Search tips
Search criteria

Results 1-25 (735660)

Clipboard (0)

Related Articles

1.  Mechanism of Neuroprotective Mitochondrial Remodeling by PKA/AKAP1 
PLoS Biology  2011;9(4):e1000612.
The mitochondrial signaling complex PKA/AKAP1 protects neurons against mitochondrial fragmentation and cell death by phosphorylating and inactivating the mitochondrial fission enzyme Drp1.
Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM) targeted form of the protein kinase A (PKA) catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1) as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1), inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.
Author Summary
Mitochondria, the cellular powerhouse, are highly dynamic organelles shaped by opposing fission and fusion events. Research over the past decade has identified many components of the mitochondrial fission/fusion machinery and led to the discovery that mutations in genes coding for these proteins can cause human neurological diseases. While it is well established that mitochondrial shape changes are intimately involved in cellular responses to environmental stressors, we know very little about the mechanisms by which cells dynamically adjust mitochondrial form and function. In this report, we show that the scaffold protein AKAP1 brings the cAMP-dependent protein kinase PKA to the outer mitochondrial membrane to protect neurons from injury. The PKA/AKAP1 complex functions by inhibiting Drp1, an enzyme that mechanically constricts and eventually severs mitochondria. Whereas active, dephosphorylated Drp1 rapidly cycles between cytosol and mitochondria, phosphorylated Drp1 builds up in inactive mitochondrial complexes, allowing mitochondria to fuse into a neuroprotective reticulum. Our results suggest that altering the balance of kinase and phosphatase activities at the outer mitochondrial membrane may provide the basis for novel neuroprotective therapies.
PMCID: PMC3079583  PMID: 21526220
2.  S-Nitrosylation of Dynamin-Related Protein 1 Mediates Mutant Huntingtin-Induced Mitochondrial Fragmentation and Neuronal Injury in Huntington's Disease 
Antioxidants & Redox Signaling  2013;19(11):1173-1184.
Aims: Dynamin-related protein1 (Drp1) is a large GTPase that mediates mitochondrial fission. We recently reported in Alzheimer's disease (AD) that S-nitrosylation of Drp1 (forming S-nitroso [SNO]-Drp1) results in GTPase hyperactivity and mitochondrial fragmentation, thus impairing bioenergetics and inducing synaptic damage and neuronal loss. Here, since aberrant mitochondrial dynamics are also key features of Huntington's disease (HD), we investigated whether formation of SNO-Drp1 contributes to the pathogenesis of HD in cell-based and animal models. Results: We found that expression of mutant huntingtin (mutHTT) protein in primary cultured neurons triggers significant production of nitric oxide (NO). Consistent with this result, increased levels of SNO-Drp1 were found in the striatum of a transgenic mouse model of HD as well as in human postmortem brains from HD patients. Using specific fluorescence markers, we found that formation of SNO-Drp1 induced excessive mitochondrial fragmentation followed by loss of dendritic spines, signifying synaptic damage. These neurotoxic events were significantly abrogated after transfection with non-nitrosylatable mutant Drp1(C644A), or by the blocking of NO production using an nitric oxide synthase inhibitor. These findings suggest that SNO-Drp1 is a key mediator of mutHTT toxicity, and, thus, may represent a novel drug target for HD. Innovation and Conclusion: Our findings indicate that aberrant S-nitrosylation of Drp1 is a prominent pathological feature of neurodegenerative diseases such as AD and HD. Moreover, the SNO-Drp1 signaling pathway links mutHTT neurotoxicity to a malfunction in mitochondrial dynamics, resulting in neuronal synaptic damage in HD. Antioxid. Redox Signal. 19, 1173–1184.
PMCID: PMC3785802  PMID: 23641925
3.  Dynamin-Related Protein 1 (DRP1)-Mediated Mitochondrial Mitotic Fission Permits Hyperproliferation of Vascular Smooth Muscle Cells and Offers a Novel Therapeutic Target in Pulmonary Hypertension 
Circulation research  2012;110(11):1484-1497.
Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by pulmonary vascular obstruction due in part to pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Mitochondrial fragmentation and normoxic activation of hypoxia-inducible factor-1α (HIF-1α) have been observed in PAH PASMCs, however their relationship and relevance to the development of PAH is unknown. Dynamin-related protein-1 (DRP1) is a GTPase that, when activated by kinases that phosphorylate Serine-616, causes mitochondrial fission. It is however unknown whether mitochondrial fission is a prerequisite for proliferation.
We hypothesize that DRP1 activation is responsible for increased mitochondrial fission in PAH PASMCs and that DRP1 inhibition may slow proliferation and have therapeutic potential.
Methods and Results
Experiments were conducted using human control and PAH lungs (n=5) and PASMCs in culture. Parallel experiments were performed in rat lung sections and PASMCs and in rodent PAH models induced by the HIF-1α activator, cobalt, chronic hypoxia, and monocrotaline. HIF-1α activation in human PAH leads to mitochondrial fission by cyclin B1/CDK1-dependent phosphorylation of DRP1 at Serine-616. In normal PASMC, HIF-1α activation by CoCl2 or desferrioxamine causes DRP1-mediated fission. HIF-1α inhibition reduces DRP1 activation, prevents fission and reduces PASMC proliferation. Both the DRP1 inhibitor Mdivi-1 and siDRP1 prevent mitotic fission and arrest PAH PASMCs at the G2/M interphase. Mdivi-1 is antiproliferative in human PAH PASMC and in rodent models. Mdivi-1 improves exercise capacity, right ventricular function and hemodynamics in experimental PAH.
DRP-1-mediated mitotic fission is a cell cycle checkpoint that can be therapeutically targeted in hyperproliferative disorders such as PAH.
PMCID: PMC3539779  PMID: 22511751
Mitochondrial fission; Hypoxia-inducible factor 1; Mitotic check point; CDK1-cyclin B1; Mitochondrial division inhibitor-1 (Mdivi-1)
4.  S-Nitrosylation of DRP1 Does Not Affect Enzymatic Activity and is Not Specific to Alzheimer's Disease 
Journal of Alzheimer's disease : JAD  2010;20(Suppl 2):S513-S526.
Mitochondrial dysfunction and synaptic loss are among the earliest events linked to Alzheimer's disease (AD) and might play a causative role in disease onset and progression. The underlying mechanisms of mitochondrial and synaptic dysfunction in AD remain unclear. We previously reported that nitric oxide (NO) triggers persistent mitochondrial fission and causes neuronal cell death. A recent article claimed that S-nitrosylation of dynamin related protein 1 (DRP1) at cysteine 644 causes protein dimerization and increased GTPase activity and is the mechanism responsible for NO-induced mitochondrial fission and neuronal injury in AD, but not in Parkinson's disease (PD). However, this report remains controversial. To resolve the controversy, we investigated the effects of S-nitrosylation on DRP1 structure and function. Contrary to the previous report, S-nitrosylation of DRP1 does not increase GTPase activity or cause dimerization. In fact, DRP1 does not exist as a dimer under native conditions, but rather as a tetramer capable of self-assembly into higher order spiral- and ring-like oligomeric structures after nucleotide binding. S-nitrosylation, as confirmed by the biotin-switch assay, has no impact on DRP1 oligomerization. Importantly, we found no significant difference in S-nitrosylated DRP1 (SNO-DRP1) levels in brains of age-matched normal, AD, or PD patients. We also found that S-nitrosylation is not specific to DRP1 because S-nitrosylated optic atrophy 1 (SNO-OPA1) is present at comparable levels in all human brain samples. Finally, we show that NO triggers DRP1 phosphorylation at serine 616, which results in its activation and recruitment to mitochondria. Our data indicate the mechanism underlying nitrosative stress-induced mitochondrial fragmentation in AD is not DRP1 S-nitrosylation.
PMCID: PMC2893334  PMID: 20463395
large GTPases; mitochondrial fission and fusion; nitrosative stress; OPA1; SNO-DRP1; synapses
5.  Dynamin-Related Protein 1 and Mitochondrial Fragmentation in Neurodegenerative Diseases 
Brain research reviews  2010;67(1-2):103-118.
The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of X in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others’, we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage.
PMCID: PMC3061980  PMID: 21145355
6.  Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration 
The Journal of Clinical Investigation  2013;123(12):5371-5388.
Huntington’s disease (HD) is the result of expression of a mutated Huntingtin protein (mtHtt), and is associated with a variety of cellular dysfunctions including excessive mitochondrial fission. Here, we tested whether inhibition of excessive mitochondrial fission prevents mtHtt-induced pathology. We developed a selective inhibitor (P110-TAT) of the mitochondrial fission protein dynamin-related protein 1 (DRP1). We found that P110-TAT inhibited mtHtt-induced excessive mitochondrial fragmentation, improved mitochondrial function, and increased cell viability in HD cell culture models. P110-TAT treatment of fibroblasts from patients with HD and patients with HD with iPS cell–derived neurons reduced mitochondrial fragmentation and corrected mitochondrial dysfunction. P110-TAT treatment also reduced the extent of neurite shortening and cell death in iPS cell–derived neurons in patients with HD. Moreover, treatment of HD transgenic mice with P110-TAT reduced mitochondrial dysfunction, motor deficits, neuropathology, and mortality. We found that p53, a stress gene involved in HD pathogenesis, binds to DRP1 and mediates DRP1-induced mitochondrial and neuronal damage. Furthermore, P110-TAT treatment suppressed mtHtt-induced association of p53 with mitochondria in multiple HD models. These data indicate that inhibition of DRP1-dependent excessive mitochondrial fission with a P110-TAT–like inhibitor may prevent or slow the progression of HD.
PMCID: PMC3859413  PMID: 24231356
7.  Hepatitis B Virus Disrupts Mitochondrial Dynamics: Induces Fission and Mitophagy to Attenuate Apoptosis 
PLoS Pathogens  2013;9(12):e1003722.
Human hepatitis B virus (HBV) causes chronic hepatitis and is associated with the development of hepatocellular carcinoma. HBV infection alters mitochondrial metabolism. The selective removal of damaged mitochondria is essential for the maintenance of mitochondrial and cellular homeostasis. Here, we report that HBV shifts the balance of mitochondrial dynamics toward fission and mitophagy to attenuate the virus-induced apoptosis. HBV induced perinuclear clustering of mitochondria and triggered mitochondrial translocation of the dynamin-related protein (Drp1) by stimulating its phosphorylation at Ser616, leading to mitochondrial fission. HBV also stimulated the gene expression of Parkin, PINK1, and LC3B and induced Parkin recruitment to the mitochondria. Upon translocation to mitochondria, Parkin, an E3 ubiquitin ligase, underwent self-ubiquitination and facilitated the ubiquitination and degradation of its substrate Mitofusin 2 (Mfn2), a mediator of mitochondrial fusion. In addition to conventional immunofluorescence, a sensitive dual fluorescence reporter expressing mito-mRFP-EGFP fused in-frame to a mitochondrial targeting sequence was employed to observe the completion of the mitophagic process by delivery of the engulfed mitochondria to lysosomes for degradation. Furthermore, we demonstrate that viral HBx protein plays a central role in promoting aberrant mitochondrial dynamics either when expressed alone or in the context of viral genome. Perturbing mitophagy by silencing Parkin led to enhanced apoptotic signaling, suggesting that HBV-induced mitochondrial fission and mitophagy promote cell survival and possibly viral persistence. Altered mitochondrial dynamics associated with HBV infection may contribute to mitochondrial injury and liver disease pathogenesis.
Author Summary
Hepatitis B virus (HBV) chronic infections represent the common cause for the development of hepatocellular carcinoma. Mitochondrial liver injury has been long recognized as one of the consequences of HBV infection during chronic hepatitis. Mitochondria are dynamic organelles that undergo fission, fusion, and selective-autophagic removal (mitophagy), in their pursuit to maintain mitochondrial homeostasis and meet cellular energy requirements. The clearance of damaged mitochondria is essential for the maintenance of mitochondrial and cellular homeostasis. We observed that HBV and its encoded HBx protein promoted mitochondrial fragmentation (fission) and mitophagy. HBV/HBx induced the expression and Ser616 phosphorylation of dynamin-related protein 1 (Drp1) and its subsequent translocation to the mitochondria, resulting in enhanced mitochondrial fragmentation. HBV also promoted the mitochondrial translocation of Parkin, a cytosolic E3 ubiquitin ligase, and subsequent mitophagy. Perturbation of mitophagy in HBV-infected cells resulted in enhanced mitochondrial apoptotic signaling. This shift of the mitochondrial dynamics towards enhanced fission and mitophagy is essential for the clearance of damaged mitochondria and serves to prevent apoptotic cell death of HBV-infected cells to facilitate persistent infection.
PMCID: PMC3855539  PMID: 24339771
8.  PKA/AKAP1 and PP2A/Bβ2 Regulate Neuronal Morphogenesis via Drp1 Phosphorylation and Mitochondrial Bioenergetics 
The Journal of Neuroscience  2011;31(44):15716-15726.
Mitochondrial shape is determined by fission and fusion reactions, perturbation of which can contribute to neuronal injury and disease. Mitochondrial fission is catalyzed by dynamin-related protein 1 (Drp1), a large GTPase of the dynamin family that is highly expressed in neurons and regulated by various posttranslational modifications, including phosphorylation. We report here that reversible phosphorylation of Drp1 at a conserved Ser residue by an outer mitochondrial kinase (PKA/AKAP1) and phosphatase (PP2A/Bβ2) impacts dendrite and synapse development in cultured rat hippocampal neurons. PKA/AKAP1-mediated phosphorylation of Drp1 at Ser656 increased mitochondrial length and dendrite occupancy, enhancing dendritic outgrowth but paradoxically decreasing synapse number and density. Opposing PKA/AKAP1, PP2A/Bβ2-mediated dephosphorylation of Drp1 at Ser656 fragmented and depolarized mitochondria and depleted them from dendrites, stunting dendritic outgrowth but augmenting synapse formation. Raising and lowering intracellular calcium reproduced the effects of dephospho-Drp1 and phospho-Drp1on dendrite and synapse development, respectively, while boosting mitochondrial membrane potential with l-carnitine-fostered dendrite at the expense of synapse formation without altering mitochondrial size or distribution. Thus, outer mitochondrial PKA and PP2A regulate neuronal development by inhibiting and promoting mitochondrial division, respectively. We propose that the bioenergetic state of mitochondria, rather than their localization or shape per se, is the key effector of Drp1, altering calcium homeostasis to modulate neuronal morphology and connectivity.
PMCID: PMC3328351  PMID: 22049414
9.  Mitochondrial fission in endothelial cells following simulated ischemia/reperfusion: Role of nitric oxide and reactive oxygen species 
Free radical biology & medicine  2011;52(2):348-356.
Ischemia (I)/reperfusion (RP)-induced endothelial cell (EC) injury is thought to occur due to mitochondrial reactive oxygen species (mtROS) production. MtROS have been implicated in mitochondrial fission. We determined whether cultured EC exposure to simulated I/RP causes morphological changes in the mitochondrial network, and the mechanisms behind those changes. Since shear stress results in nitric oxide (NO)-mediated endothelial mtROS generation, we simulated I/RP as hypoxia (H) followed by oxygenated flow over the ECs (shear stress of 10 dyne/cm2). By exposing ECs to shear stress, H, H/reoxygenation (RO) or simulated I/RP and employing mitotracker staining, the differential effects of changes in mechanical forces and/or O2 levels on the mitochondrial network were assessed. Static or sheared ECs maintained their mitochondrial network. H- or H/RO-exposed ECs underwent changes, but mitochondrial fission was significantly less compared to that in ECs exposed to I/RP. I/RP-induced fission was partially inhibited by antioxidants, a NO synthase inhibitor or an inhibitor of the fission protein dynamin-related protein 1 (Drp1), and was accompanied by Drp1 oligomerization and phosphorylation (Ser616). Hence, shear-induced NO, ROS (including mtROS), and Drp1 activation are responsible for mitochondrial fission in I/RP-exposed ECs, and excessive fission may be an underlying cause of EC dysfunction in postischemic hearts.
PMCID: PMC3253175  PMID: 22100972
Endothelial cell; Mitochondrial fission; Hypoxia/reoxygenation; Ischemia/reperfusion; Shear stress; Mitochondrial superoxide; Nitric oxide; Dynamin-related protein 1
10.  Mitochondrial Fission Contributes to Mitochondrial Dysfunction and Insulin Resistance in Skeletal Muscle 
Molecular and Cellular Biology  2012;32(2):309-319.
Mitochondrial dysfunction in skeletal muscle has been implicated in the development of insulin resistance and type 2 diabetes. Considering the importance of mitochondrial dynamics in mitochondrial and cellular functions, we hypothesized that obesity and excess energy intake shift the balance of mitochondrial dynamics, further contributing to mitochondrial dysfunction and metabolic deterioration in skeletal muscle. First, we revealed that excess palmitate (PA), but not hyperglycemia, hyperinsulinemia, or elevated tumor necrosis factor alpha, induced mitochondrial fragmentation and increased mitochondrion-associated Drp1 and Fis1 in differentiated C2C12 muscle cells. This fragmentation was associated with increased oxidative stress, mitochondrial depolarization, loss of ATP production, and reduced insulin-stimulated glucose uptake. Both genetic and pharmacological inhibition of Drp1 attenuated PA-induced mitochondrial fragmentation, mitochondrial depolarization, and insulin resistance in C2C12 cells. Furthermore, we found smaller and shorter mitochondria and increased mitochondrial fission machinery in the skeletal muscle of mice with genetic obesity and those with diet-induced obesity. Inhibition of mitochondrial fission improved the muscle insulin signaling and systemic insulin sensitivity of obese mice. Our findings indicated that aberrant mitochondrial fission is causally associated with mitochondrial dysfunction and insulin resistance in skeletal muscle. Thus, disruption of mitochondrial dynamics may underlie the pathogenesis of muscle insulin resistance in obesity and type 2 diabetes.
PMCID: PMC3255771  PMID: 22083962
Neurotoxicology  2011;32(5):567-577.
Oxidative stress and apoptosis are two key pathophysiological mechanisms underlying dopaminergic degeneration in Parkinson’s disease (PD). Recently, we identified that proteolytic activation of protein kinase C-delta (PKCδ), a member of the novel PKC family, contributes to oxidative stress-induced dopaminergic degeneration and that phosphorylation of tyrosine residue 311 (tyr311) on PKCδ is a key event preceding the PKCδ proteolytic activation during oxidative damage. Herein, we report that a non-receptor tyrosine kinase Fyn is significantly expressed in a dopaminergic neuronal N27 cell model. Exposure of N27 cells to the dopaminergic toxicant dieldrin (60 μM) rapidly activated Fyn kinase, PKCδ-tyr311 phosphorylation and proteolytic cleavage. Fyn kinase activation precedes the caspase-3-mediated proteolytic activation of PKCδ. Co-treatment with p60-tyrosine-specific kinase inhibitor (TSKI) almost completely attenuated dieldrin-induced phosphorylation of PKCδ-tyr311 and its proteolytic activation. Additionally, TSKI almost completely blocked dieldrin-induced apoptotic cell death. To further confirm Fyn’s role in the pro-apoptotic function of PKCδ, we adopted the RNAi approach. siRNA-mediated knockdown of Fyn kinase also effectively attenuated dieldrin-induced phosphorylation of PKCδ-tyr311, caspase-3-mediated PKCδ proteolytic cleavage, and DNA fragmentation, suggesting that Fyn kinase regulates the pro-apoptotic function of PKCδ. Collectively, these results demonstrate for the first time that Fyn kinase is a pro-apoptotic kinase that regulates upstream signaling of the PKCδ-mediated apoptotic cell death pathway in neurotoxicity models of pesticide exposure.
PMCID: PMC3328137  PMID: 21801747
pesticides; oxidative stress; kinases; apoptosis; neurodegeneration
12.  N-terminal phosphorylation of PP2A/Bβ2 regulates translocation to mitochondria, Drp1 dephosphorylation, and neuronal survival 
The FEBS journal  2012;280(2):662-673.
The neuron-specific Bβ2 regulatory subunit of protein phosphatase 2A (PP2A), a product of the spinocerebellar ataxia type 12 disease gene PPP2R2B, recruits heterotrimeric PP2A to the outer mitochondrial membrane (OMM) through its N-terminal mitochondrial targeting sequence. OMM-localized PP2A/Bβ2 induces mitochondrial fragmentation, thereby increasing susceptibility to neuronal insults. Here, we report that PP2A/Bβ2 activates the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) by dephosphorylating Ser656, a highly conserved inhibitory phosphorylation site targeted by the neuroprotective PKA/AKAP1 kinase complex. We further show that translocation of PP2A/Bβ2 to mitochondria is regulated by phosphorylation of Bβ2 at three N-terminal Ser residues. Phosphomimetic substitution of Ser20-22 renders Bβ2 cytosolic, blocks Drp1 dephosphorylation and mitochondrial fragmentation, and abolishes the ability of Bβ2 overexpression to induce apoptosis in cultured hippocampal neurons. Ala substitution of Ser20-22 to prevent phosphorylation has the opposite effect, promoting association of Bβ2 with mitochondria, Drp1 dephosphorylation, mitochondrial fission, and neuronal death. OMM translocation of Bβ2 can be attenuated by mutation of residues in close proximity to the catalytic site, but only if Ser20-22 are available for phosphorylation, suggesting that PP2A/Bβ2 autodephosphorylation is necessary for OMM association, likely by uncovering the net positive charge of the mitochondrial targeting sequence. These results reveal another layer of complexity in the regulation of the mitochondrial fission/fusion equilibrium and its physiological and pathophysiological consequences in the nervous system.
PMCID: PMC3549015  PMID: 22583914
protein phosphatase 2A; neuronal survival; dynamin-related protein1; mitochondrial fission; protein phosphorylation
13.  Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage 
Human Molecular Genetics  2012;21(11):2538-2547.
We recently reported increased mitochondrial fission and decreased fusion, increased amyloid beta (Aβ) interaction with the mitochondrial fission protein Drp1, increased mitochondrial fragmentation, impaired axonal transport of mitochondria and synaptic degeneration in neurons affected by AD. In the present study, we extended our previous investigations to determine whether phosphorylated tau interacts with Drp1 and to elucidate mitochondrial damage in the progression of AD. We also investigated GTPase activity, which is critical for mitochondrial fragmentation, in postmortem brain tissues from patients with AD and brain tissues from APP, APP/PS1 and 3XTg.AD mice. Using co-immunoprecipitation and immunofluorescence analyses, for the first time, we demonstrated the physical interaction between phosphorylated tau and Drp1. Mitochondrial fission-linked GTPase activity was significantly elevated in the postmortem frontal cortex tissues from AD patients and cortical tissues from APP, APP/PS1 and 3XTg.AD mice. On the basis of these findings, we conclude that Drp1 interacts with Aβ and phosphorylated tau, likely leading to excessive mitochondrial fragmentation, and mitochondrial and synaptic deficiencies, ultimately possibly leading to neuronal damage and cognitive decline. Treatment designed to reduce the expression of Drp1, Aβ and/or phosphorylated tau may decrease the interaction between Drp1 and phosphorylated tau and the interaction between Drp1 and Aβ, conferring protection to neurons from toxic insults of excessive Drp1, Aβ and/or phosphorylated tau.
PMCID: PMC3349426  PMID: 22367970
14.  Protein kinase D1 (PKD1) activation mediates a compensatory protective response during early stages of oxidative stress-induced neuronal degeneration 
Oxidative stress is a key pathophysiological mechanism contributing to degenerative processes in many neurodegenerative diseases and therefore, unraveling molecular mechanisms underlying various stages of oxidative neuronal damage is critical to better understanding the diseases and developing new treatment modalities. We previously showed that protein kinase C delta (PKCδ) proteolytic activation during the late stages of oxidative stress is a key proapoptotic signaling mechanism that contributes to oxidative damage in Parkinson's disease (PD) models. The time course studies revealed that PKCδ activation precedes apoptotic cell death and that cells resisted early insults of oxidative damage, suggesting that some intrinsic compensatory response protects neurons from early oxidative insult. Therefore, the purpose of the present study was to characterize protective signaling pathways in dopaminergic neurons during early stages of oxidative stress.
Herein, we identify that protein kinase D1 (PKD1) functions as a key anti-apoptotic kinase to protect neuronal cells against early stages of oxidative stress. Exposure of dopaminergic neuronal cells to H2O2 or 6-OHDA induced PKD1 activation loop (PKD1S744/748) phosphorylation long before induction of neuronal cell death. Blockade of PKCδ cleavage, PKCδ knockdown or overexpression of a cleavage-resistant PKCδ mutant effectively attenuated PKD1 activation, indicating that PKCδ proteolytic activation regulates PKD1 phosphorylation. Furthermore, the PKCδ catalytic fragment, but not the regulatory fragment, increased PKD1 activation, confirming PKCδ activity modulates PKD1 activation. We also identified that phosphorylation of S916 at the C-terminal is a preceding event required for PKD1 activation loop phosphorylation. Importantly, negative modulation of PKD1 by the RNAi knockdown or overexpression of PKD1S916A phospho-defective mutants augmented oxidative stress-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 or constitutively active PKD1 plasmids attenuated oxidative stress-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury.
Collectively, our results demonstrate that PKCδ-dependent activation of PKD1 represents a novel intrinsic protective response in counteracting early stage oxidative damage in neuronal cells. Our results suggest that positive modulation of the PKD1-mediated compensatory protective mechanism against oxidative damage in dopaminergic neurons may provide novel neuroprotective strategies for treatment of PD.
PMCID: PMC3145571  PMID: 21696630
15.  Heterogeneity in Apoptotic Responses of Microvascular Endothelial Cells to Oxidative Stress 
Journal of cellular physiology  2012;227(5):1899-1910.
Oxidative stress contributes to disease and can alter endothelial cell (EC) function. EC from different vascular beds are heterogeneous in structure and function, thus we assessed the apoptotic responses of EC from lung and heart to oxidative stress. Since protein kinase Cδ (PKCδ) is activated by oxidative stress and is an important modulator of apoptosis, experiments assessed the level of apoptosis in fixed lung and heart sections of PKCδ wild-type (PKCδ+/+) and null (PKCδ−/−) mice housed under normoxia (21% O2) or hyperoxia (~95% O2). We noted a significantly greater number of TUNEL-positive cells in lungs of hyperoxic PKCδ+/+ mice, compared to matched hearts or normoxic organs. We found that 33% of apoptotic cells identified in hyperoxic lungs of PKCδ+/+ mice were EC, compared to 7% EC in hyperoxic hearts. We further noted that EC apoptosis was significantly reduced in lungs of PKCδ−/− hyperoxic mice, compared to lungs of PKCδ+/+ hyperoxic mice. In vitro, both hyperoxia and H2O2 promoted apoptosis in EC isolated from microvasculature of lung (LMVEC), but not from the heart (HMVEC). H2O2 treatment significantly increased p38 activity in LMVEC, but not in HMVEC. Inhibition of p38 attenuated H2O2-induced LMVEC apoptosis. Baseline expression of total PKCδ protein, as well as the caspase-mediated, catalytically active PKCδ cleavage fragment, was higher in LMVEC, compared to HMVEC. PKCδ inhibition significantly attenuated H2O2-induced LMVEC p38 activation.. Conversely, overexpression of wild-type PKCδ or the catalytically-active PKCδ cleavage product greatly increased H2O2-induced HMVEC caspase and p38 activation. We propose that enhanced susceptibility of lung EC to oxidant-induced apoptosis is due to increased PKCδ→p38 signaling, and we describe a PKCδ-centric pathway which dictates the differential response of EC from distinct vascular beds to oxidative stress.
PMCID: PMC3533229  PMID: 21732361
Endothelium; apoptosis; heterogeneity; oxidative stress; ROS; PKCδ; p38
16.  Proteasome inhibitor-induced apoptosis is mediated by positive feed-back amplification of PKCδ proteolytic activation and mitochondrial translocation 
Emerging evidences implicate impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson’s disease; however, cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCδ plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCδ was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably, MG-132 treatment resulted in translocation of proteolytically cleaved PKCδ fragments to mitochondria in a time-dependent fashion, and the PKCδ inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCδ catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCδ (PKCδ-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCδ-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCδ proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCδ-CRM) or suppression of PKCδ expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCδ has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells.
PMCID: PMC2957660  PMID: 18298651
17.  Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules 
The Journal of Cell Biology  2013;201(7):1037-1051.
The splice isoform Drp1-x01 promotes mitochondrial fission and is regulated by Cdk phosphorylation-dependent changes in microtubule association.
Fission and fusion reactions determine mitochondrial morphology and function. Dynamin-related protein 1 (Drp1) is a guanosine triphosphate–hydrolyzing mechanoenzyme important for mitochondrial fission and programmed cell death. Drp1 is subject to alternative splicing of three exons with previously unknown functional significance. Here, we report that splice variants including the third but excluding the second alternative exon (x01) localized to and copurified with microtubule bundles as dynamic polymers that resemble fission complexes on mitochondria. A major isoform in immune cells, Drp1-x01 required oligomeric assembly and Arg residues in alternative exon 3 for microtubule targeting. Drp1-x01 stabilized and bundled microtubules and attenuated staurosporine-induced mitochondrial fragmentation and apoptosis. Phosphorylation of a conserved Ser residue adjacent to the microtubule-binding exon released Drp1-x01 from microtubules and promoted mitochondrial fragmentation in a splice form–specific manner. Phosphorylation by Cdk1 contributed to dissociation of Drp1-x01 from mitotic microtubules, whereas Cdk5-mediated phosphorylation modulated Drp1-x01 targeting to interphase microtubules. Thus, alternative splicing generates a latent, cytoskeletal pool of Drp1 that is selectively mobilized by cyclin-dependent kinase signaling.
PMCID: PMC3691453  PMID: 23798729
18.  Dopaminergic Neurotoxicant 6-OHDA Induces Oxidative Damage through Proteolytic Activation of PKCδ in Cell Culture and Animal Models of Parkinson’s Disease 
Toxicology and applied pharmacology  2011;256(3):314-323.
The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson’s disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 μM) for 24h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 μM) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKCδ) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 μM). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKCδD327A and kinase dead PKCδK376R or siRNA-mediated knockdown of PKCδ protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKCδ promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKCδ expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKCδ cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKCδD327A protein protected against 6-OHDA-induced PKCδ activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKCδ is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.
PMCID: PMC3205342  PMID: 21846476
Oxidative Stress; 6-OHDA; PKC delta; Apoptosis; animal model; Parkinson’s disease
19.  Protein Kinase C Delta (PKCδ) Affects Proliferation of Insulin-Secreting Cells by Promoting Nuclear Extrusion of the Cell Cycle Inhibitor p21Cip1/WAF1 
PLoS ONE  2011;6(12):e28828.
High fat diet-induced hyperglycemia and palmitate-stimulated apoptosis was prevented by specific inhibition of protein kinase C delta (PKCδ) in β-cells. To understand the role of PKCδ in more detail the impact of changes in PKCδ activity on proliferation and survival of insulin-secreting cells was analyzed under stress-free conditions.
Methodology and Principal Findings
Using genetic and pharmacological approaches, the effect of reduced and increased PKCδ activity on proliferation, apoptosis and cell cycle regulation of insulin secreting cells was examined. Proteins were analyzed by Western blotting and by confocal laser scanning microscopy. Increased expression of wild type PKCδ (PKCδWT) significantly stimulated proliferation of INS-1E cells with concomitant reduced expression and cytosolic retraction of the cell cycle inhibitor p21Cip1/WAF1. This nuclear extrusion was mediated by PKCδ-dependent phosphorylation of p21Cip1/WAF1 at Ser146. In kinase dead PKCδ (PKCδKN) overexpressing cells and after inhibition of endogenous PKCδ activity by rottlerin or RNA interference phosphorylation of p21Cip1/WAF1 was reduced, which favored its nuclear accumulation and apoptotic cell death of INS-1E cells. Human and mouse islet cells express p21Cip1/WAF1 with strong nuclear accumulation, while in islet cells of PKCδWT transgenic mice the inhibitor resides cytosolic.
Conclusions and Significance
These observations disclose PKCδ as negative regulator of p21Cip1/WAF1, which facilitates proliferation of insulin secreting cells under stress-free conditions and suggest that additional stress-induced changes push PKCδ into its known pro-apoptotic role.
PMCID: PMC3246440  PMID: 22216119
20.  Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases 
Apoptosis  2010;15(11):1354-1363.
Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death.
PMCID: PMC2978885  PMID: 20177970
S-Nitrosylation; Mitochondrial fragmentation; Dynamin-related protein 1; β-Amyloid; Alzheimer’s disease
21.  Protein Kinase Cδ Targets Mitochondria, Alters Mitochondrial Membrane Potential, and Induces Apoptosis in Normal and Neoplastic Keratinocytes When Overexpressed by an Adenoviral Vector 
Molecular and Cellular Biology  1999;19(12):8547-8558.
Inactivation of protein kinase Cδ (PKCδ) is associated with resistance to terminal cell death in epidermal tumor cells, suggesting that activation of PKCδ in normal epidermis may be a component of a cell death pathway. To test this hypothesis, we constructed an adenovirus vector carrying an epitope-tagged PKCδ under a cytomegalovirus promoter to overexpress PKCδ in normal and neoplastic keratinocytes. While PKCδ overexpression was detected by immunoblotting in keratinocytes, the expression level of other PKC isozymes, including PKCα, PKCɛ, PKCζ, and PKCη, did not change. Calcium-independent PKC-specific kinase activity increased after infection of keratinocytes with the PKCδ adenovirus. Activation of PKCδ by 12-O-tetradecanoylphorbol-13-acetate (TPA) at a nanomolar concentration was lethal to normal and neoplastic mouse and human keratinocytes overexpressing PKCδ. Lethality was inhibited by PKC selective inhibitors, GF109203X and Ro-32-0432. TPA-induced cell death was apoptotic as evidenced by morphological criteria, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay, DNA fragmentation, and increased caspase activity. Subcellular fractionation indicated that PKCδ translocated to a mitochondrial enriched fraction after TPA activation, and this finding was confirmed by confocal microscopy of cells expressing a transfected PKCδ-green fluorescent protein fusion protein. Furthermore, activation of PKCδ in keratinocytes altered mitochondrial membrane potential, as indicated by rhodamine-123 fluorescence. Mitochondrial inhibitors, rotenone and antimycin A, reduced TPA-induced cell death in PKCδ-overexpressing keratinocytes. These results indicate that PKCδ can initiate a death pathway in keratinocytes that involves direct interaction with mitochondria and alterations of mitochondrial function.
PMCID: PMC84974  PMID: 10567579
22.  CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation 
Mitochondrial functions are essential for the survival and function of neurons. Recently, it has been demonstrated that mitochondrial functions are highly associated with mitochondrial morphology, which is dynamically changed by the balance between fusion and fission. Mitochondrial morphology is primarily controlled by the activation of dynamin-related proteins including dynamin-related protein 1 (Drp1), which promotes mitochondrial fission. Drp1 activity is regulated by several post-translational modifications, thereby modifying mitochondrial morphology. Here, we found that phosphorylation of Drp1 at serine 616 (S616) is mediated by cyclin-dependent kinase 5 (CDK5) in post-mitotic rat neurons. Perturbation of CDK5 activity modified the level of Drp1S616 phosphorylation and mitochondrial morphology in neurons. In addition, phosphorylated Drp1S616 preferentially localized as a cytosolic monomer compared with total Drp1. Furthermore, roscovitine, a chemical inhibitor of CDKs, increased oligomerization and mitochondrial translocation of Drp1, suggesting that CDK5-dependent phosphorylation of Drp1 serves to reduce Drp1's fission-promoting activity. Taken together, we propose that CDK5 has a significant role in the regulation of mitochondrial morphology via inhibitory phosphorylation of Drp1S616 in post-mitotic neurons.
PMCID: PMC4119210  PMID: 25012575
CDK5; Drp1; fission; mitochondria; neuron; phosphorylation
23.  Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death 
Maintaining proper mitochondrial length is essential for normal mitochondrial function in neurons. Mitochondrial fragmentation has been associated with neuronal cell death caused by a variety of experimental toxic stressors. Despite the fact that oxidative stress is a hallmark of neurodegenerative conditions and aging and the resulting activation of p53 is believed to contribute to the neuropathology, little is still known regarding changes in mitochondrial morphology in p53-dependent neuronal death. Therefore, we specifically addressed the relationship between genotoxic stress, p53 activation and the regulation of mitochondrial morphology in neurons. In cultured postnatal mouse cortical neurons, treatment with the DNA damaging agent camptothecin (CPT) resulted in elongated mitochondria, in contrast to fragmented mitochondria observed upon staurosporine and glutamate treatment. In fibroblasts, however, CPT resulted in fragmented mitochondria. CPT treatment in neurons suppressed expression of the mitochondrial fission protein Drp1 and the E3 ubiquitin ligase parkin. The presence of elongated mitochondria and the declines in Drp1 and parkin expression occurred prior to the commitment point for apoptosis. The CPT-induced changes in Drp1 and parkin were not observed in p53-deficient neurons, while p53 overexpression alone was sufficient to reduce the expression of the two proteins. Elevating Drp1 and parkin expression prior to CPT treatment enhanced neuronal viability and restored a normal pattern of mitochondrial morphology. The present findings demonstrate that genotoxic stress in neurons results in elongated mitochondria in contrast to fission induced by other forms of stress, and p53-dependent declines in Drp1 and parkin levels contribute to altered mitochondrial morphology and cell death.
PMCID: PMC3711762  PMID: 23345212
24.  Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases 
Journal of cell death  2013;6:27-35.
Mitochondrial dysfunction occurs in neurodegenerative diseases, however molecular mechanisms underlying this process remain elusive. Emerging evidence suggests that nitrosative stress, mediated by reactive nitrogen species (RNS), may play a role in mitochondrial pathology. Here, we review findings that highlight the abnormal mitochondrial morphology observed in many neurode-generative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases. One mechanism whereby RNS can affect mitochondrial function and thus neuronal survival occurs via protein S-nitrosylation, representing chemical reaction of a nitric oxide (NO) group with a critical cysteine thiol. In this review, we focus on the signaling pathway whereby S-nitrosylation of the mitochondrial fission protein Drp1 (dynamin-related protein 1; forming S-nitrosothiol (SNO)-Drp1) precipitates excessive mitochondrial fission or fragmentation and consequent bioenergetic compromise. Subsequently, the formation of SNO-Drp1 leads to synaptic damage and neuronal death. Thus, intervention in the SNO-Drp1 pathway may provide therapeutic benefit in neurodegenerative diseases.
PMCID: PMC3935363  PMID: 24587691
S-nitrosothiol; neurodegeneration; dendritic spine loss; GTPase; reactive nitrogen species; mitochondrial dysfunction
25.  Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases 
Journal of Cell Death  2013;6:27-35.
Mitochondrial dysfunction occurs in neurodegenerative diseases, however molecular mechanisms underlying this process remain elusive. Emerging evidence suggests that nitrosative stress, mediated by reactive nitrogen species (RNS), may play a role in mitochondrial pathology. Here, we review findings that highlight the abnormal mitochondrial morphology observed in many neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases. One mechanism whereby RNS can affect mitochondrial function and thus neuronal survival occurs via protein S-nitrosylation, representing chemical reaction of a nitric oxide (NO) group with a critical cysteine thiol. In this review, we focus on the signaling pathway whereby S-nitrosylation of the mitochondrial fission protein Drp1 (dynamin-related protein 1; forming S-nitrosothiol (SNO)-Drp1) precipitates excessive mitochondrial fission or fragmentation and consequent bioenergetic compromise. Subsequently, the formation of SNO-Drp1 leads to synaptic damage and neuronal death. Thus, intervention in the SNO-Drp1 pathway may provide therapeutic benefit in neurodegenerative diseases.
PMCID: PMC3935363  PMID: 24587691
S-nitrosothiol; neurodegeneration; dendritic spine loss; GTPase; reactive nitrogen species; mitochondrial dysfunction

Results 1-25 (735660)