PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (734864)

Clipboard (0)
None

Related Articles

1.  Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target? 
Trends in cardiovascular medicine  2009;19(5):158-164.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is emerging as a key enzyme involved in cytoprotection in the heart. ALDH2 mediates both the detoxification of reactive aldehydes such as acetaldehyde and 4-hydroxy-2-nonenal (4-HNE) and the bioactivation of nitroglycerin (GTN) to nitric oxide (NO). In addition, chronic nitrate treatment results in ALDH2 inhibition and contributes to nitrate tolerance. Our lab recently identified ALDH2 to be a key mediator of endogenous cytoprotection. We reported that ALDH2 is phosphorylated and activated by the survival kinase protein kinase C epsilon (PKCε) and found a strong inverse correlation between ALDH2 activity and infarct size. We also identified a small molecule ALDH2 activator (Alda-1) which reduces myocardial infarct size induced by ischemia/reperfusion in vivo. In this review, we discuss evidence that ALDH2 is a key mediator of endogenous survival signaling in the heart, suggest possible cardioprotective mechanisms mediated by ALDH2, and discuss potential clinical implications of these findings.
doi:10.1016/j.tcm.2009.09.003
PMCID: PMC2856486  PMID: 20005475
2.  Isoflurane Preconditioning Confers Cardioprotection by Activation of ALDH2 
PLoS ONE  2013;8(2):e52469.
The volatile anesthetic, isoflurane, protects the heart from ischemia/reperfusion (I/R) injury. Aldehyde dehydrogenase 2 (ALDH2) is thought to be an endogenous mechanism against ischemia-reperfusion injury possibly through detoxification of toxic aldehydes. We investigated whether cardioprotection by isoflurane depends on activation of ALDH2.Anesthetized rats underwent 40 min of coronary artery occlusion followed by 120 min of reperfusion and were randomly assigned to the following groups: untreated controls, isoflurane preconditioning with and without an ALDH2 inhibitor, the direct activator of ALDH2 or a protein kinase C (PKCε) inhibitor. Pretreatment with isoflurane prior to ischemia reduced LDH and CK-MB levels and infarct size, while it increased phosphorylation of ALDH2, which could be blocked by the ALDH2 inhibitor, cyanamide. Isolated neonatal cardiomyocytes were treated with hypoxia followed by reoxygenation. Hypoxia/reoxygenation (H/R) increased cardiomyocyte apoptosis and injury which were attenuated by isoflurane and forced the activation of ALDH2. In contrast, the effect of isoflurane-induced protection was almost abolished by knockdown of ALDH2. Activation of ALDH2 and cardioprotection by isoflurane were substantially blocked by the PKCε inhibitor. Activation of ALDH2 by mitochondrial PKCε plays an important role in the cardioprotection of isoflurane in myocardium I/R injury.
doi:10.1371/journal.pone.0052469
PMCID: PMC3585331  PMID: 23468836
3.  Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells 
Circulation  2010;122(8):771-781.
Background
Renin released by ischemia/reperfusion (I/R) from cardiac mast cells activates a local renin-angiotensin system (RAS). This exacerbates norepinephrine release and reperfusion arrhythmias (VT/VF), making RAS a new therapeutic target in myocardial ischemia.
Methods and Results
We investigated whether ischemic preconditioning (IPC) prevents cardiac RAS activation in guinea-pig hearts ex-vivo. When I/R (20-min ischemia/30-min reperfusion) was preceded by IPC (2×5-min I/R cycles), renin and norepinephrine release and VT/VF duration were markedly decreased, a cardioprotective anti-RAS effect. Activation and blockade of adenosine A2b/A3-receptors, and activation and inhibition of PKCε, mimicked and prevented, respectively, the anti-RAS effects of IPC. Moreover, activation of A2b/A3-receptors, or activation of PKCε, prevented degranulation and renin release elicited by peroxide in cultured mast cells (HMC-1). Activation and inhibition of mitochondrial aldehyde dehydrogenase type-2 (ALDH2) also mimicked and prevented, respectively, the cardioprotective anti-RAS effects of IPC. Furthermore, ALDH2 activation inhibited degranulation and renin release by reactive aldehydes in HMC-1. Notably, PKCε and ALDH2 were both activated by A2b/A3-receptor stimulation in HMC-1, and PKCε inhibition prevented ALDH2 activation.
Conclusions
The results uncover a signaling cascade initiated by A2b/A3-receptors, which triggers PKCε-mediated ALDH2 activation in cardiac mast cells, contributing to IPC-induced cardioprotection by preventing mast-cell renin release and the dysfunctional consequences of local RAS activation. Thus, unlike classical IPC where cardiac myocytes are the main target, cardiac mast cells are the critical site at which the cardioprotective anti-RAS effects of IPC develop.
doi:10.1161/CIRCULATIONAHA.110.952481
PMCID: PMC2927811  PMID: 20697027
Renin; Ischemia; Reperfusion; Norepinephrine; Arrhythmia
4.  Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of εPKC and activation of aldehyde dehydrogenase 2 
The cardioprotective effects of moderate alcohol consumption have been well documented in animal models and in humans. Protection afforded against ischemia and reperfusion injury (I/R) proceeds through an ischemic preconditioning-like mechanism involving the activation of epsilon protein kinase C (εPKC) and is dependent on the time and duration of ethanol treatment. However, the substrates of εPKC and the molecular mechanisms by which the enzyme protects the heart from oxidative damage induced by I/R are not fully described. Using an open-chest model of acute myocardial infarction in vivo, we find that intraperitoneal injection of ethanol (0.5 g/kg) 60 minutes prior to (but not 15 minutes prior to) a 30-minute transient ligation of the left anterior descending coronary artery reduced I/R-mediated injury by 57% (measured as a decrease of creatine phosphokinase release into the blood). Only under cardioprotective conditions, ethanol treatment resulted in the translocation of εPKC to cardiac mitochondria, where the enzyme bound aldehyde dehydrogenase-2 (ALDH2). ALDH2 is an intra-mitochondrial enzyme involved in the detoxification of toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE) and 4-HNE mediates oxidative damage, at least in part, by covalently modifying and inactivating proteins (by forming 4-HNE adducts). In hearts subjected to I/R after ethanol treatment, the levels of 4-HNE protein adducts were lower and JNK1/2 and ERK1/2 activities were diminished relative to the hearts from rats subjected to I/R in the absence of ethanol. Together, this work provides an insight into the mitochondrial-dependent basis of ethanol-induced and εPKC-mediated protection from cardiac ischemia, in vivo.
doi:10.1016/j.yjmcc.2008.09.713
PMCID: PMC2675554  PMID: 18983847
5.  Mitochondrial import of PKCε is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury 
Cardiovascular Research  2010;88(1):83-92.
Aims
Protein kinase C epsilon (PKCε) is critical for cardiac protection from ischaemia and reperfusion (IR) injury. PKCε substrates that mediate cytoprotection reside in the mitochondria. However, the mechanism enabling mitochondrial translocation and import of PKCε to enable phosphorylation of these substrates is not known. Heat shock protein 90 (HSP90) is a cytoprotective protein chaperone that participates in mitochondrial import of a number of proteins. Here, we investigated the role of HSP90 in mitochondrial import of PKCε.
Methods and results
Using an ex vivo perfused rat heart model of IR, we found that PKCε translocates from the cytosol to the mitochondrial fraction following IR. Immunogold electron microscopy and mitochondrial fractionation demonstrated that following IR, mitochondrial PKCε is localized within the mitochondria, on the inner mitochondrial membrane. Pharmacological inhibition of HSP90 prevented IR-induced interaction between PKCε and the translocase of the outer membrane (Tom20), reduced mitochondrial import of PKCε, and increased necrotic cell death by ∼70%. Using a rational approach, we designed a 7-amino acid peptide activator of PKCε, derived from an HSP90 homologous sequence located in the C2 domain of PKCε (termed ψεHSP90). Treatment with this peptide (conjugated to the cell permeating TAT protein-derived peptide, TAT47–57) increased PKCε–HSP90 protein–protein interaction, enhanced mitochondrial translocation of PKCε, increased phosphorylation and activity of an intra-mitochondrial PKCε substrate, aldehyde dehydrogenase 2, and reduced cardiac injury in ex vivo and in vivo models of myocardial infarction.
Conclusion
Our results suggest that HSP90-mediated mitochondrial import of PKCε plays an important role in the protection of the myocardium from IR injury.
doi:10.1093/cvr/cvq154
PMCID: PMC2936125  PMID: 20558438
Protein kinase C epsilon; Mitochondria; Protein–protein interaction; Ischaemia reperfusion; Heat shock protein 90
6.  Impaired Cardiac SIRT1 Activity by Carbonyl Stress Contributes to Aging-Related Ischemic Intolerance 
PLoS ONE  2013;8(9):e74050.
Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1) is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R) injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo) and aged (22-24 mo) mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2), SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05). Exogenous toxic aldehydes (4-HNE) exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R) injury, which could all be rescued by Alda-1 (ALDH2 activator) (all P<0.05). However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05). The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1+/− knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1+/− hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.
doi:10.1371/journal.pone.0074050
PMCID: PMC3769351  PMID: 24040162
7.  ALDH2 protects against stroke by clearing 4-HNE 
Cell Research  2013;23(7):915-930.
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that metabolizes ethanol and toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE). Using an unbiased proteomic search, we identified ALDH2 deficiency in stroke-prone spontaneously hypertensive rats (SHR-SP) as compared with spontaneously hypertensive rats (SHR). We concluded the causative role of ALDH2 deficiency in neuronal injury as overexpression or activation of ALDH2 conferred neuroprotection by clearing 4-HNE in in vitro studies. Further, ALDH2-knockdown rats revealed the absence of neuroprotective effects of PKCε. Moderate ethanol administration that is known to exert protection against stroke was shown to enhance the detoxification of 4-HNE, and to protect against ischemic cerebral injury through the PKCε-ALDH2 pathway. In SHR-SP, serum 4-HNE level was persistently elevated and correlated inversely with the lifespan. The role of 4-HNE in stroke in humans was also suggested by persistent elevation of its plasma levels for at least 6 months after stroke. Lastly, we observed that 21 of 1 242 subjects followed for 8 years who developed stroke had higher initial plasma 4-HNE levels than those who did not develop stroke. These findings suggest that activation of the ALDH2 pathway may serve as a useful index in the identification of stroke-prone subjects, and the ALDH2 pathway may be a potential target of therapeutic intervention in stroke.
doi:10.1038/cr.2013.69
PMCID: PMC3698638  PMID: 23689279
ALDH2; 4-HNE; stroke; ethanol
8.  Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde 
European Heart Journal  2010;32(8):1025-1038.
Aims
The present study was designed to examine the mechanism involved in mitochondrial aldehyde dehydrogenase (ALDH2)-induced cardioprotection against ischaemia/reperfusion (I/R) injury with a focus on autophagy.
Methods
Wild-type (WT), ALDH2 overexpression, and knockout (KO) mice (n = 4–6 for each index measured) were subjected to I/R, and myocardial function was assessed using echocardiographic, Langendroff, and edge-detection systems. Western blotting was used to evaluate AMP-dependent protein kinase (AMPK), Akt, autophagy, and the AMPK/Akt upstream signalling LKB1 and PTEN.
Results
ALDH2 overexpression and KO significantly attenuated and accentuated, respectively, infarct size, factional shortening, and recovery of post-ischaemic left ventricular function following I/R as well as hypoxia/reoxygenation-induced cardiomyocyte contractile dysfunction. Autophagy was induced during ischaemia and remained elevated during reperfusion. ALDH2 significantly promoted autophagy during ischaemia, which was accompanied by AMPK activation and mammalian target of rapamycin (mTOR) inhibition. On the contrary, ALDH2 overtly inhibited autophagy during reperfusion accompanied by the activation of Akt and mTOR. Inhibition and induction of autophagy mitigated ALDH2-induced protection against cell death in hypoxia and reoxygenation, respectively. In addition, levels of the endogenous toxic aldehyde 4-hydroxy-2-nonenal (4-HNE) were elevated by ischaemia and reperfusion, which was abrogated by ALDH2. Furthermore, ALDH2 ablated 4-HNE-induced cardiomyocyte dysfunction and protein damage, whereas 4-HNE directly decreased pan and phosphorylated LKB1 and PTEN expression.
Conclusion
Our data suggest a myocardial protective effect of ALDH2 against I/R injury possibly through detoxification of toxic aldehyde and a differential regulation of autophagy through AMPK- and Akt-mTOR signalling during ischaemia and reperfusion, respectively.
doi:10.1093/eurheartj/ehq253
PMCID: PMC3076664  PMID: 20705694
ALDH2; Myocardial ischaemia/reperfusion; Akt; AMPK; Autophagy; 4-HNE
9.  Selective activation of PKC epsilon in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice 
Journal of neuroscience research  2013;91(6):799-807.
Activation of PKCε confers protection against neuronal ischemia/reperfusion. Since activation of PKCε leads to its translocation to multiple intracellular sites, a mitochondrial-selective PKCε activator was used to test the importance of mitochondrial activation to the neuroprotective effect of PKCε. PKCε can regulate key cytoprotective mitochondrial functions including electron transport chain activity, reactive oxygen species (ROS) generation, mitochondrial permeability transition, and detoxification of reactive aldehydes. We tested the ability of mitochondrial selective activation of PKCε to protect primary brain cell cultures or mice subjected to ischemic stroke. Pre-treatment with either general PKCε activator peptide, ψεRACK, or mitochondrial-selective PKCε activator, ψεHSP90, reduced cell death induced by simulated ischemia/reperfusion in neurons, astrocytes, and mixed neuronal cultures. The protective effects of both ψεRACK and ψεHSP90 were blocked by the PKCε antagonist, εV1–2, indicating protection requires PKCε interaction with its anchoring protein, εRACK. Further supporting a mitochondrial mechanism for PKCε, neuroprotection by ψεHSP90 was associated with a marked delay in mitochondrial membrane depolarization and significantly attenuated ROS generation during ischemia. Importantly, ψεHSP90 reduced infarct size and reduced neurological deficit in C57/BL6 mice subjected to middle cerebral artery occlusion and 24 hours of reperfusion. Thus selective activation of mitochondrial PKCε preserves mitochondrial function in vitro and improves outcome in vivo, suggesting potential therapeutic value clinically when brain ischemia is anticipated, including neurosurgery and cardiac surgery.
doi:10.1002/jnr.23186
PMCID: PMC3905808  PMID: 23426889
mitochondria; astrocytes; acute stroke; cell culture; animal models
10.  Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction 
Molecular Medicine  2012;18(1):785-793.
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items—78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal—were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47phox NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47phox NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress–induced apoptosis. The protective role of ALDH2 against ER stress–induced cell death was probably mediated by Akt via a p47phox NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress in heart disease.
doi:10.2119/molmed.2011.00466
PMCID: PMC3409283  PMID: 22430940
11.  AMP-Dependent Kinase and Autophagic Flux are Involved in Aldehyde Dehydrogenase 2-Offered Protection against Cardiac Toxicity of Ethanol 
Free radical biology & medicine  2011;51(9):1736-1748.
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) alleviates ethanol toxicity although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on ethanol-induced myocardial damage with a focus on autophagy. Wild-type FVB and transgenic mice overexpressing ALDH2 were challenged with ethanol (3 g/kg/d, i.p.) for 3 days and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate essential autophagy markers, Akt and AMPK and their downstream signaling mTOR. Ethanol challenge altered cardiac geometry and function evidenced by enlarged ventricular end systolic and diastolic diameters, decreased cell shortening and intracellular Ca2+ rise, prolonged relengthening and intracellular Ca2+ decay, as well as reduced SERCA Ca2+ uptake, the effects of which were mitigated by ALDH2. Ethanol challenge facilitated myocardial autophagy as evidenced by enhanced expression of Beclin, ATG7 and LC3B II, as well as mTOR dephosphorylation, which was alleviated by ALDH2. Ethanol challenge-induced cardiac defect and apoptosis were reversed by the ALDH-2 agonist Alda-1, the autophagy inhibitor 3-MA, and the AMPK inhibitor compound C whereas the autophagy inducer rapamycin and the AMPK activator AICAR mimicked or exacerbated ethanol-induced cell injury. Ethanol promoted or suppressed phosphorylation of AMPK and Akt, respectively, in FVB but not ALDH2 murine hearts. Moreover, AICAR nullified Alda-1-induced protection against ethanol-triggered autophagic and functional changes. Ethanol increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by Alda-1 and 3-MA. Lysosomal inhibition using bafilomycin A1, E64D and pepstatin A obliterated Alda-1- but not ethanol-induced responses in GFP-LC3 puncta. Our results suggested that ALDH2 protects against ethanol toxicity through altered Akt and AMPK signaling and regulation of autophagic flux.
doi:10.1016/j.freeradbiomed.2011.08.002
PMCID: PMC3188331  PMID: 21871561
Ethanol; ALDH2; myocardial dysfunction; autophagy; autophagy flux; Akt; AMPK
12.  Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant 
In approximately one billion people, a point mutation inactivates a key detoxifying enzyme, aldehyde dehydrogenase (ALDH2). This mitochondrial enzyme metabolizes toxic biogenic and environmental aldehydes, including the endogenously produced 4-hydroxynonenal (4HNE) and the environmental pollutant, acrolein. ALDH2 also bioactivates nitroglycerin, but it is best known for its role in ethanol metabolism. The accumulation of acetaldehyde following the consumption of even a single alcoholic beverage leads to the Asian Alcohol-induced Flushing Syndrome in ALDH2*2 homozygotes. The ALDH2*2 allele is semi-dominant and heterozygotic individuals exhibit a similar, but not as severe phenotype. We recently identified a small molecule, Alda-1, which activates wild-type ALDH2 and restores near wild-type activity to ALDH2*2. The structures of Alda-1 bound to ALDH2 and ALDH2*2 reveal how Alda-1 activates the wild-type enzyme and how it restores the activity of ALDH2*2 by acting as a structural chaperone.
doi:10.1038/nsmb.1737
PMCID: PMC2857674  PMID: 20062057
13.  PROTEOMIC AND METABOLOMIC ANALYSIS OF CARDIOPROTECTION: INTERPLAY BETWEEN PROTEIN KINASE C EPSILON AND DELTA IN REGULATING GLUCOSE METABOLISM OF MURINE HEARTS 
We applied a combined proteomic and metabolomic approach to obtain novel mechanistic insights in PKCε-mediated cardioprotection. Mitochondrial and cytosolic proteins from control and transgenic hearts with constitutively active or dominant negative PKCε were analyzed using difference in-gel electrophoresis (DIGE). Among the differentially expressed proteins were creatine kinase, pyruvate kinase, lactate dehydrogenase, and the cytosolic isoforms of aspartate amino transferase and malate dehydrogenase, the two enzymatic components of the malate aspartate shuttle, which is required for the import of reducing equivalents from glycolysis across the inner mitochondrial membrane. These enzymatic changes appeared to be dependent on PKCε activity, as they were not observed in mice expressing inactive PKCε. High-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy confirmed a pronounced effect of PKCε activity on cardiac glucose and energy metabolism: normoxic hearts with constitutively active PKCε had significantly lower concentrations of glucose, lactate, glutamine and creatine, but higher levels of choline, glutamate and total adenosine nucleotides. Moreover, the depletion of cardiac energy metabolites was slower during ischemia/reperfusion injury and glucose metabolism recovered faster upon reperfusion in transgenic hearts with active PKCε. Notably, inhibition of PKCε resulted in compensatory phosphorylation and mitochondrial translocation of PKCδ. Taken together, our findings are the first evidence that PKCε activity modulates cardiac glucose metabolism and provide a possible explanation for the synergistic effect of PKCδ and PKCε in cardioprotection.
doi:10.1016/j.yjmcc.2008.10.008
PMCID: PMC3661410  PMID: 19027023
proteomics; metabolism; cardioprotection; protein kinase C
14.  Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress 
PLoS ONE  2011;6(10):e25811.
Background
Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress.
Materials and Methods
Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury.
Results
After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE).
Conclusions
Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions.
doi:10.1371/journal.pone.0025811
PMCID: PMC3192120  PMID: 22022451
15.  Ouabain triggers preconditioning through activation of the Na+,K+-ATPase signaling cascade in rat hearts 
Cardiovascular research  2006;73(3):488-496.
Objective
Because ouabain activates several pathways that are critical to cardioprotective mechanisms such as ischemic preconditioning, we tested if this digitalis compound could protect the heart against ischemia-reperfusion injury through activation of the Na+,K+-ATPase/c-Src receptor complex.
Methods and Results
In Langendorff-perfused rat hearts, a short (4 min) administration of ouabain 10 μM followed by an 8-minute washout before 30 minutes of global ischemia and reperfusion improved cardiac function, decreased lactate dehydrogenase release and reduced infarct size by 40%. Western blot analysis revealed that ouabain activated the cardioprotective phospholipase Cγ1/protein kinase Cε (PLC-γ1/PKCε) pathway. Pre-treatment of the hearts with the Src kinase family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2) blocked not only ouabain-induced activation of PLC-γ1/PKCε pathway, but also cardiac protection. This protection was also blocked by a PKCε translocation inhibitor peptide (PKCε TIP).
Conclusion
Short exposure to a low concentration of ouabain protects the heart against ischemia/reperfusion injury. This effect of ouabain on the heart is most likely due to the activation of the Na+,K+-ATPase/c-Src receptor complex and subsequent stimulation of key mediators of preconditioning, namely PLC-γ1 and PKCε.
doi:10.1016/j.cardiores.2006.11.003
PMCID: PMC1852501  PMID: 17157283
16.  Aldehyde Dehydrogenase 2 Knockout Accentuates Ethanol-Induced Cardiac Depression: Role of Protein Phosphatases 
Alcohol consumption leads to myocardial contractile dysfunction possibly due to the toxicity of ethanol and its major metabolite acetaldehyde. This study was designed to examine the influence of mitochondrial aldehyde dehydrogenase-2 (ALDH2) knockout (KO) on acute ethanol exposure-induced cardiomyocyte dysfunction. Wild-type (WT) and ALDH2 KO mice were subjected to acute ethanol (3 g/kg, i.p.) challenge and cardiomyocyte contractile function was assessed 24 hrs later using an IonOptix® edge-detection system. Western blot analysis was performed to evaluate ALDH2, protein phosphatase 2A (PP2A), phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β). ALDH2 KO accentuated ethanol-induced elevation in cardiac acetaldehyde levels. Ethanol exposure depressed cardiomyocyte contractile function including decreased cell shortening amplitude and maximal velocity of shortening/relengthening as well as prolonged relengthening duration and a greater decline in peak shortening in response to increasing stimulus frequency, the effect of which was significantly exaggerated by ALDH2 KO. ALDH2 KO also unmasked an ethanol-induced prolongation of shortening duration. In addition, short-term in vitro incubation of ethanol-induced cardiomyocyte mechanical defects were exacerbated by the ALDH inhibitor cyanamide. Ethanol treatment dampened phosphorylation of Akt and GSK-3β associated with up-regulated PP2A, which was accentuated by ALDH2 KO. ALDH2 KO aggravated ethanol-induced decrease in mitochondrial membrane potential. These results suggested that ALDH2 deficiency led to worsened ethanol-induced cardiomyocyte function, possibly due to upregulated expression of protein phosphatase, depressed Akt activation and subsequently impaired mitochondrial function. These findings depict a critical role of ALDH2 in the pathogenesis of alcoholic cardiomyopathy.
doi:10.1016/j.yjmcc.2010.03.017
PMCID: PMC2885537  PMID: 20362583
Ethanol; ALDH2; Cardiomyocyte; Contractile function; Akt; Protein phosphatase
17.  Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity 
Chemico-Biological Interactions  2011;191(1-3):269-277.
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H2O2) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation.
doi:10.1016/j.cbi.2011.02.016
PMCID: PMC3387551  PMID: 21338592
Aldehyde dehydrogenase 7A1; ALDH7A1; Antiquitin; Oxidative stress; 4HNE; 4-Hydroxynonenal
18.  Chronic prenatal hypoxia induces epigenetic programming of PKCε gene repression in rat hearts 
Circulation research  2010;107(3):365-373.
Rationale
Epidemiological studies demonstrate a clear association of adverse intrauterine environment with an increased risk of ischemic heart disease in adulthood. Hypoxia is a common stress to the fetus, and results in decreased protein kinase C epsilon (PKCε) expression in the heart and increased cardiac vulnerability to ischemia and reperfusion injury in adult offspring in rats.
Objectives
The present study tested the hypothesis that fetal hypoxia-induced methylation of CpG dinucleotides at the PKCε promoter is repressive and contributes to PKCε gene repression in the heart of adult offspring.
Methods and Results
Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in significant decreases in PKCε protein and mRNA in fetal hearts. Similar results were obtained in ex vivo hypoxic treatment of isolated fetal hearts and rat embryonic ventricular myocyte cell line H9c2. Increased methylation of PKCε promoter at SP1 binding sites, −346 and −268, were demonstrated in both fetal hearts of maternal hypoxia and H9c2 cells treated with 1% O2 for 24 hours. Whereas hypoxia had no significant effect on the binding affinity of SP1 to the unmethylated sites in H9c2 cells, hearts of fetuses and adult offspring, methylation of both SP1 sites reduced SP1 binding. The addition of 5-aza-2’-deoxycytidine blocked the hypoxia-induced increase in methylation of both SP1 binding sites and restored PKCε mRNA and protein to the control levels. In hearts of both fetuses and adult offspring, hypoxia-induced methylation of SP1 sites was significantly greater in males than in females, and decreased PKCε mRNA was seen only in males. In fetal hearts, there was significantly higher abundance of estrogen receptor α (ERα ) and β (ERβ ) isoforms in females than in males. Both ERα and ERβ interacted with the SP1 binding sites in the fetal heart, which may explain the gender differences in SP1 methylation in the fetal heart. Additionally, selective activation of PKCε restored the hypoxia-induced cardiac vulnerability to ischemic injury in offspring.
Conclusion
The findings demonstrate a direct effect of hypoxia on epigenetic modification of DNA methylation and programming of cardiac PKCε gene repression in a sex-dependent manner, linking fetal hypoxia and pathophysiological consequences in the hearts of adult offspring.
doi:10.1161/CIRCRESAHA.110.221259
PMCID: PMC2919213  PMID: 20538683
Fetal heart; PKCε; hypoxia; epigenetics; DNA methylation
19.  An Activator of Mutant and Wildtype Aldehyde Dehydrogenase Reduces Ischemic Damage to the Heart 
Science (New York, N.Y.)  2008;321(5895):1493-1495.
There is substantial interest in the development of drugs that limit the extent of ischemia-induced cardiac damage caused by myocardial infarction or by certain surgical procedures. Here an unbiased proteomic search identified mitochondrial aldehyde dehydrogenase 2 (ALDH2) as an enzyme whose activation correlates with reduced ischemic heart damage in rodent models. A high-throughput screen yielded a small-molecule activator of ALDH2 (Alda-1) that, when administered to rats prior to an ischemic event, reduced infarct size by 60%, most likely through its inhibitory effect on the formation of cytotoxic aldehydes. In vitro, Alda-1 was a particularly effective activator of ALDH2*2, an inactive mutant form of the enzyme that is found in 40% of East Asian populations. Thus, pharmacologic enhancement of ALDH2 activity may be useful for patients with wildtype or mutant ALDH2 subjected to cardiac ischemia, such as during coronary bypass surgery. (140/140 words)
doi:10.1126/science.1158554
PMCID: PMC2741612  PMID: 18787169
20.  Protein Kinase Cε Interacts With and Inhibits the Permeability Transition Pore in Cardiac Mitochondria 
Circulation research  2003;92(8):873-880.
Although functional coupling between protein kinase Cε (PKCε) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCε remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCε and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCε with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCε complex at ≈2%, ≈0.2%, and ≈1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCε can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCε resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCε in mice, which is cardioprotective, greatly increased interaction of PKCε with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCε did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCε transgenesis. Collectively, these data demonstrate that PKCε forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCε-induced cardioprotection.
doi:10.1161/01.RES.0000069215.36389.8D
PMCID: PMC3691672  PMID: 12663490
mitochondria; signal transduction; permeability transition pore; cardioprotection
21.  Characterization of the East Asian Variant of Aldehyde Dehydrogenase-2 
The Journal of Biological Chemistry  2009;285(2):943-952.
The East Asian variant of mitochondrial aldehyde dehydrogenase (ALDH2) exhibits significantly reduced dehydrogenase, esterase, and nitroglycerin (GTN) denitrating activities. The small molecule Alda-1 was reported to partly restore low acetaldehyde dehydrogenase activity of this variant. In the present study we compared the wild type enzyme (ALDH2*1) with the Asian variant (ALDH2*2) regarding GTN bioactivation and the effects of Alda-1. Alda-1 increased acetaldehyde oxidation by ALDH2*1 and ALDH2*2 approximately 1.5- and 6-fold, respectively, and stimulated the esterase activities of both enzymes to similar extent as the coenzyme NAD. The effect of NAD was biphasic with pronounced inhibition occurring at ≥5 mm. In the presence of 1 mm NAD, Alda-1 stimulated ALDH2*2-catalyzed ester hydrolysis 73-fold, whereas the NAD-stimulated activity of ALDH2*1 was inhibited because of 20-fold increased inhibitory potency of NAD in the presence of the drug. Although ALDH2*2 exhibited 7-fold lower GTN denitrating activity and GTN affinity than ALDH2*1, the rate of nitric oxide formation was only reduced 2-fold, and soluble guanylate cyclase (sGC) activation was more pronounced than with wild type ALDH2 at saturating GTN. Alda-1 caused slight inhibition of GTN denitration and did not increase GTN-induced sGC activation in the presence of either variant. The present results indicate that Alda-1 stimulates established ALDH2 activities by improving NAD binding but does not improve the GTN binding affinity of the Asian variant. In addition, our data revealed an unexpected discrepancy between GTN reductase activity and sGC activation, suggesting that GTN denitration and bioactivation may reflect independent pathways of ALDH2-catalyzed GTN biotransformation.
doi:10.1074/jbc.M109.014548
PMCID: PMC2801295  PMID: 19906643
Cyclic GMP (cGMP); Enzyme Catalysis; Nitric Oxide; Oxidase; Superoxide Dismutase (SOD); Superoxide Ion; Bioactivation; Nitroglycerin
22.  Foetal nicotine exposure causes PKCε gene repression by promoter methylation in rat hearts 
Cardiovascular Research  2010;89(1):89-97.
Aims
Foetal nicotine exposure results in decreased protein kinase C epsilon (PKCε) expression and increased cardiac vulnerability to ischaemia and reperfusion injury in adult rat offspring. The present study tested the hypothesis that maternal nicotine administration causes increased promoter methylation of the PKCε gene resulting in PKCε repression in the heart.
Methods and results
Nicotine treatment of pregnant rats starting at day 4 of gestation increased the methylation of the Egr-1 binding site at the PKCε gene promoter and decreased PKCε protein and mRNA abundance in near-term foetal hearts. Methylation of the Egr-1 binding site reduced Egr-1 binding to the PKCε promoter in the heart. Site-specific deletion of the Egr-1 binding site significantly decreased PKCε promoter activity. The effects of nicotine were sustained in the heart of adult offspring. Ex vivo studies found no direct effect of nicotine on PKCε gene expression. However, maternal nicotine administration increased norepinephrine content in the foetal heart. Treatment of isolated foetal hearts with norepinephrine resulted in the same effects of increased methylation of the Egr-1 binding site and PKCε gene repression in the heart. 5-Aza-2′-deoxycytidine inhibited the norepinephrine-induced increase in methylation of the Egr-1 binding site and restored Egr-1 binding and PKCε gene expression to the control levels.
Conclusion
This study demonstrates that prolonged nicotine exposure increases the sympathetic neurotransmitter release in the foetal heart and causes programming of PKCε gene repression through promoter methylation, linking maternal smoking to pathophysiological consequences in the offspring heart.
doi:10.1093/cvr/cvq270
PMCID: PMC3002869  PMID: 20733009
Nicotine; Heart; Norepinephrine; Protein kinase C; DNA methylation
23.  Mitochondrial aldehyde dehydrogenase and cardiac diseases 
Cardiovascular Research  2010;88(1):51-57.
Numerous conditions promote oxidative stress, leading to the build-up of reactive aldehydes that cause cell damage and contribute to cardiac diseases. Aldehyde dehydrogenases (ALDHs) are important enzymes that eliminate toxic aldehydes by catalysing their oxidation to non-reactive acids. The review will discuss evidence indicating a role for a specific ALDH enzyme, the mitochondrial ALDH2, in combating oxidative stress by reducing the cellular ‘aldehydic load’. Epidemiological studies in humans carrying an inactive ALDH2, genetic models in mice with altered ALDH2 levels, and small molecule activators of ALDH2 all highlight the role of ALDH2 in cardioprotection and suggest a promising new direction in cardiovascular research and the development of new treatments for cardiovascular diseases.
doi:10.1093/cvr/cvq192
PMCID: PMC2936126  PMID: 20558439
ALDH2; Mitochondria; Ischaemia; Nitroglycerin; Alda-1
24.  ALDH2 Activator Inhibits Increased Myocardial Infarction Injury by Nitroglycerin Tolerance 
Science translational medicine  2011;3(107):107ra111.
Nitroglycerin, which helps impaired cardiac function as it is converted to nitric oxide, is used worldwide to treat patients with various ischemic and congestive cardiac diseases, including angina pectoris. Nevertheless, after continuous treatment, the benefits of nitroglycerin are limited by the development of tolerance to the drug. Nitroglycerin tolerance is a result of inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme essential for cardioprotection in animals subjected to myocardial infarction (MI). Here we tested the hypothesis that the tolerance that develops as a result of sustained nitroglycerin treatment increases cardiac injury by subsequent MI. In a rat model of MI, 16 hours of prior, sustained nitroglycerin treatment (7.2 mg/kg/day) resulted in infarcts that were twice as large as those in untreated control animals and in diminished cardiac function at 3 days and 2 weeks after the MI. We also sought to identify a potential treatment to protect against this increased cardiac damage. Nitroglycerin inhibited ALDH2 activity in vitro, an effect that was blocked by Alda-1, an activator of ALDH2. Co-administration of Alda-1 (16 mg/kg/day) with the nitroglycerin prevented the nitroglycerin-induced increase in cardiac dysfunction after MI in rats, at least in part by enhancing metabolism of reactive aldehyde adducts that impair normal protein functions. If our animal studies showing that nitroglycerin tolerance increases cardiac injury upon ischemic insult are corroborated in humans, activators of ALDH2 such as Alda-1 may help to protect MI patients from this nitroglycerin-induced increase in cardiac injury, while maintaining the cardiac benefits of the increased nitric oxide concentrations produced by nitroglycerin.
doi:10.1126/scitranslmed.3002067
PMCID: PMC3547591  PMID: 22049071
25.  Inhibition of Aldehyde Dehydrogenase 2 by Oxidative Stress Is Associated with Cardiac Dysfunction in Diabetic Rats 
Molecular Medicine  2010;17(3-4):172-179.
Left ventricular (LV) dysfunction is a common comorbidity in diabetic patients, although the molecular mechanisms underlying this cardiomyopathic feature are not completely understood. Aldehyde dehydrogenase 2 (ALDH2) has been considered a key cardioprotective enzyme susceptible to oxidative inactivation. We hypothesized that hyperglycemia-induced oxidative stress would influence ALDH2 activity, and ALDH2 inhibition would lead to cardiac functional alterations in diabetic rats. Diabetes was induced by intraperitoneal (i.p.) injection of 60 mg/kg streptozotocin. Rats were divided randomly into four groups: control, untreated diabetic, diabetic treated with N-acetylcysteine (NAC) and diabetic treated with α-lipoic acid (α-LA). Cardiac contractile function, oxidative stress markers and reactive oxygen species (ROS) levels were assessed. ALDH2 activity and expression also were determined. The role of ALDH2 activity in change in hyperglycemia-induced mitochondrial membrane potential (Δψ) was tested in cultured neonatal cardiomyocytes. Myocardial MDA content and ROS were significantly higher in diabetic rats than in controls, whereas GSH content and Mn-SOD activity were decreased in diabetic rats. Compared with controls, diabetic rats exhibited significant reduction in LV ejection fraction and fractional shortening, accompanied by decreases in ALDH2 activity and expression. NAC and α-LA attenuated these changes. Mitochondrial Δψ was decreased greatly with hyperglycemia treatment, and high glucose combined with ALDH2 inhibition with daidzin further decreased Δψ. The ALDH2 activity can be regulated by oxidative stress in the diabetic rat heart. ALDH2 inhibition may be associated with LV reduced contractility, and mitochondrial impairment aggravated by ALDH2 inhibition might reflect an underlying mechanism which causes cardiac dysfunction in diabetic rats.
doi:10.2119/molmed.2010.00114
PMCID: PMC3060979  PMID: 20957334

Results 1-25 (734864)