMA3+)-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs3+-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N-acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs3+. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure.
PMCID: PMC3478490  PMID: 23000044
arsenic; diabetes; pancreatic β-cell; islets; Nrf2; oxidative stress; cytotoxicity
9.  Nrf2 activation supports cell survival during hypoxia and hypoxia/reoxygenation in cardiomyoblasts; the roles of reactive oxygen and nitrogen species☆ 
Redox Biology  2013;1(1):418-426.
Adaptive mechanisms involving upregulation of cytoprotective genes under the control of transcription factors such as Nrf2 exist to protect cells from permanent damage and dysfunction under stress conditions. Here we explore of the hypothesis that Nrf2 activation by reactive oxygen and nitrogen species modulates cytotoxicity during hypoxia (H) with and without reoxygenation (H/R) in H9C2 cardiomyoblasts. Using MnTBap as a cell permeable superoxide dismutase (SOD) mimetic and peroxynitrite scavenger and L-NAME as an inhibitor of nitric oxide synthase (NOS), we have shown that MnTBap inhibited the cytotoxic effects of hypoxic stress with and without reoxygenation. However, L-NAME only afforded protection during H. Under reoxygenation, conditions, cytotoxicity was increased by the presence of L-NAME. Nrf2 activation was inhibited independently by MnTBap and L-NAME under H and H/R. The increased cytotoxicity and inhibition of Nrf2 activation by the presence of L-NAME during reoxygenation suggests that NOS activity plays an important role in cell survival at least in part via Nrf2-independent pathways. In contrast, O2−• scavenging by MnTBap prevented both toxicity and Nrf2 activation during H and H/R implying that toxicity is largely dependent on O2−•.To confirm the importance of Nrf2 for myoblast metabolism, Nrf2 knockdown with siRNA reduced cell survival by 50% during 4 h hypoxia with and without 2 h of reoxygenation and although cellular glutathione (GSH) was depleted during H and H/R, GSH loss was not exacerbated by Nrf2 knockdown. These data support distinctive roles for ROS and RNS during H and H/R for Nrf2 induction which are important for survival independently of GSH salvage.
Graphical abstract
ROS and RNS in cell survival and death during hypoxia and reoxygenation; the role of Nrf2. There is evidence of superoxide anion radical and nitric oxide production in both hypoxia and H/R. While MnTBap inhibited the toxicity of both stressors, L-NAME only protected against the toxicity of hypoxia implying that nitric oxide was required for survival during H/R. Both superoxide anion radical and nitric oxide elicited Nrf2 activation during H/R and to a lesser extent during hypoxia. Nrf2 knockdown prevented GSH induction and also reduced survival during H/R by 50% but only by 30% during hypoxia. RNS are essential for Nrf2 activation but may also exert cytoprotective effects during H/R by other means.
•Cardiomyoblast toxicity during hypoxia is dependent on O2−• and NO•.•Nrf2 activation is important for cardiomyoblast survival during hypoxia or hypoxia/reoxygenation, but, restoration of GSH is not required.•NOS activity is essential for the adaptation of cardiomyoblasts to hypoxia/reoxygenation but survival may be independent of Nrf2.
PMCID: PMC3814985  PMID: 24191235
CREB, cAMP-responsive element-binding protein; HIF-1, hypoxia-inducible factor; KEAP1, Kelch-like ECH-associated protein 1; L-NAME, L-NG-nitroarginine methyl ester; MnTBap, manganese [III] tetrakis (4-benzoic acid) porphyrin; NO, nitric oxide; NFκB, nuclear factor kappa B; NOS, nitric oxide synthase; NOX, NADPH oxidase; RNS, reactive nitrogen species; ROS, reactive oxygen species; Nrf2, nuclear factor erythroid 2-related factor 2; DHE, dihydroethidium; DAF-2-DA, 4,5-diaminofluorescein diacetate; Adaptive; MnTBap; L-NAME; RNS; ROS; Glutathione
10.  Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation☆ 
Redox Biology  2013;1(1):433-440.
Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of protective target genes. In the present study, we have characterized the regulation of CYP2A5 by Nrf2 and evaluated gene expression, protein content and activity of anti-oxidant enzymes in the Nrf2+/+ and Nrf2−/− mice model of non-alcoholic fatty liver (NAFLD). After eight weeks of feeding on a high-fat diet, livers from Nrf2−/− mice showed a substantial increase in macro and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2−/− mice on the high-fat diet exhibited more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in malondialdehyde. Furthermore, results in Nrf2-deficient mice showed that CYP2A5 expression was significantly attenuated in the absence of Nrf2, as was found with the conventional target genes of Nrf2. The treatment of wild-type mice with high-fat diet leaded to nuclear accumulation of Nrf2, and co-immunoprecipitation experiments showed that Nrf2 was bound to Cyp2a5. These findings suggest that the high-fat diet induced alteration in cellular redox status and induction of CYP2A5 was modulated through the redox-sensitive transcription Nrf2.
Graphical abstract
•CYP2A5 up-regulation in response to NAFLD was Nrf2 dependent.•NAFLD induces oxidant stress.•A protective role for Nrf2 against hepatic damage by NAFLD was demonstrated.•NAFLD induces translocation of Nrf2 from the cytoplasm to the nucleus.•Nrf2 binding to CYP2a5 was shown.
PMCID: PMC3814957  PMID: 24191237
ARE, Antioxidant response element; Nrf2, Nuclear factor erythroid 2-like 2; KO, Knockout; WT, Wild-type; P450, Cytochrome P450; NASH, Nonalcoholic steatohepatitis; NAFLD, Nonalcoholic fatty liver disease; co-IP, Co-immunoprecipitation; Coumarin 7-hydroxylase; Oxidative stress; glutathione S-transferases; High-fat diet; Knockout mice
11.  Targeted Deletion of Nrf2 Impairs Lung Development and Oxidant Injury in Neonatal Mice 
Antioxidants & Redox Signaling  2012;17(8):1066-1082.
Aims: Nrf2 is an essential transcription factor for protection against oxidant disorders. However, its role in organ development and neonatal disease has received little attention. Therapeutically administered oxygen has been considered to contribute to bronchopulmonary dysplasia (BPD) in prematurity. The current study was performed to determine Nrf2-mediated molecular events during saccular-to-alveolar lung maturation, and the role of Nrf2 in the pathogenesis of hyperoxic lung injury using newborn Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice. Results: Pulmonary basal expression of cell cycle, redox balance, and lipid/carbohydrate metabolism genes was lower while lymphocyte immunity genes were more highly expressed in Nrf2−/− neonates than in Nrf2+/+ neonates. Hyperoxia-induced phenotypes, including mortality, arrest of saccular-to-alveolar transition, and lung edema, and inflammation accompanying DNA damage and tissue oxidation were significantly more severe in Nrf2−/− neonates than in Nrf2+/+ neonates. During lung injury pathogenesis, Nrf2 orchestrated expression of lung genes involved in organ injury and morphology, cellular growth/proliferation, vasculature development, immune response, and cell–cell interaction. Bioinformatic identification of Nrf2 binding motifs and augmented hyperoxia-induced inflammation in genetically deficient neonates supported Gpx2 and Marco as Nrf2 effectors. Innovation: This investigation used lung transcriptomics and gene targeted mice to identify novel molecular events during saccular-to-alveolar stage transition and to elucidate Nrf2 downstream mechanisms in protection from hyperoxia-induced injury in neonate mouse lungs. Conclusion: Nrf2 deficiency augmented lung injury and arrest of alveolarization caused by hyperoxia during the newborn period. Results suggest a therapeutic potential of specific Nrf2 activators for oxidative stress-associated neonatal disorders including BPD. Antioxid. Redox Signal. 00, 000–000.
PMCID: PMC3423869  PMID: 22400915
12.  Nrf2 regulates ROS production by mitochondria and NADPH oxidase 
Biochimica et Biophysica Acta  2015;1850(4):794-801.
Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain.
Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD).
We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1–Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production.
These observations suggest that the Keap1–Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase.
General significance
Findings supports a key role of the Keap1–Nrf2 pathway in redox homeostasis within the cell.
•We studied ROS production/NADPH oxidase expression in Nrf2-KO and Keap1-KD cells.•ROS production is increased in Nrf2-KO and Keap1-KD neurons when compared to WT.•NOX2/NOX4 mRNA in Nrf2-KO and Keap1-KD paralleled these changes.
PMCID: PMC4471129  PMID: 25484314
ROS; Nrf2; Keap1; NADPH oxidase; NOX
13.  Cross-Regulations among NRFs and KEAP1 and Effects of their Silencing on Arsenic-Induced Antioxidant Response and Cytotoxicity in Human Keratinocytes 
Environmental Health Perspectives  2012;120(4):583-589.
Background: Nuclear factor E2-related factors (NRFs), including NRF2 and NRF1, play critical roles in mediating the cellular adaptive response to oxidative stress. Human exposure to inorganic arsenic, a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer.
Objective: We investigated the cross-regulations among NRF2, NRF1, and KEAP1, a cullin-3–adapter protein that allows NRF2 to be ubiquinated and degraded by the proteasome complex, in arsenic-induced antioxidant responses.
Results: In human keratinocyte HaCaT cells, selective knockdown (KD) of NRF2 by lentiviral short hairpin RNAs (shRNAs) significantly reduced the expression of many antioxidant enzymes and sensitized the cells to acute cytotoxicity of inorganic arsenite (iAs3+). In contrast, silencing KEAP1 led to a dramatic resistance to iAs3+-induced apoptosis. Pretreatment of HaCaT cells with NRF2 activators, such as tert-butylhydroquinone, protects the cells against acute iAs3+ toxicity in an NRF2-dependent fashion. Consistent with the negative regulatory role of KEAP1 in NRF2 activation, KEAP1-KD cells exhibited enhanced transcriptional activity of NRF2 under nonstressed conditions. However, deficiency in KEAP1 did not facilitate induction of NRF2-target genes by iAs3+. In addition, NRF2 silencing reduced the expression of KEAP1 at transcription and protein levels but increased the protein expression of NRF1 under the iAs3+-exposed condition. In contrast, silencing KEAP1 augmented protein accumulation of NRF2 under basal and iAs3+-exposed conditions, whereas the iAs3+-induced protein accumulation of NRF1 was attenuated in KEAP1-KD cells.
Conclusions: Our studies suggest that NRF2, KEAP1, and NRF1 are coordinately involved in the regulation of the cellular adaptive response to iAs3+-induced oxidative stress.
PMCID: PMC3339469  PMID: 22476201
antioxidant response; arsenic; cytotoxicity; KEAP1; keratinocyte; NRF1; NRF2
14.  Zinc is essential for the transcription function of Nrf2 in human renal tubule cells in vitro and mouse kidney in vivo under the diabetic condition 
Increasing evidence from human and laboratory studies showed the effect of zinc (Zn) on diabetic complications. Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays important role in the prevention of oxidative damage. This study was to define whether Zn statues (deficiency or supplement) affect the Nrf2 expression and function, and also affect the damage severity of human renal tubular (HK11) cells exposed to high glucose (HG) with palmitate (Pal) and kidney of diabetic mice induced by multiple low-dose streptozotocins. For Zn deficiency diabetic mice were treated with Zn chelator PTEN at 5 mg/kg bw daily for 4 months. Results showed that HG/Pal significantly increased the expression of pro-fibrotic mediators, connective tissue growth factor and PAI-1, in HK11 cells, which was exacerbated by TPEN that depleted intracellular free Zn and decreased Nrf2 expression and transcription. Zn supplement prevented the effects of TPEN and also increased Akt and GSK-3β phosphorylation with a decrease in Nrf2 nuclear exporter, Fyn. All these effects of Zn were abolished by Akt inhibitor. Therefore, Zn up-regulates Nrf2 function via activating Akt-mediated inhibition of Fyn function. Treatment of diabetic mice with TPEN decreased renal Zn level and Nrf2 expression and transcription, with an exacerbation of renal oxidative damage, inflammation and fibrosis. These results suggest the essentiality of Zn for Nrf2 expression and transcription function.
PMCID: PMC4119395  PMID: 24597671
Akt phosphorylation; diabetic nephropathy; Fyn; Nrf2; TPEN; zinc chelation
15.  Decline in NRF2-regulated Antioxidants in Chronic Obstructive Pulmonary Disease Lungs Due to Loss of Its Positive Regulator, DJ-1 
Rationale: Oxidative stress is a key contributor in chronic obstructive pulmonary disease (COPD) pathogenesis caused by cigarette smoking. NRF2, a redox-sensitive transcription factor, dissociates from its inhibitor, KEAP1, to induce antioxidant expression that inhibits oxidative stress.
Objectives: To determine the link between severity of COPD, oxidative stress, and NRF2-dependent antioxidant levels in the peripheral lung tissue of patients with COPD.
Methods: We assessed the expression of NRF2, NRF2-dependent antioxidants, regulators of NRF2 activity, and oxidative damage in non-COPD (smokers and former smokers) and smoker COPD lungs (mild and advanced). Cigarette smoke–exposed human lung epithelial cells (Beas2B) and mice were used to understand the mechanisms.
Measurements and Main Results: When compared with non-COPD lungs, the COPD patient lungs showed (1) marked decline in NRF2-dependent antioxidants and glutathione levels, (2) increased oxidative stress markers, (3) significant decrease in NRF2 protein with no change in NRF2 mRNA levels, and (4) similar KEAP1 but significantly decreased DJ-1 levels (a protein that stabilizes NRF2 protein by impairing KEAP1-dependent proteasomal degradation of NRF2). Exposure of Bea2B cells to cigarette smoke caused oxidative modification and enhanced proteasomal degradation of DJ-1 protein. Disruption of DJ-1 in mouse lungs, mouse embryonic fibroblasts, and Beas2B cells lowered NRF2 protein stability and impaired antioxidant induction in response to cigarette smoke. Interestingly, targeting KEAP1 by siRNA or the small-molecule activator sulforaphane restored induction of NRF2-dependent antioxidants in DJ-1–disrupted cells in response to cigarette smoke.
Conclusions: NRF2-dependent antioxidants and DJ-1 expression was negatively associated with severity of COPD. Therapy directed toward enhancing NRF2-regulated antioxidants may be a novel strategy for attenuating the effects of oxidative stress in the pathogenesis of COPD.
PMCID: PMC2542433  PMID: 18556627
chronic obstructive pulmonary disease; NRF2; DJ-1; oxidative stress; antioxidants
16.  Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus 
Respiratory Research  2012;13(1):43.
Influenza A virus (IAV) infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2) activates the majority of antioxidant genes.
Alveolar type II (ATII) cells and alveolar macrophages (AM) were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like) cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8) virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2) or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively.
We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis) but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and oxidative stress. However, AdNrf2 did not increase IFN-λ1 (IL-29) levels.
Our results indicate that IAV induces alveolar epithelial injury and that Nrf2 protects these cells from the cytopathic effects of IAV likely by increasing the expression of antioxidant genes. Identifying the pathways involved in protecting cells from injury during influenza infection may be particularly important for developing new therapeutic strategies.
PMCID: PMC3520784  PMID: 22672594
Human alveolar epithelial cells; Alveolar macrophages; Influenza A virus; Nrf2; Apoptosis; Efferocytosis
17.  Beneficial Role of Nrf2 in Regulating NADPH Generation and Consumption 
Toxicological Sciences  2011;123(2):590-600.
Nuclear factor erythroid 2–related factor 2 (Nrf2) is a transcription factor that promotes the transcription of cytoprotective genes in response to oxidative and electrophilic stresses. Most functions of Nrf2 were identified by studying biological models with Nrf2 deficiency, however, little is known about the effects of graded Nrf2 activation. In the present study, genomic gene expression profiles by microarray analysis were characterized with a “gene dose-response” model in livers of Nrf2-null mice, wild-type mice, Kelch-like ECH associating protein 1 (Keap1)-knockdown (Keap1-KD) mice with enhanced Nrf2 activation, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum hepatic Nrf2 activation. Hepatic nuclear Nrf2 protein, glutathione concentrations, and known Nrf2 target genes were increased in a dose-dependent manner. In total, 115 genes were identified to be constitutively induced and 80 genes suppressed with graded Nrf2 activation. Messenger RNA of genes encoding enzymes in the pentose phosphate pathway and enzyme were low with Nrf2 deficiency and high with Nrf2 activation, indicating that Nrf2 is important for NADPH production. NADPH is the major reducing resource to scavenge oxidative stress, including regenerating glutathione and thioredoxin and is also used for anabolic pathways including lipid synthesis. High performance liquid chromatography-ultraviolet absorbance analysis confirmed that hepatic NADPH concentration was lowest in Nrf2-null mice and highest in Keap1-HKO mice. In addition, genes involved in fatty acid synthesis and desaturation were downregulated with graded Nrf2 activation. In conclusion, the present study suggests that Nrf2 protects against environmental insults by promoting the generation of NADPH, which is preferentially consumed by aiding scavenging of oxidative stress rather than fatty acid synthesis and desaturation.
PMCID: PMC3179677  PMID: 21775727
Nrf2; microarray; liver
18.  Coordinated Induction of Nrf2 Target Genes Protects Against Iron Nitrilotriacetate (FeNTA)-Induced Nephrotoxicity 
Toxicology and applied pharmacology  2008;231(3):364-373.
The iron chelate, ferric nitrilotriacetate (FeNTA), induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage. Chronic exposure of FeNTA leads to a high incidence of renal adenocarcinomas in rodents. NF-e2-related factor 2 (Nrf2) is a transcription factor that is activated by oxidative stress and electrophiles, and regulates the basal and inducible expression of numerous detoxifying and antioxidant genes. To determine the roles of Nrf2 in regulating renal gene expression and protecting against oxidative stress-induced kidney damage, wild-type and Nrf2-null mice were administered FeNTA. Renal Nrf2 protein translocated to the nucleus at 6 h after FeNTA treatment. FeNTA increased mRNA levels of Nrf2 target genes, including NQO1, GCLC, GSTpi1/2, Mrp1, 2, and 4 in kidneys from wild-type mice, but not Nrf2-null mice. Protein expression of NQO1, a prototypical Nrf2 target gene, was increased in wild-type mice, with no change in Nrf2-null mice. FeNTA produced more nephrotoxicity in Nrf2-null mice than wild-type mice as indicated by higher serum urea nitrogen and creatinine levels, as more urinary NAG, stronger 4-hydroxynonenal protein adduct staining, and more extensive proximal tubule damage. Furthermore, pretreatment with CDDO-Im, a potent small molecule Nrf2 activator, protected mice against FeNTA-induced renal toxicity. Collectively, these results suggest that activation of Nrf2 protects mouse kidneys from FeNTA-induced oxidative stress damage by coordinately up-regulating the expression of cytoprotective genes.
PMCID: PMC2582522  PMID: 18617210
Nrf2; FeNTA; NQO1; oxidative stress; Mrp; kidney
19.  Nrf2 deficiency impairs the barrier function of mouse esophageal epithelium 
Gut  2013;63(5):711-719.
As a major cellular defense mechanism, the Nrf2/Keap1 pathway regulates expression of genes involved in detoxification and stress response. Our previous study revealed activation of the Nrf2/Keap1 pathway at the maturation phase during mouse esophageal development, suggesting a potential function in epithelial defense. Here we hypothesize that Nrf2 is involved in the barrier function of esophageal epithelium, and plays a protective role against gastroesophageal reflux disease (GERD).
Human esophageal biopsy samples, mouse surgical models and Nrf2-/- mice were used to assess the role of the Nrf2/Keap1 pathway in esophageal mucosal barrier function. Trans-epithelial electrical resistance (TEER) was measured with mini-Ussing chambers. Hematoxylin and eosin (HE) staining and transmission electron microscopy were used to examine cell morphology, while gene microarray, immunohistochemistry, Western blotting and ChIP analysis were used to assess the expression of pathway genes.
Nrf2 was expressed in normal esophageal epithelium and activated in GERD of both humans and mice. Nrf2 deficiency and gastroesophageal reflux in mice, either alone or in combination, reduced TEER and increased intercellular space diameter in esophageal epithelium. Nrf2 target genes and gene sets associated with oxidoreductase activity, mitochondrial biogenesis and energy production were down-regulated in the esophageal epithelium of Nrf2-/- mice. Consistent with the antioxidative function of Nrf2, a DNA oxidative damage marker (8OHdG) dramatically increased in esophageal epithelial cells of Nrf2-/- mice compared with those of wild-type mice. Interestingly, ATP biogenesis, Cox IV (a mitochondrial protein) and Claudin-4 (Cldn4) expression were down-regulated in the esophageal epithelium of Nrf2-/- mice, suggesting that energy-dependent tight junction integrity was subject to Nrf2 regulation. ChIP analysis confirmed the binding of Nrf2 to Cldn4 promoter.
Nrf2 deficiency impairs esophageal barrier function through disrupting energy-dependent tight junction. Elucidating the role of this pathway in GERD has potential implications for the pathogenesis and therapy of the disease.
PMCID: PMC3883925  PMID: 23676441
Nrf2; esophagus; TEER; GERD
20.  Nrf2 regulates ROS production by mitochondria and NADPH oxidase 
Biochimica et biophysica acta  2014;1850(4):794-801.
Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain.
Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD).
We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1–Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production.
These observations suggest that the Keap1–Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase.
General significance
Findings supports a key role of the Keap1–Nrf2 pathway in redox homeostasis within the cell.
PMCID: PMC4471129  PMID: 25484314
ROS; Nrf2; Keap1; NADPH oxidase; NOX
21.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer 
PLoS Medicine  2006;3(10):e420.
Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.
Methods and Findings
Here we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.
This is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
Biallelic inactivation ofKEAP1, a frequent genetic alteration in NSCLC, is associated with activation of the NRF2 pathway which leads to expression of genes that contribute to resistance against chemotherapeutic drugs.
Editors' Summary
Lung cancer is the most common cause of cancer-related death worldwide. More than 150,000 people in the US alone die every year from this disease, which can be split into two basic types—small cell lung cancer and non-small-cell lung cancer (NSCLC). Four out of five lung cancers are NSCLCs, but both types are mainly caused by smoking. Exposure to chemicals in smoke produces changes (or mutations) in the genetic material of the cells lining the lungs that cause the cells to grow uncontrollably and to move around the body. In more than half the people who develop NSCLC, the cancer has spread out of the lungs before it is diagnosed, and therefore can't be removed surgically. Stage IV NSCLC, as this is known, is usually treated with chemotherapy—toxic chemicals that kill the fast-growing cancer cells. However, only 2% of people with stage IV NSCLC are still alive two years after their diagnosis, mainly because their cancer cells become resistant to chemotherapy. They do this by making proteins that destroy cancer drugs (detoxification enzymes) or that pump them out of cells (efflux pumps) and by making antioxidants, chemicals that protect cells against the oxidative damage caused by many chemotherapy agents.
Why Was This Study Done?
To improve the outlook for patients with lung cancer, researchers need to discover exactly how cancer cells become resistant to chemotherapy drugs. Detoxification enzymes, efflux pumps, and antioxidants normally protect cells from environmental toxins and from oxidants produced by the chemical processes of life. Their production is regulated by nuclear factor erythroid-2 related factor 2 (NRF2). The activity of this transcription factor (a protein that controls the expression of other proteins) is controlled by the protein Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 holds NRF2 in the cytoplasm of the cell (the cytoplasm surrounds the cell's nucleus, where the genetic material is stored) when no oxidants are present and targets it for destruction. When oxidants are present, KEAP1 no longer interacts with NRF2, which moves into the nucleus and induces the expression of the proteins that protect the cell against oxidants and toxins. In this study, the researchers investigated whether changes in KEAP1 might underlie the drug resistance seen in lung cancer.
What Did the Researchers Do and Find?
The researchers looked carefully at the gene encoding KEAP1 in tissue taken from lung tumors and in several lung cancer cell lines—tumor cells that have been grown in a laboratory. They found mutations in parts of KEAP1 known to be important for its function in half the cell lines and a fifth of the tumor samples. They also found that about half of the samples had lost part of one copy of the KEAP1 gene—cells usually have two copies of each gene. Five of the six tumors with KEAP1 mutations had also lost one copy of KEAP1—geneticists call this biallelic inactivation. This means that these tumors should have no functional KEAP1. When the researchers checked this by staining the tumors for NRF2, they found that the tumor cells had more NRF2 than normal cells and that it accumulated in the nucleus. In addition, the tumor cells made more detoxification enzymes, efflux proteins, and antioxidants than normal cells. Finally, the researchers showed that lung cancer cells with KEAP1 mutations were more resistant to chemotherapy drugs than normal lung cells were.
What Do These Findings Mean?
These results indicate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC and suggest that the loss of KEAP1 activity is one way that lung tumors can increase their NRF2 activity and develop resistance to chemotherapeutic drugs. More lung cancer samples need to be examined to confirm this result, and similar studies need to be done in other cancers to see whether loss of KEAP1 activity is a common mechanism by which tumors become resistant to chemotherapy. If such studies confirm that high NRF2 activity (either through mutation or by some other route) is often associated with a poor tumor response to chemotherapy, then the development of NRF2 inhibitors might help to improve treatment outcomes in patients with chemotherapy-resistant tumors.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information on lung cancer and on cancer treatment
MedlinePlus entries on small cell lung cancer and NSCLC Cancer Research UK information on lung cancer
Wikipedia entries on lung cancer and chemotherapy (note that Wikipedia is a free online encyclopedia that anyone can edit)
PMCID: PMC1584412  PMID: 17020408
22.  Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein β during adipogenesis 
Free radical biology & medicine  2011;52(2):462-472.
Nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) is a cap-n-collar basic leucine zipper transcription factor that is involved in the cellular adaptive response to oxidative stress. Our previous study reported that targeted disruption of the Nrf2 gene in mice decreases adipose tissue mass and protects against obesity induced by a high-fat diet. Deficiency of Nrf2 in preadipocytes and mouse embryonic fibroblasts led to impaired adipogenesis. Consistent with these findings, the current study found that lack of Nrf2 in primary cultured mouse preadipocytes and 3T3-L1 cells hampered adipogenic differentiation induced by hormonal cocktails. Stable knockdown of Nrf2 in 3T3-L1 cells blocked the enhanced adipogenesis caused by deficiency of kelch-like ECH-associated protein 1 (Keap1), a Cul3-adapter protein that allows for Nrf2 to be ubiquinated and degraded by the 26S protesome complex. In addition, increased production of reactive oxygen species (ROS) and activation of Nrf2 occurred at the very early stage upon adipogenic hormonal challenge in 3T3-L1 cells, followed by an immediate induction of CCAAT/enhancer-binding protein β (C/EBPβ). Knockdown of Nrf2 led to reduced expression of C/EBPβ induced by adipogenic hormonal cocktails, chemical Nrf2 activators or Keap1 silencing. Cebpβ promoter-driven reporter assays and chromatin immunoprecipitation suggested that Nrf2 associates with a consensus antioxidant response element (ARE) binding site in the promoter of the Cebpβ gene during adipogenesis and upregulates its expression. These findings demonstrate a novel role of Nrf2 beyond xenobiotic detoxification and antioxidant response, and suggest that Nrf2 is one of the transcription factors that control the early events of adipogenesis by regulating expression of Cebpβ.
PMCID: PMC3307524  PMID: 22138520
Nrf2; C/EBPβ; Adipogenesis
23.  Sulforaphane protects against ethanol-induced oxidative stress and apoptosis in neural crest cells by the induction of Nrf2-mediated antioxidant response 
British Journal of Pharmacology  2013;169(2):437-448.
Background and Purpose
Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor that up-regulates a diverse array of antioxidant genes and protects cells from oxidative damage. This study is designed to determine whether D-L-sulforaphane (SFN) can protect neural crest cells (NCCs), an ethanol-sensitive cell population implicated in fetal alcohol spectrum disorders, against ethanol-induced apoptosis and whether protective effects of SFN are mediated by the induction of Nrf2-mediated antioxidant response.
Experimental Approach
Control, SFN-treated or Nrf2-siRNA transfected NCCs were exposed to ethanol. Nrf2 activation, the expression and activities of Nrf2 downstream antioxidant proteins, reactive oxygen species generation and apoptosis were determined in control and ethanol-exposed NCCs.
Key Results
Exposure of NCCs to SFN alone significantly increased Nrf2 activation and the expression of Nrf2 downstream antioxidants as well as the activities of the antioxidant enzymes. Treatment of NCCs with SFN along with ethanol significantly decreased ethanol-induced oxidative stress and apoptosis. In contrast, knockdown of Nrf2 by siRNA significantly increased the sensitivity of NCCs to ethanol-induced oxidative stress and apoptosis. Suppression of Nrf2 signalling in NCCs also significantly diminished SFN-mediated antioxidant response and abolished the protective effects of SFN on ethanol-induced oxidative stress and apoptosis.
Conclusions and Implications
These results demonstrated that Nrf2-mediated antioxidant response plays an important role in the susceptibility of NCCs to ethanol-induced oxidative stress and apoptosis and that the protection of SFN against ethanol-induced oxidative stress and apoptosis in NCCs is mediated by the induction of Nrf2 signalling.
PMCID: PMC3651668  PMID: 23425096
Nrf2; oxidative stress; ethanol; sulforaphane; apoptosis; neural crest cell
24.  The NRF2-heme oxygenase-1 system modulates cyclosporine A-induced epithelial-mesenchymal transition and renal fibrosis 
Free radical biology & medicine  2010;48(8):1051-1063.
Epithelial-mesenchymal transition (EMT) is an underlying mechanism of tissue fibrosis by generating myofibroblasts, which serve as the primary source of extracellular matrix production from tissue epithelial cells. Recently, it has been suggested that EMT is implicated in immunosuppressive cyclosporine A (CsA)-induced renal fibrosis. In the present study, the potential role of NRF2, which is the master regulator of genes associated with the cellular antioxidant defense system, in CsA-induced EMT-renal fibrosis has been investigated. Pre-treatment of rat tubular epithelial NRK-52E cells with sulforaphane, an activator of NRF2, could prevent EMT gene changes such as the loss of E-cadherin and the increase of α-smooth muscle actin (α-SMA) expression. Conversely, genetic inhibition of NRF2 in these cells aggravated changes in CsA-induced EMT markers. These in vitro observations could be confirmed in vivo: CsA-treatment developed severe renal damage and fibrosis with increased expression of α-SMA in NRF2-deficient mice compared to wild-type mice. NRF2-mediated amelioration of CsA-EMT changes could be accounted in part by the regulation of heme oxygenase-1 (HO-1). CsA treatment increased HO-1 expression in an NRF2-dependent manner in NRK cells as well as murine fibroblasts. Induction of HO-1 by CsA appears to be advantageous by counteracting EMT gene changes: specific increase of HO-1 expression by cobalt protoporphyrin prevented CsA-mediated α-SMA induction, while genetic inhibition of HO-1 by siRNA substantially enhanced α-SMA induction compared to control cells. Collectively, our current results suggest that the NRF2-HO-1 system plays a protective role against CsA-induced renal fibrosis by modulating EMT gene changes.
PMCID: PMC3586736  PMID: 20096777
renal fibrosis; cyclosporine A; EMT; NRF2; HO-1; antioxidant defense system; oxidative stress
25.  Targeted Deletion of Nrf2 Reduces Urethane-Induced Lung Tumor Development in Mice 
PLoS ONE  2011;6(10):e26590.
Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2+/+ and Nrf2-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2-/- mice compared to Nrf2+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2-/- mice than in Nrf2+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2+/+ mice relative to Nrf2-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.
PMCID: PMC3198791  PMID: 22039513

Results 1-25 (1226768)