Search tips
Search criteria

Results 1-25 (871351)

Clipboard (0)

Related Articles

1.  The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP 
PLoS Genetics  2015;11(1):e1004944.
The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.
Author Summary
In flowering plants, the proper transition from vegetative growth to flowering is critical for their reproductive success and must be controlled precisely. Multiple genes have been shown to regulate the floral transition in response to environmental and endogenous cues. Among them is SHORT VEGETATIVE PHASE (SVP), a key flowering repressor gene in Arabidopsis. SVP is highly expressed during the vegetative phase to promote growth, but the mechanism by which the high expression level of SVP is maintained remains unknown. Here, we report a genome-wide study to examine the functional interplay between the BRM chromatin remodeler and the PcG proteins that catalyze trimethylation of lysine 27 on histone H3 (H3K27me3), a histone mark normally associated with transcriptionally repressed genes. We identify BRM as a direct upstream activator of SVP. BRM acts to keep the levels of H3K27me3 low at the SVP locus by inhibiting the binding and activities of the PcG proteins. Thus, our work identifies a previously unknown mechanism in regulation of flowering time and demonstrates the power of genome-wide approaches in dissecting regulatory networks controlling plant development.
PMCID: PMC4304717  PMID: 25615622
2.  BRAHMA ATPase of the SWI/SNF Chromatin Remodeling Complex Acts as a Positive Regulator of Gibberellin-Mediated Responses in Arabidopsis 
PLoS ONE  2013;8(3):e58588.
SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM) ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways.
PMCID: PMC3594165  PMID: 23536800
3.  ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2 is Required for the Winter-Annual Habit of Arabidopsis thaliana 
Plant and Cell Physiology  2012;53(5):834-846.
The winter-annual habit of Arabidopsis thaliana requires active alleles of FLOWERING LOCUS C (FLC), which encodes a potent flowering repressor, and FRIGIDA (FRI), an activator of FLC. FLC activation by FRI is accompanied by an increase in specific histone modifications, such as tri-methylation of histone H3 at lysine 4 (H3K4me3), and requires three H3K4 methyltransferases, the Drosophila Trithorax-class ARABIDOPSIS TRITHORAX1 (ATX1) and ATX2, and yeast Set1-class ATX-RELATED7/SET DOMAIN GROUP25 (ATXR7/SDG25). However, lesions in all of these genes failed to suppress the enhanced FLC expression caused by FRI completely, suggesting that another H3K4 methyltransferase may participate in the FLC activation. Here, we show that ATXR3/SDG2, which is a member of a novel class of H3K4 methyltransferases, also contributes to FLC activation. An ATXR3 lesion suppressed the enhanced FLC expression and delayed flowering caused by an active allele of FRI in non-vernalized plants. The decrease in FLC expression in atxr3 mutants was accompanied by reduced H3K4me3 levels at FLC chromatin. We also found that the rapid flowering of atxr3 was epistatic to that of atxr7, suggesting that ATXR3 functions in FLC activation in sequence with ATXR7. Our results indicate that the novel-class H3K4 methyltransferase, ATXR3, is a transcriptional activator that plays a role in the FLC activation and establishing the winter-annual habit. In addition, ATXR3 also contributes to the activation of other FLC clade members, such as FLOWERING LOCUS M/MADS AFFECTING FLOWERING1 (FLM/MAF1) and MAF5, at least partially explaining the ATXR3 function in delayed flowering caused by non-inductive photoperiods.
PMCID: PMC3345368  PMID: 22378382
ARABIDOPSIS TRITHORAX; Flowering; FLOWERING LOCUS C; Histone methylation; Winter-annual Arabidopsis
4.  A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression 
PLoS Genetics  2012;8(4):e1002664.
Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell–dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering.
Author Summary
Flowering is an important developmental transition during plant life cycle and the key process for production of the next generation. Flowering time is controlled by both intrinsic developmental and environmental signals. FLC and its target FT work as repressor and activator, respectively, to regulate flowering time in Arabidopsis; thus the regulation of FLC and FT expression is the key for the control of floral transition. Epigenetic modifications are critical for transcription regulation. Here, we show that a novel JmjC domain-containing histone H3K4 demethylase, JMJ18, is a key regulator for the expression of FLC and FT in companion cells and flowering time. JMJ18 is dominantly expressed in vascular tissue; its temporal expression pattern was developmentally regulated, and negatively and positively correlated with FLC and FT, respectively. JMJ18 mutation leads to weak late-flowering, while JMJ18 overexpressor exhibited an obvious early-flowering phenotype. JMJ18 binds to chromatin of FLC, represses its expression, and releases expression of FT in companion cells. Our results suggest that JMJ18 is a developmentally regulated companion cell–dominantly expressed signal to control flowering time by binding to FLC—reducing level of H3K4 methylation in FLC and repressing expression of FLC—thereby promoting expression of FT in companion cells during vegetative development in Arabidopsis.
PMCID: PMC3334889  PMID: 22536163
5.  Arabidopsis RRP6L1 and RRP6L2 Function in FLOWERING LOCUS C Silencing via Regulation of Antisense RNA Synthesis 
PLoS Genetics  2014;10(9):e1004612.
The exosome complex functions in RNA metabolism and transcriptional gene silencing. Here, we report that mutations of two Arabidopsis genes encoding nuclear exosome components AtRRP6L1 and AtRRP6L2, cause de-repression of the main flowering repressor FLOWERING LOCUS C (FLC) and thus delay flowering in early-flowering Arabidopsis ecotypes. AtRRP6L mutations affect the expression of known FLC regulatory antisense (AS) RNAs AS I and II, and cause an increase in Histone3 K4 trimethylation (H3K4me3) at FLC. AtRRP6L1 and AtRRP6L2 function redundantly in regulation of FLC and also act independently of the exosome core complex. Moreover, we discovered a novel, long non-coding, non-polyadenylated antisense transcript (ASL, for Antisense Long) originating from the FLC locus in wild type plants. The AtRRP6L proteins function as the main regulators of ASL synthesis, as these mutants show little or no ASL transcript. Unlike ASI/II, ASL associates with H3K27me3 regions of FLC, suggesting that it could function in the maintenance of H3K27 trimethylation during vegetative growth. AtRRP6L mutations also affect H3K27me3 levels and nucleosome density at the FLC locus. Furthermore, AtRRP6L1 physically associates with the ASL transcript and directly interacts with the FLC locus. We propose that AtRRP6L proteins participate in the maintenance of H3K27me3 at FLC via regulating ASL. Furthermore, AtRRP6Ls might participate in multiple FLC silencing pathways by regulating diverse antisense RNAs derived from the FLC locus.
Author Summary
Arabidopsis FLOWERING LOCUS C (FLC) delays flowering; therefore, repressing expression of FLC provides a critical mechanism to regulate flowering. This mechanism involves multiple levels of regulation, including genetic regulation by transcription factors, and epigenetic regulation by modifications of genomic DNA and histones at the FLC locus. This work examines the role of non-coding RNAs in the epigenetic regulation of FLC, finding that the different RNAs produced from the FLC locus may have different functions in altering the epigenetic landscape at the FLC locus, and revealing that AtRRP6L1 and AtRRP6L2, two components of the exosome, an RNA-processing complex, play roles in regulating these non-coding RNAs. Therefore, this work explores the complex ties between RNA processing, non-coding RNAs, and epigenetic regulation of FLC, a key repressor of flowering.
PMCID: PMC4161302  PMID: 25211139
6.  Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development 
PLoS Genetics  2011;7(3):e1001330.
Histone H3 lysine-4 (H3K4) methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R) causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC), and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3K4 dimethylation) with active gene expression in Arabidopsis.
Author Summary
Histones can be covalently modified and histone modifications regulate chromatin structure and gene transcription. One such modification is histone H3 lysine-4 (H3K4) methylation, which can be mono-, di-, or tri-methylated. In animals such as fruitfly and mammals, both di- and tri-methylation of H3K4 are associated with active gene expression. In contrast to animals, in the flowering plant Arabidopsis only H3K4 trimethylation has been implicated in gene transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS-like in mammals. Here, we report that COMPASS-like H3K4 methyltransferase complexes exist in Arabidopsis. Loss of function of a core complex protein causes a great decrease in Arabidopsis genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Our analyses of several direct target genes of these COMPASS-like complexes show that they mediate deposition of trimethyl but not dimethyl H3K4 in these loci to activate their expression, providing concrete evidence for the notion that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings provide a molecular explanation for the observed coupling of trimethylation but not dimethylation of H3K4 with active gene expression in Arabidopsis. In addition, we found that H3K4 trimethylation regulates leaf growth and development, flowering, and embryo development.
PMCID: PMC3053346  PMID: 21423667
7.  The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure 
The Plant Journal   2008;53(3):530-540.
Loss-of-function siz1 mutations caused early flowering under short days. siz1 plants have elevated salicylic acid (SA) levels, which are restored to wild-type levels by expressing nahG, bacterial salicylate hydroxylase. The early flowering of siz1 was suppressed by expressing nahG, indicating that SIZ1 represses the transition to flowering mainly through suppressing SA-dependent floral promotion signaling under short days. Previous results have shown that exogenous SA treatment does not suppress late flowering of autonomous pathway mutants. However, the siz1 mutation accelerated flowering time of an autonomous pathway mutant, luminidependens, by reducing the expression of FLOWERING LOCUS C (FLC), a floral repressor. This result suggests that SIZ1 promotes FLC expression, possibly through an SA-independent pathway. Evidence indicates that SIZ1 is required for the full activation of FLC expression in the late-flowering FRIGIDA background. Interestingly, increased FLC expression and late flowering of an autonomous pathway mutant, flowering locus d (fld), was not suppressed by siz1, suggesting that SIZ1 promotes FLC expression by repressing FLD. Consistent with this, SIZ1 facilitates sumoylation of FLD that can be suppressed by mutations in three predicted sumoylation motifs in FLD (i.e. FLDK3R). Furthermore, expression of FLDK3R in fld protoplasts strongly reduced FLC transcription compared with expression of FLD, and this affect was linked to reduced acetylation of histone 4 in FLC chromatin. Taken together, the results suggest that SIZ1 is a floral repressor that not only represses the SA-dependent pathway, but also promotes FLC expression by repressing FLD activity through sumoylation, which is required for full FLC expression in a FRIGIDA background.
PMCID: PMC2254019  PMID: 18069938
SIZ1; SA; flowering; SUMO; FLD; FLC
8.  FVE, an Arabidopsis Homologue of the Retinoblastoma-Associated Protein That Regulates Flowering Time and Cold Response, Binds to Chromatin as a Large Multiprotein Complex 
Molecules and Cells  2011;32(3):227-234.
Some genetic studies indicate that plant homologues of proteins involved in chromatin modification and remodeling in other organisms may regulate plant development. Previously, we described an Arabidopsis mutant with altered cold-responsive gene expression (acg1) displaying a late flowering phenotype, a null allele of fve. FVE is a homologue of the mammalian retinoblastoma-associated protein (RbAp), one component of a histone deacetylase (HDAC) complex involved in transcriptional repression, and has been shown to be involved in the deacetylation of the FLOWERING LOCUS C (FLC) chromatin encoding for a repressor of flowering. In an effort to gain insight into the biochemical functions of FVE, we overexpressed FVE tagged with the hemagglutinin (HA) and FLAG epitope at the N-terminus in acg1 mutants. The results of physiological and molecular analyses demonstrated that FVE overexpression in acg1 rescued the mutant phenotypes, including late flowering and alterations in floral pathway gene expression such as FLC, SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), and FLOWERING LOCUS T (FT), and also super-induced cold-responsive reporter gene expression. The chromatin immunoprecipitation experiments revealed the amplification of specific DNA regions of FLC and COLD-REGULATED 15A (COR15A), indicating that FVE may bind to the FLC and COR15A chromatin. Gel-filtration chromatography and the immunoprecipitation of putative FVE complexes showed that FVE forms a protein complex of approximately 1.0 MDa. These results demonstrate that FVE may exist as a multiprotein complex, similar to the mammalian HDAC complex harboring RbAp, to regulate flowering time and cold response by associating with the FLC and COR chromatin.
PMCID: PMC3887629  PMID: 21710206
chromatin; flowering; FVE; histone deacetylase; retinoblastoma-associated protein
9.  Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components 
PLoS ONE  2008;3(10):e3404.
Polycomb group (PcG) proteins are evolutionarily conserved in animals and plants, and play critical roles in the regulation of developmental gene expression. Here we show that the Arabidopsis Polycomb repressive complex 2 (PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 2 (EMF2) and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) repress the expression of FLOWERING LOCUS C (FLC), a central repressor of the floral transition in Arabidopsis and FLC relatives. In addition, CLF directly interacts with and mediates the deposition of repressive histone H3 lysine 27 trimethylation (H3K27me3) into FLC and FLC relatives, which suppresses active histone H3 lysine 4 trimethylation (H3K4me3) in these loci. Furthermore, we show that during vegetative development CLF and FIE strongly repress the expression of FLOWERING LOCUS T (FT), a key flowering-time integrator, and that CLF also directly interacts with and mediates the deposition of H3K27me3 into FT chromatin. Our results suggest that PRC2-like complexes containing CLF, EMF2 and FIE, directly interact with and deposit into FT, FLC and FLC relatives repressive trimethyl H3K27 leading to the suppression of active H3K4me3 in these loci, and thus repress the expression of these flowering genes. Given the central roles of FLC and FT in flowering-time regulation in Arabidopsis, these findings suggest that the CLF-containing PRC2-like complexes play a significant role in control of flowering in Arabidopsis.
PMCID: PMC2561057  PMID: 18852898
10.  Hypoxia 
Plant Signaling & Behavior  2009;4(8):773-776.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,7–10 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.
PMCID: PMC2801397  PMID: 19820304
arabidopsis; VIN3; FLC; hypoxia; vernalization; chromatin remodelling; survival
11.  Arabidopsis MSI1 functions in photoperiodic flowering time control 
Appropriate timing of flowering is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals such as photoperiod, vernalization or light quality, ambient temperature and biotic as well as abiotic stresses. The key florigenic signal FLOWERING LOCUS T (FT) is regulated by several flowering activators, such as CONSTANS (CO), and repressors, such as FLOWERING LOCUS C (FLC). Chromatin modifications are essential for regulated gene expression, which often involves the well conserved MULTICOPY SUPRESSOR OF IRA 1 (MSI1)-like protein family. MSI1-like proteins are ubiquitous partners of various complexes, such as POLYCOMB REPRESSIVE COMPLEX2 or CHROMATIN ASSEMBLY FACTOR 1. In Arabidopsis, one of the functions of MSI1 is to control the switch to flowering. Arabidopsis MSI1 is needed for the correct expression of the floral integrator gene SUPPRESSOR OF CO 1 (SOC1). Here, we show that the histone-binding protein MSI1 acts in the photoperiod pathway to regulate normal expression of CO in long day (LD) photoperiods. Reduced expression of CO in msi1-mutants leads to failure of FT and SOC1 activation and to delayed flowering. MSI1 is needed for normal sensitivity of Arabidopsis to photoperiod, because msi1-mutants responded less than wild type to an intermittent LD treatment of plants grown in short days. Finally, genetic analysis demonstrated that MSI1 acts upstream of the CO-FT pathway to enable an efficient photoperiodic response and to induce flowering.
PMCID: PMC3945484  PMID: 24639681
Arabidopsis; flowering time; chromatin; MSI1; photoperiod; FLOWERING LOCUS T (FT); CONSTANS (CO)
12.  The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis  
Journal of Experimental Botany  2013;64(2):675-684.
Seed germination and flowering initiation are both transitions responding to similar seasonal cues. This study shows that ABSCISIC ACID-INSENSITIVE MUTANT 5 (ABI5), a bZIP transcription factor, which plays an important role in the abscisic acid (ABA)-arrested seed germination, is robustly associated with the floral transition in Arabidopsis. Under long-day conditions, overexpression of ABI5 could delay floral transition through upregulating FLOWERING LOCUS C (FLC) expression. In contrast, ectopically overexpressing FLC in an abi5 mutant reversed the earlier flowering phenotype. Further analysis indicated that transactivation of FLC could be promoted by ABI5 and/or other abscisic acid-responsive element (ABRE)-binding factors (ABFs). The expression of FLC that was promoted by ABI5 and/or other ABFs could be blocked in a triple SNF1-related protein kinase (SnRK) mutant, snrk2.2/2.3/2.6, despite the presence of ABA. In sharp contrast, when SnRK2.6 was coexpressed, the reduction of transactivity of FLC was reverted in mesophyll protoplasts of snrk2.2/2.3/2.6. Additional results from analysing transgenic plants carrying mutations of phosphoamino acids (ABI5 S42AS145AT201A), which are conserved in ABI5, suggested that SnRK2-mediated ABI5 and/or ABF phosphorylation may be crucial for promoting FLC expression. The transgenic plants ABI5 S42AS145AT201A were insensitive to ABA in seed germination, in addition to having an earlier flowering phenotype. Direct binding of ABI5 to the ABRE/G-box promoter elements existing in FLC was demonstrated by chromatin immunoprecipitation. Mutations at the ABRE/G-box regions in FLC promoter sequences abolished the ABI5-promoted transactivation of FLC. In summary, these results may decipher the inhibitory effect of ABA on floral transition in Arabidopsis.
PMCID: PMC3542054  PMID: 23307919
ABA; ABFs; ABI5; chromatin immunoprecipitation; FLC; flowering time; SnRK2s.
13.  Brm Inhibits the Proliferative Response of Keratinocytes and Corneal Epithelial Cells to Ultraviolet Radiation-Induced Damage 
PLoS ONE  2014;9(9):e107931.
Ultraviolet radiation (UV) from sunlight is the primary cause of skin and ocular neoplasia. Brahma (BRM) is part of the SWI/SNF chromatin remodeling complex. It provides energy for rearrangement of chromatin structure. Previously we have found that human skin tumours have a hotspot mutation in BRM and that protein levels are substantially reduced. Brm−/− mice have enhanced susceptibility to photocarcinogenesis. In these experiments, Brm−/− mice, with both or a single Trp53 allele were exposed to UV for 2 or 25 weeks. In wild type mice the central cornea and stroma became atrophic with increasing time of exposure while the peripheral regions became hyperplastic, presumably as a reparative process. Brm−/−, Trp53+/−, and particularly the Brm−/− Trp53+/− mice had an exaggerated hyperplastic regeneration response in the corneal epithelium and stroma so that the central epithelial atrophy or stromal loss was reduced. UV induced hyperplasia of the epidermis and corneal epithelium, with an increase in the number of dividing cells as determined by Ki-67 expression. This response was considerably greater in both the Brm−/− Trp53+/+ and Brm−/− Trp53+/− mice indicating that Brm protects from UV-induced enhancement of cell division, even with loss of one Trp53 allele. Cell division was disorganized in Brm−/− mice. Rather than being restricted to the basement membrane region, dividing cells were also present in the suprabasal regions of both tissues. Brm appears to be a tumour suppressor gene that protects from skin and ocular photocarcinogenesis. These studies indicate that Brm protects from UV-induced hyperplastic growth in both cutaneous and corneal keratinocytes, which may contribute to the ability of Brm to protect from photocarcinogenesis.
PMCID: PMC4177874  PMID: 25254962
14.  Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27 
PLoS Genetics  2007;3(6):e86.
TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) is the only Arabidopsis protein with overall sequence similarity to the HETEROCHROMATIN PROTEIN 1 (HP1) family of metazoans and S. pombe. TFL2/LHP1 represses transcription of numerous genes, including the flowering-time genes FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC), as well as the floral organ identity genes AGAMOUS (AG) and APETALA 3 (AP3). These genes are also regulated by proteins of the Polycomb repressive complex 2 (PRC2), and it has been proposed that TFL2/LHP1 represents a potential stabilizing factor of PRC2 activity. Here we show by chromatin immunoprecipitation and hybridization to an Arabidopsis Chromosome 4 tiling array (ChIP-chip) that TFL2/LHP1 associates with hundreds of small domains, almost all of which correspond to genes located within euchromatin. We investigated the chromatin marks to which TFL2/LHP1 binds and show that, in vitro, TFL2/LHP1 binds to histone H3 di- or tri-methylated at lysine 9 (H3K9me2 or H3K9me3), the marks recognized by HP1, and to histone H3 trimethylated at lysine 27 (H3K27me3), the mark deposited by PRC2. However, in vivo TFL2/LHP1 association with chromatin occurs almost exclusively and co-extensively with domains marked by H3K27me3, but not H3K9me2 or -3. Moreover, the distribution of H3K27me3 is unaffected in lhp1 mutant plants, indicating that unlike PRC2 components, TFL2/LHP1 is not involved in the deposition of this mark. Rather, our data suggest that TFL2/LHP1 recognizes specifically H3K27me3 in vivo as part of a mechanism that represses the expression of many genes targeted by PRC2.
Author Summary
Stable repression of gene expression is an important aspect of the developmental programs of higher organisms. In plants and animals, DNA is organized within chromatin, which contains at its core a set of evolutionarily conserved proteins called histones. These proteins can be modified for example by methylation or acetylation of lysines or phosphorylation of serines. Specific combinations of these histone modifications are interpreted by other chromatin proteins and thereby play essential roles in gene regulation. One such potential effector of the histone code in the flowering plant Arabidopsis is TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1). Here we present highly detailed “epigenomic” maps that establish that TFL2/LHP1 associates with a subset of Arabidopsis genes that are marked by tri-methylation of Lysine 27 of histone H3. In plants and animals, an evolutionarily conserved complex called PRC2 deposits this mark. In Drosophila and mammals this modified histone is then read by another complex, called PRC1, to maintain the stable repression of genes. In Arabidopsis however, no PRC1 complex exists, and our results provide evidence that TFL2/LHP1 may fulfill a related function.
PMCID: PMC1885283  PMID: 17542647
15.  Antagonistic Roles for BRM and BRG1 SWI/SNF Complexes in Differentiation*♦ 
The Journal of Biological Chemistry  2009;284(15):10067-10075.
The mammalian SWI/SNF chromatin-remodeling complex is essential for the multiple changes in gene expression that occur during differentiation. However, the basis within the complex for specificity in effecting positive versus negative changes in gene expression has only begun to be elucidated. The catalytic core of the complex can be either of two closely related ATPases, BRM or BRG1, with the potential that the choice of alternative subunits is a key determinant of specificity. Short hairpin RNA-mediated depletion of the ATPases was used to explore their respective roles in the well characterized multistage process of osteoblast differentiation. The results reveal an unexpected role for BRM-specific complexes. Instead of impeding differentiation as was seen with BRG1 depletion, depletion of BRM caused accelerated progression to the differentiation phenotype. Multiple tissue-specific differentiation markers, including the tightly regulated late stage marker osteocalcin, become constitutively up-regulated in BRM-depleted cells. Chromatin immunoprecipitation analysis of the osteocalcin promoter as a model for the behavior of the complexes indicates that the promoter is a direct target of both BRM- and BRG1-containing complexes. BRG1 complexes, which are required for activation, are associated with the promoter well before induction, but the concurrent presence of BRM-specific complexes overrides their activation function. BRM-specific complexes are present only on the repressed promoter and are required for association of the co-repressor HDAC1. These findings reveal an unanticipated degree of specialization of function linked with the choice of ATPase and suggest a new paradigm for the roles of the alternative subunits during differentiation.
PMCID: PMC2665061  PMID: 19144648
16.  Functional Consequences of Splicing of the Antisense Transcript COOLAIR on FLC Transcription 
Molecular Cell  2014;54(1):156-165.
Antisense transcription is widespread in many genomes; however, how much is functional is hotly debated. We are investigating functionality of a set of long noncoding antisense transcripts, collectively called COOLAIR, produced at Arabidopsis FLOWERING LOCUS C (FLC). COOLAIR initiates just downstream of the major sense transcript poly(A) site and terminates either early or extends into the FLC promoter region. We now show that splicing of COOLAIR is functionally important. This was revealed through analysis of a hypomorphic mutation in the core spliceosome component PRP8. The prp8 mutation perturbs a cotranscriptional feedback mechanism linking COOLAIR processing to FLC gene body histone demethylation and reduced FLC transcription. The importance of COOLAIR splicing in this repression mechanism was confirmed by disrupting COOLAIR production and mutating the COOLAIR proximal splice acceptor site. Our findings suggest that altered splicing of a long noncoding transcript can quantitatively modulate gene expression through cotranscriptional coupling mechanisms.
Graphical Abstract
•Alternative splicing of noncoding antisense transcripts affects flowering•Arabidopsis FLC gene transcription modulated by lncRNA isoforms•Positive feedback links chromatin state and antisense transcript splicing•Quantitative gene regulation by coupling antisense splicing to chromatin states
Marquardt et al. demonstrate that noncoding transcripts antisense to the Arabidopsis floral repressor gene FLC are alternatively spliced. Interfering with this alternative splicing alters FLC transcription quantitatively and affects the timing of flowering. Thus, this work reveals a function for a long noncoding antisense transcript in Arabidopsis.
PMCID: PMC3988885  PMID: 24725596
17.  Polycomb repression 
Plant Signaling & Behavior  2008;3(6):412-414.
In our recent paper1 we suggested a molecular explanation for the long standing observation that plants need to be mitotically active to respond to a prolonged period of low temperatures by flowering early (vernalization).2 In Arabidopsis, vernalization is associated with the epigenetic repression of the floral repressor, FLC.3–5 FLC repression is established during the low temperature treatment and is marked by the loss of chromatin marks associated with active genes and the gain of histone H3 trimethyl-lysine 27 (K27me3) at the start of transcription/translation.1 After the end of the cold treatment, this repressive modification spreads across FLC chromatin to mark the entire locus.1 In cells not undergoing mitosis, we found that FLC is repressed by low temperatures, but that this repression is only partially maintained. We concluded that DNA replication is not required for the initial response to low temperatures, but rather for the maintenance of this response. Here we discuss the implications of our observations in terms of the plasticity of chromatin modifications in plants.
PMCID: PMC2634319  PMID: 19704583
trimethyl lysine 27; FLC; VIN3; bivalent domain; histone replacement
18.  GmFLD, a soybean homolog of the autonomous pathway gene FLOWERING LOCUS D, promotes flowering in Arabidopsis thaliana 
BMC Plant Biology  2014;14(1):263.
Flowering at an appropriate time is crucial for seed maturity and reproductive success in all flowering plants. Soybean (Glycine max) is a typical short day plant, and both photoperiod and autonomous pathway genes exist in soybean genome. However, little is known about the functions of soybean autonomous pathway genes. In this article, we examined the functions of a soybean homolog of the autonomous pathway gene FLOWERING LOCUS D (FLD), GmFLD in the flowering transition of A. thaliana.
In soybean, GmFLD is highly expressed in expanded cotyledons of seedlings, roots, and young pods. However, the expression levels are low in leaves and shoot apexes. Expression of GmFLD in A. thaliana (Col) resulted in early flowering of the transgenic plants, and rescued the late flowering phenotype of the A. thaliana fld mutant. In GmFLD transgenic plants (Col or fld background), the FLC (FLOWERING LOCUS C) transcript levels decreased whereas the floral integrators, FT and SOC1, were up-regulated when compared with the corresponding non-transgenic genotypes. Furthermore, chromatin immuno-precipitation analysis showed that in the transgenic rescued lines (fld background), the levels of both tri-methylation of histone H3 Lys-4 and acetylation of H4 decreased significantly around the transcriptional start site of FLC. This is consistent with the function of GmFLD as a histone demethylase.
Our results suggest that GmFLD is a functional ortholog of the Arabidopsis FLD and may play an important role in the regulation of chromatin state in soybean. The present data provides the first evidence for the evolutionary conservation of the components in the autonomous pathway in soybean.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0263-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4190295  PMID: 25287450
Autonomous pathway; Deacetylation; Demethylation; FLOWERING LOCUS D; Flowering transition; GmFLD; Histone demethylase; Soybean
19.  PORPHOBILINOGEN DEAMINASE Deficiency Alters Vegetative and Reproductive Development and Causes Lesions in Arabidopsis 
PLoS ONE  2013;8(1):e53378.
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.
PMCID: PMC3540089  PMID: 23308205
The BRMS1 metastasis suppressor interacts with the protein AT rich interactive domain 4A (ARID4A, retinoblastoma-binding protein 1, RBBP1) as part of SIN3:histone deacetylase chromatin remodeling complexes. These transcriptional co-repressors regulate diverse cell phenotypes depending upon complex composition. To define BRMS1 complexes and their roles in metastasis suppression, we generated BRMS1 mutants (BRMS1mut) and mapped ARID4A interactions. BRMS1L174D disrupted direct interaction with ARID4A in yeast two-hybrid genetic screens (Y2H) but retained an indirect association with ARID4A in MDA-MB-231 and -435 human breast cancer cell lines by co-immunoprecipitation (co-IP). Deletion of the first coiled-coil domain (BRMS1ΔCC1) did not disrupt direct (Y2H) interaction, but did prevent association by co-IP. These results suggest altered complex composition with BRMS1mut. Although basal transcription repression was impaired and the pro-metastatic protein osteopontin (OPN) was differentially down-regulated by BRMS1L174D and BRMS1ΔCC1, both down-regulated epidermal growth factor receptor (EGFR) and suppressed metastasis in MDA-MB-231 and -435 breast cancer xenograft models. We conclude that BRMS1mut that modify the composition of a SIN3:HDAC chromatin remodeling complex leads to altered gene expression profiles. Because metastasis requires the coordinate expression of multiple genes, down-regulation of at least one important gene, such as EGFR, had the ability to suppress metastasis. Understanding which interactions are necessary for particular biochemical/cellular functions may prove important for future strategies targeting metastasis.
PMCID: PMC2293288  PMID: 18211900
21.  Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time 
Biology Open  2013;2(4):424-431.
Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn2+-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2.
PMCID: PMC3625871  PMID: 23616927
VOZ; Flowering; Arabidopsis; FLC; MOS
22.  Arabidopsis Homologs of Retinoblastoma-Associated Protein 46/48 Associate with a Histone Deacetylase to Act Redundantly in Chromatin Silencing 
PLoS Genetics  2011;7(11):e1002366.
RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA–triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histone-binding proteins Retinoblastoma-Associated Protein 46/48 (RbAp46/48), known as MSI4 (or FVE) and MSI5, function in partial redundancy in chromatin silencing of various loci targeted by siRNAs or asRNAs. We show that MSI5 acts in partial redundancy with FVE to silence FLOWERING LOCUS C (FLC), which is a crucial floral repressor subject to asRNA–mediated silencing, FLC homologs, and other loci including transposable and repetitive elements which are targets of siRNA–directed DNA Methylation (RdDM). Both FVE and MSI5 associate with HISTONE DEACETYLASE 6 (HDA6) to form complexes and directly interact with the target loci, leading to histone deacetylation and transcriptional silencing. In addition, these two genes function in de novo CHH (H = A, T, or C) methylation and maintenance of symmetric cytosine methylation (mainly CHG methylation) at endogenous RdDM target loci, and they are also required for establishment of cytosine methylation in the previously unmethylated sequences directed by the RdDM pathway. This reveals an important functional divergence of the plant RbAp46/48 relatives from animal counterparts.
Author Summary
Chromatin, made of histones and DNA, is often covalently modified in the nucleus, and modifications can regulate gene transcription. RNA molecules such as small-interfering or silencing RNAs (siRNAs) and antisense RNAs (asRNAs) can trigger silencing of gene expression in eukaryotes. We have found that in the flowering plant Arabidopsis, two homologous putative histone-binding proteins associate with a histone deacetylase and function in partial redundancy in chromatin-based silencing of various loci targeted by siRNAs or asRNAs. They act in partial redundancy to silence a development-regulatory gene that controls the transition to flowering and whose silencing is triggered by asRNAs, and genomic loci containing transposable and repetitive elements whose silencing is triggered by siRNAs via the siRNA–directed DNA Methylation (RdDM) pathway. In addition, these two genes function in maintenance of DNA methylation at RdDM loci and are also required for establishment of DNA methylation in the previously unmethylated sequences, revealing that histone modifications are partly required for DNA methylation. Our findings implicate that RNA–triggered transcriptional silencing involves repressive histone modifications such as deacetylation at a target locus.
PMCID: PMC3213158  PMID: 22102827
23.  C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier 
Developmental biology  2006;303(1):259-269.
Histone modification represents a universal mechanism for regulation of eukaryotic gene expression underlying diverse biological processes from neuronal gene expression in mammals to control of flowering in plants. In animal cells, these chromatin modifications are effected by well-defined multiprotein complexes containing specific histone-modifying activities. In plants, information about the composition of such co-repressor complexes is just beginning to emerge. Here, we report that two Arabidopsis thaliana factors, a SWIRM domain polyamine oxidase protein, AtSWP1, and a plant-specific C2H2 zinc finger-SET domain protein, AtCZS, interact with each other in plant cells and repress expression of a negative regulator of flowering, FLOWERING LOCUS C (FLC) via an autonomous, vernalization-independent pathway. Loss-of-function of either AtSWP1 or AtCZS results in reduced dimethylation of lysine 9 and lysine 27 of histone H3 and hyperacetylation of histone H4 within the FLC locus, in elevated FLC mRNA levels, and in moderately delayed flowering. Thus, AtSWP1 and AtCZS represent two main components of a co-repressor complex that fine tunes flowering and is unique to plants.
PMCID: PMC1831845  PMID: 17224141
Chromatin remodeling; histone modification; gene repression
24.  The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages 
eLife  2014;3:e01906.
The control of self-renewal and differentiation of neural stem and progenitor cells is a crucial issue in stem cell and cancer biology. Drosophila type II neuroblast lineages are prone to developing impaired neuroblast homeostasis if the limited self-renewing potential of intermediate neural progenitors (INPs) is unrestrained. Here, we demonstrate that Drosophila SWI/SNF chromatin remodeling Brahma (Brm) complex functions cooperatively with another chromatin remodeling factor, Histone deacetylase 3 (HDAC3) to suppress the formation of ectopic type II neuroblasts. We show that multiple components of the Brm complex and HDAC3 physically associate with Earmuff (Erm), a type II-specific transcription factor that prevents dedifferentiation of INPs into neuroblasts. Consistently, the predicted Erm-binding motif is present in most of known binding loci of Brm. Furthermore, brm and hdac3 genetically interact with erm to prevent type II neuroblast overgrowth. Thus, the Brm-HDAC3-Erm repressor complex suppresses dedifferentiation of INPs back into type II neuroblasts.
eLife digest
Stem cells show great promise for repairing damaged tissue, and maybe even generating new organs, but stem cell therapies will only be successful if researchers can understand and control the behaviour of stem cells in the lab. Neural stem cells or ‘neuroblasts’ from the brains of larval fruit flies have become a popular model for studying these processes, and one type of neuroblast—known as a ‘type II’ neuroblast—is similar to mammalian neural stem cells in many ways.
When type II neuroblasts divide, they generate another neuroblast and a second cell called an intermediate neural progenitor (INP) cell. This progenitor cell then matures and undergoes a limited number of divisions to generate more INP cells and cells called ganglion mother cells. The process by which stem cells and INP cells become specific types of cells is known as differentiation. However, under certain circumstances, the INP cells can undergo the opposite process, which is called dedifferentiation, and become ‘ectopic neuroblasts’. This can give rise to tumors, so cells must employ a mechanism to prevent dedifferentiation. Researchers have known that a protein specifically expressed in INP cells called Earmuff is involved in this process, but many of the details have remained hidden.
Now, Koe et al. have discovered that a multi-protein complex containing Earmuff and a number of other proteins—Brahma and HDAC3—have important roles in preventing dedifferentiation. All three proteins are involved in different aspects of gene expression: Earmuff is a transcription factor that controls the process by which the genes in DNA are transcribed to make molecules of messenger RNA; Brahma and HDAC3 are both involved in a process called chromatin remodeling. The DNA inside cells is packaged into a compact structure known as chromatin, and chromatin remodeling involves partially unpacking this structure so that transcription factors and other proteins can have access to the DNA.
Koe et al. also showed that Earmuff, Brahma and HDAC3 combine to form a complex that prevents dedifferentiation. An immediate priority is to identify those genes whose expression is regulated by this complex in order to prevent dedifferentiation.
PMCID: PMC3944433  PMID: 24618901
neuroblast; self-renewal; differentiation; dedifferentiation; intermediate neural progenitor; Drosophila; D. melanogaster
25.  Two novel BRM insertion promoter sequence variants are associated with loss of BRM expression and lung cancer risk 
Oncogene  2011;30(29):3295-3304.
SWI/SNF (SWItch/sucrose non-fermentable) complexes are ATP-dependent chromatin remodeling enzymes critically involved in the regulation of multiple functions, including gene expression, differentiation, development, DNA repair, cell adhesion and cell cycle control. BRM, a key SWI/SNF complex subunit, is silenced in 15–20% of many solid tumors. As BRM-deficient mice develop 10-fold more tumors when exposed to carcinogens, BRM is a strong candidate for a cancer susceptibility gene. In this paper, we show that BRM is regulated by transcription, thus demonstrating that the promoter region is important for BRM expression. We sequenced the BRM promoter region, finding two novel promoter indel polymorphisms, BRM −741 and BRM −1321, that are in linkage disequilibrium (D′ ≥0.83). The variant insertion alleles of both polymorphisms produce sequence variants that are highly homologous to myocyte enhancer factor-2 (MEF2) transcription factor-binding sites; MEF2 is known to recruit histone deacetylases that silence BRM expression. Each polymorphic BRM insertion variant is found in ~20% of Caucasians, and each correlates strongly with the loss of protein expression of BRM, both in cancer cell lines (P=0.009) and in primary human lung tumor specimens (P=0.015). With such strong functional evidence, we conducted a case–control study of 1199 smokers. We found an increased risk of lung cancer when both BRM homozygous promoter insertion variants were present: adjusted odds ratio of 2.19 (95% confidence interval, 1.40–3.43). Thus, we here demonstrate a strong functional association between these polymorphisms and loss of BRM expression. These polymorphisms thus have the potential to identify a sub-population of smokers at greater lung cancer risk, wherein this risk could be driven by an aberrant SWI/SNF chromatin-remodeling pathway.
PMCID: PMC3400140  PMID: 21478907
genetic polymorphism; BRG1; SWI/SNF; chromatin remodeling; lung cancer

Results 1-25 (871351)