PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1124642)

Clipboard (0)
None

Related Articles

1.  JAK1–STAT1–STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts 
The Journal of Cell Biology  2007;179(1):129-138.
Skeletal muscle stem cell–derived myoblasts are mainly responsible for postnatal muscle growth and injury-induced muscle regeneration. However, the cellular signaling pathways controlling the proliferation and differentiation of myoblasts are not fully understood. We demonstrate that Janus kinase 1 (JAK1) is required for myoblast proliferation and that it also functions as a checkpoint to prevent myoblasts from premature differentiation. Deliberate knockdown of JAK1 in both primary and immortalized myoblasts induces precocious myogenic differentiation with a concomitant reduction in cell proliferation. This is caused, in part, by an accelerated induction of MyoD, myocyte enhancer–binding factor 2 (MEF2), p21Cip1, and p27Kip1, a faster down-regulation of Id1, and an increase in MEF2-dependent gene transcription. Downstream of JAK1, of all the signal transducer and activator of transcriptions (STATs) present in myoblasts, we find that only STAT1 knockdown promotes myogenic differentiation in both primary and immortalized myoblasts. Leukemia inhibitory factor stimulates myoblast proliferation and represses differentiation via JAK1–STAT1–STAT3. Thus, JAK1–STAT1–STAT3 constitutes a signaling pathway that promotes myoblast proliferation and prevents premature myoblast differentiation.
doi:10.1083/jcb.200703184
PMCID: PMC2064742  PMID: 17908914
2.  Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range 
Quantitative analysis of time-resolved data in primary erythroid progenitor cells reveals that a dual negative transcriptional feedback mechanism underlies the ability of STAT5 to respond to the broad spectrum of physiologically relevant Epo concentrations.
A mathematical dual feedback model of the Epo-induced JAK2/STAT5 signaling pathway was calibrated with extensive time-resolved quantitative data sets from immunoblotting, mass spectrometry and qRT–PCR experiments in primary erythroid progenitor cells.We show that the amount of nuclear phosphorylated STAT5 integrated for 60 min post Epo stimulation directly correlates with the fraction of surviving cells 24 h later.CIS and SOCS3 were identified as the most relevant transcriptional feedback regulators of JAK2/STAT5 signaling in primary erythroid progenitor cells. Applying the model, we revealed that CIS-mediated inhibitory effects are most important at low ligand concentrations, whereas SOCS3 inhibition is more effective at high ligand doses.The distinct modes of inhibition of CIS and SOCS3 at various Epo concentrations provide a strategy for achieving control of JAK2/STAT5 signaling over the entire range of physiological Epo concentrations.
Cells interpret information encoded by extracellular stimuli through the activation of intracellular signaling networks and translate this information into cellular decisions. A prime example for a system that is exposed to extremely variable ligand concentrations is the erythroid lineage. The key regulator Erythropoietin (Epo) facilitates continuous renewal of erythrocytes at low basal levels but also secures compensation in case of, e.g., blood loss through an up to 1000-fold increase in hormone concentration. The Epo receptor (EpoR) is expressed on erythroid progenitor cells at the colony forming unit erythroid (CFU-E) stage. Stimulation of these cells with Epo leads to rapid but transient activation of receptor and JAK2 phosphorylation followed by phosphorylation of the latent transcription factor STAT5. Although STAT5 is known to be an essential regulator of survival and differentiation of erythroid progenitor cells, a quantitative link between the dynamic properties of STAT5 signaling and survival decisions remained unknown. STAT5-mediated responses in CFU-E cells are modulated by multiple attenuation mechanisms that operate on different time scales. Fast-acting mechanisms such as depletion of Epo by rapid receptor turnover and recruitment of the phosphatase SHP-1 control the initial signal amplitude at the receptor level. Transcriptional feedback regulators such as suppressor of cytokine signaling (SOCS) family members CIS and SOCS3 operate at a slower time scale. Despite the ample knowledge of the individual components involved, only little is known about the specific contributions of these regulators in controlling dynamic properties of STAT5 in response to a broad range of input signals. Therefore, dynamic pathway modeling is required to understand the complex regulatory network of feedback regulators.
To address these questions, we established a dual negative feedback model of JAK2/STAT5 signaling in primary erythroid progenitor cells isolated from mouse fetal livers. We provide a large data set of JAK2/STAT5 signaling dynamics employing quantitative immunoblotting, mass spectrometry and quantitative RT–PCR measured under different perturbation conditions to calibrate our model (Figure 3). The structure of our model was constructed to comprise the minimal number of parameters necessary to explain the data. Thereby, we aimed at a model with fully identifiable parameters that are essential to obtain high predictive power. Parameter identifiability was analyzed by the profile likelihood approach. Applying this method, we could establish a dual negative feedback model of JAK2-STAT5 signaling with structurally and in most cases practically identifiable parameters.
A major bottle-neck in combining signal transduction events with cellular phenotypes is the discrepancy in the time scale and stimuli concentrations that are applied in the different experiments. The sensitivity of biochemical assays to determine phosphorylation events within minutes or hours after stimulation is usually lower than the threshold of sensitivity in assays to determine the physiological response after one or more days. Facilitated by the model, we were able to compute the integrated response of JAK2/STAT5 signaling components for experimentally unaddressable Epo concentrations. Our results demonstrate that the integrated response of pSTAT5 in the nucleus accurately correlates with the experimentally determined survival of CFU-E cells. This provides a quantitative link of the dependency of primary CFU-E cells on pSTAT5 activation dynamics. By correlation analysis, we could identify the early signaling phase (⩽1 h) of STAT5 to be the most predictive for the fraction of surviving cells, which was determined ∼24 h later. Thus, we hypothesize that as a general principle in apoptotic decisions, ligand concentrations translated into kinetic-encoded information of early signaling events downstream of receptors can be predictive for survival decisions 24 h later.
After the first hour of stimulation, it is important to constrain signaling to a residual steady-state level. Constitutive phosphorylation of the JAK2/STAT5 pathway has a crucial role in the onset of polycythemia vera (PV), a disease associated with Epo-independent erythroid differentiation. The two identified transcriptional feedback proteins, CIS and SOCS3, are responsible for adjusting the phosphorylation level of STAT5 after 1 h of stimulation. Since the Epo input signal can vary over a broad range of ligand concentrations, we asked how CIS and SOCS3 can facilitate control of STAT5 long-term phosphorylation levels over the entire physiological relevant hormone concentrations. By using model simulations, we revealed that the two feedbacks are most effective at different Epo concentration ranges. Predicted by our mathematical model, the major role of CIS in modulating STAT5 phosphorylation levels is at low, basal Epo concentrations, whereas SOCS3 is essential to control the STAT5 phosphorylation levels at high Epo doses (Figure 6). As a potential molecular mechanism of this dose-dependent inhibitory effect, we could identify the quantity of pJAK2 relative to pEpoR that increases with higher Epo concentrations. Since SOCS3 can inhibit JAK2 directly via its KIR domain to attenuate downstream STAT5 activation, SOCS3 becomes more effective with the relative increase of JAK2 activation. Hence, CIS and SOCS3 act in a concerted manner to ensure tight regulation of STAT5 responses over the broad physiological range of Epo concentrations.
In summary, our mathematical approach provided new insights into the specific function of feedback regulation in STAT5-mediated life or death decisions of primary erythroid cells. We dissected the roles of the transcriptionally induced proteins CIS and SOCS3 that operate as dual feedback with divided function thereby facilitating the control of STAT5 activation levels over the entire range of physiological Epo concentrations. The detailed understanding of the molecular processes and control distribution of Epo-induced JAK/STAT signaling can be further applied to gain insights into alterations promoting malignant hematopoietic diseases.
Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.
doi:10.1038/msb.2011.50
PMCID: PMC3159971  PMID: 21772264
apoptosis; erythropoietin; mathematical modeling; negative feedback; SOCS
3.  JAK-STAT pathway and myogenic differentiation 
JAK-STAT  2013;2(2):e23282.
Myogenic differentiation plays an important role in muscle regeneration and is regulated by two transcription factor families, MRFs and MEF2, which induce differentiation of myoblasts through expression of the muscle-specific gene, myogenin. In addition, many intracellular signaling pathways are also involved in myogenic differentiation, including p38 MAPK, ERK/MAPK and PI3K/AKT. The JAK-STAT pathway is activated by various cytokines and positively or negatively regulates the differentiation of myoblasts. JAK1 plays a notable role in proliferation; whereas, JAK2 and JAK3 function mainly in differentiation. The STATs, molecules downstream of JAK, regulate myogenesis. With JAK1, STAT1 promotes proliferation, while STAT3 has a dual effect on proliferation and differentiation. The JAK-STAT negative regulator, SOCS, is also associated with myogenesis; although, its role is controversial. In this review, we will discuss the role of the JAK-STAT pathway on myogenic differentiation.
doi:10.4161/jkst.23282
PMCID: PMC3710318  PMID: 24058805
JAK1; JAK2; JAK3; STAT1; STAT2; STAT3; SOCS; myogenic differentiation
4.  Progestins Induce Transcriptional Activation of Signal Transducer and Activator of Transcription 3 (Stat3) via a Jak- and Src-Dependent Mechanism in Breast Cancer Cells 
Molecular and Cellular Biology  2005;25(12):4826-4840.
Interactions between steroid hormone receptors and signal transducer and activator of transcription (Stat)-mediated signaling pathways have already been described. In the present study, we explored the capacity of progestins to modulate Stat3 transcriptional activation in an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in BALB/c mice and in the human breast cancer cell line T47D. We found that C4HD epithelial cells, from the MPA-induced mammary tumor model, expressed Stat3 and that MPA treatment of C4HD cells up-regulated Stat3 protein expression. In addition, MPA induced rapid, nongenomic Stat3, Jak1, and Jak2 tyrosine phosphorylation in C4HD and T47D cells. MPA treatment of C4HD cells also resulted in rapid c-Src tyrosine phosphorylation. These effects were completely abolished by the progestin antagonist RU486. Abrogation of Jak1 and Jak2 activity by transient transfection of C4HD cells with dominant negative (DN) Jak1 or DN Jak2 vectors, or inhibition of Src activity by preincubation of cells with the Src family kinase inhibitor PP2, blocked the capacity of MPA to induce Stat3 phosphorylation. Treatment of C4HD cells with MPA induced Stat3 binding to DNA. In addition, MPA promoted strong Stat3 transcriptional activation in C4HD and T47D cells that was inhibited by RU486 and by blockage of Jak1, Jak2, and Src activities. To investigate the correlation between MPA-induced Stat3 activation and cell growth, C4HD cells were transiently transfected with a DN Stat3 expression vector, Stat3Y705-F, or with a constitutively activated Stat3 mutant, Stat3-C. While expression of Stat3Y705-F mutant had an inhibitory effect on MPA-induced growth of C4HD cells, transfection with the constitutively activated Stat3-C vector resulted in MPA-independent proliferation. Finally, we addressed the effect of targeting Stat3 in in vivo growth of C4HD breast tumors. Blockage of Stat3 activation by transfection of C4HD cells with the DN Stat3Y705-F expression vector significantly inhibited these cells' ability to form tumors in syngeneic mice. Our results have for the first time demonstrated that progestins are able to induce Stat3 transcriptional activation, which is in turn an obligatory requirement for progestin stimulation of both in vitro and in vivo breast cancer growth.
doi:10.1128/MCB.25.12.4826-4840.2005
PMCID: PMC1140598  PMID: 15923602
5.  Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B 
Genes & development  2008;22(6):711-721.
Transcription factors from the family of Signal Transducers and Activators of Transcription (STAT) are activated by numerous cytokines. Two members of this family, STAT5A and STAT5B (collectively called STAT5), have gained prominence in that they are activated by a wide variety of cytokines such as interleukins, erythropoietin, growth hormone, and prolactin. Furthermore, constitutive STAT5 activation is observed in the majority of leukemias and many solid tumors. Inactivation studies in mice as well as human mutations have provided insight into many of STAT5’s functions. Disruption of cytokine signaling through STAT5 results in a variety of cell-specific effects, ranging from a defective immune system and impaired erythropoiesis, the complete absence of mammary development during pregnancy, to aberrant liver function. On a molecular level, STAT5 has been linked to cell specification, proliferation, differentiation, and survival. Evidence is growing that the diverse outcomes of STAT5 signaling are not only determined by the expression of specific receptors but also by the interaction of STAT5 with cofactors and the cell-specific activity of members of the SOCS family, which negatively regulate STAT function. In this review, we focus on emerging concepts and challenges in the field of Janus kinase (JAK)-STAT5 signaling. First, we discuss unique functions of STAT5 in three distinct systems: mammary epithelial cells, hepatocytes, and regulatory T cells. Second, we present an example of how STAT5 can achieve cell specificity in hepatocytes through a physical and functional interaction with the glucocorticoid receptor. Third, we focus on the relevance of STAT5 in the development and progression of leukemia. Next, we discuss lessons derived from human mutations and disease. Finally, we address an emerging issue that the interpretation of experiments from STAT5-deficient mice and cells might be compromised as these cells might reroute and reprogram cytokine signals to the “wrong” STATs and thus acquire inappropriate cues. We propose that mice with mutations in various components of the JAK-STAT signaling pathway are living laboratories, which will provide insight into the versatility of signaling hardware and the adaptability of the software.
doi:10.1101/gad.1643908
PMCID: PMC2394721  PMID: 18347089
Mammary epithelium; hepatocytes; immunoregulation; body; growthcytokine
6.  Marburg Virus Evades Interferon Responses by a Mechanism Distinct from Ebola Virus 
PLoS Pathogens  2010;6(1):e1000721.
Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNα/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNα/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling.
Author Summary
The closely related members of the filovirus family, Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic disease in humans with high fatality rates. Infected individuals exhibit dysregulated immune responses which appear to result from several factors, including virus-mediated impairment of innate immune responses. Previous studies demonstrated that both MARV and EBOV block the type I interferon-induced Jak-STAT signaling pathway. For EBOV, the viral protein VP24 mediates the inhibitory effects by interfering with the nuclear translocation of activated STAT proteins. Here, we show that MARV uses a distinct mechanism to block IFN signaling pathways. Our data revealed that MARV blocks the phosphorylation of Janus kinases and their target STAT proteins in response to type I and type II interferon and interleukin 6. Surprisingly, the observed inhibition is not achieved by the MARV VP24 protein, but by the matrix protein VP40 which also mediates viral budding. Over-expression studies indicate that MARV VP40 globally antagonizes Jak1-dependent signaling. Further, we show that a MARV VP40 mutant defective for budding retains interferon antagonist function. Our results highlight a basic difference between EBOV and MARV, define a new function for MARV VP40 and reveal new targets for the development of anti-MARV therapies.
doi:10.1371/journal.ppat.1000721
PMCID: PMC2799553  PMID: 20084112
7.  Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl 
Bcr/Abl is a chimeric oncogene that can cause both acute and chronic human leukemias. Bcr/Abl-encoded proteins exhibit elevated kinase activity compared to c-Abl, but the mechanisms of transformation are largely unknown. Some of the biological effects of Bcr/Abl overlap with those of hematopoietic cytokines, particularly interleukin 3 (IL-3). Such effects include mitogenesis, enhanced survival, and enhanced basophilic differentiation. Therefore, it has been suggested that p210Bcr/Abl and the IL-3 receptor may activate some common signal transduction pathways. An important pathway for IL-3 signaling involves activation of the Janus family kinases (JAKs) and subsequent tyrosyl phosphorylation of STAT proteins (signal transducers and activators of transcription). This pathway directly links growth factor receptors to gene transcription. We analyzed JAK activation, STAT protein phosphorylation, and the formation of specific DNA-binding complexes containing STAT proteins, in a series of leukemia cell lines transformed by Bcr/Abl or other oncogenes. We also examined these events in cell lines transformed by a temperature sensitive (ts) mutant of Bcr/Abl, where the kinase activity of Abl could be regulated. STAT1 and STAT5 were found to be constitutively phosphorylated in 32D, Ba/F3, and TF-1 cells transformed by Bcr/Abl, but not in the untransformed parental cell lines in the absence of IL-3. Phosphorylation of STAT1 and STAT5 was also observed in the human leukemia cell lines K562 and BV173, which express the Bcr/Abl oncogene, but not in several Bcr/Abl- negative leukemia cell lines. Phosphorylation of STAT1 and STAT5 was directly due to the tyrosine kinase activity of Bcr/Abl since it could be activated or deactivated by temperature shifting of cells expressing the Bcr/Abl ts mutant. DNA-STAT complexes were detected in all Bcr/Abl- transformed cell lines and they were supershifted by antibodies against STAT1 and STAT5. DNA-STAT complexes in 32Dp210Bcr/Abl cells were similar, but not identical, to those formed after IL-3 stimulation. It is interesting to note that JAK kinases (JAK1, JAK2, JAK3, and Tyk2) were not consistently activated in Bcr/Abl-positive cells. These data suggest that STATs can be activated directly by Bcr/Abl, possibly bypassing JAK family kinase activation. Overall, our results suggest a novel mechanism that could contribute to some of the major biological effects of Bcr/Abl transformation.
PMCID: PMC2192351  PMID: 8642285
8.  6-Bromoindirubin-3'-oxime inhibits JAK/STAT3 signaling and induces apoptosis of human melanoma cells 
Cancer research  2011;71(11):3972-3979.
Signal Transducer and Activator of Transcription 3 (STAT3) is persistently activated and contributes to malignant progression in various cancers. Janus kinases (JAKs) phosphorylate STAT3 in response to stimulation with cytokines or growth factors. The STAT3 signaling pathway has been validated as a promising target for development of anti-cancer therapeutics. Small-molecule inhibitors of JAK/STAT3 signaling represent potential molecular-targeted cancer therapeutic agents. In this study, we investigated the role of JAK/STAT3 signaling in 6-bromoindirubin-3'-oxime (6BIO) mediated growth inhibition of human melanoma cells and assessed 6BIO as an anticancer drug candidate. We found that 6BIO is a pan-JAK inhibitor that induced apoptosis of human melanoma cells. 6BIO directly inhibited JAK family kinase activity both in vitro and in cancer cells. Apoptosis of human melanoma cells induced by 6BIO was associated with reduced phosphorylation of JAKs and STAT3 in both a dose- and time-dependent manners. Consistent with inhibition of STAT3 signaling, the anti-apoptotic protein Mcl-1 was down-regulated. In contrast to the decreased levels of phosphorylation of JAKs and STAT3, phosphorylation levels of the AKT and MAPK signaling proteins were not inhibited in cells treated with 6BIO. Importantly, 6BIO suppressed tumor growth in vivo with low toxicity in a mouse xenograft model of melanoma. Taken together, these results demonstrate that 6BIO is a novel pan-JAK inhibitor that can selectively inhibit STAT3 signaling and induced tumor cell apoptosis. Our findings support further development of 6BIO as a potential anti-cancer therapeutic agent that targets JAK/STAT3 signaling in tumor cells.
doi:10.1158/0008-5472.CAN-10-3852
PMCID: PMC3107399  PMID: 21610112
bromoindirubin; JAK inhibitor; STAT3 signaling; apoptosis; melanoma
9.  Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation 
Oncotarget  2014;5(8):2131-2148.
The Janus kinase / signal transducer and activator of transcription (Jak/STAT) pathway can be activated by many different cytokines, among them all members of the Interleukin (IL-)6 family. Dysregulation of this pathway, resulting in its constitutive activation, is associated with chronic inflammation and cancer development. In the present study, we show that activity of protein kinase II (CK2), a ubiquitously expressed serine/threonine kinase, is needed for induced activation of STAT1 and STAT3 by IL-6 classic and trans-signaling, IL-11, IL-27, oncostatin M (OSM), leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1). Inhibition of CK2 efficiently prevented STAT phosphorylation and inhibited cytokine-dependent cell proliferation in a Jak1-dependent manner. Conversely, forced activation of CK2 alone was not sufficient to induce activation of the Jak/STAT signaling pathway. Inhibition of CK2 in turn inhibited Jak1-dependent STAT activation by oncogenic gp130 mutations. Furthermore, CK2 inhibition diminished the Jak1- and Src kinase-dependent phosphorylation of a constitutively active STAT3 mutant recently described in human large granular lymphocytic leukemia. In conclusion, we characterize CK2 as an essential component of the Jak/STAT pathway. Pharmacologic inhibition of this kinase is therefore a promising strategy to treat human inflammatory diseases and malignancies associated with constitutive activation of the Jak/STAT pathway.
PMCID: PMC4039151  PMID: 24742922
STAT3; cytokines; tumor; oncogene; signal transduction
10.  Impaired Alveologenesis and Maintenance of Secretory Mammary Epithelial Cells in Jak2 Conditional Knockout Mice 
Molecular and Cellular Biology  2004;24(12):5510-5520.
Jak2 is a hormone-receptor-coupled kinase that mediates the tyrosine phosphorylation and activation of signal transducers and activators of transcription (Stat). The biological relevance of Jak2-Stat signaling in hormone-responsive adult tissues is difficult to investigate since Jak2 deficiency leads to embryonic lethality. We generated Jak2 conditional knockout mice to study essential functions of Jak2 during mammary gland development. The mouse mammary tumor virus-Cre-mediated excision of the first coding exon resulted in a Jak2 null mutation that uncouples signaling from the prolactin receptor (PRL-R) to its downstream mediator Stat5 in the presence of normal and supraphysiological levels of PRL. Jak2-deficient females were unable to lactate as a result of impaired alveologenesis. Unlike Stat5a knockouts, multiple gestation cycles could not reverse the Jak2-deficient phenotype, suggesting that neither other components of the PRL-R signaling cascade nor other growth factors and their signal transducers were able to compensate for the loss of Jak2 function to activate Stat5 in vivo. A comparative analysis of Jak2-deficient mammary glands with transplants from Stat5a/b knockouts revealed that Jak2 deficiency also impairs the pregnancy-induced branching morphogenesis. Jak2 conditional mutants therefore resemble PRL-R knockouts more closely, which suggested that Jak2 deficiency might affect additional PRL-R downstream mediators other than Stat5a and Stat5b. To address whether Jak2 is required for the maintenance of PRL-responsive, differentiating alveolar cells, we utilized a transgenic strain that expresses Cre recombinase under regulatory elements of the whey acidic protein gene (Wap). The Wap-Cre-mediated excision of Jak2 resulted in a negative selection of differentiated alveolar cells, suggesting that Jak2 is required not only for the proliferation and differentiation of alveolar cells but also for their maintenance during lactation.
doi:10.1128/MCB.24.12.5510-5520.2004
PMCID: PMC419899  PMID: 15169911
11.  Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway. 
Molecular and Cellular Biology  1997;17(7):3833-3840.
Activation of early response genes by interferons (IFNs) and other cytokines requires tyrosine phosphorylation of a family of transcription factors termed signal transducers and activators of transcription (Stats). The Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) is required for cytokine-induced tyrosine phosphorylation and dimerization of the Stat proteins. In order for IFNs to stimulate maximal expression of Stat1alpha-regulated genes, phosphorylation of a serine residue in the carboxy terminus by mitogen-activated protein kinase (MAPK) is also required. In HeLa cells, both IFN-beta and oncostatin M (OSM) stimulated MAPK and Raf-1 enzyme activity, in addition to Stat1 and Stat3 tyrosine phosphorylation. OSM stimulation of Raf-1 correlated with GTP loading of Ras, whereas IFN-beta activation of Raf-1 was Ras independent. IFN-beta- and OSM-induced Raf-1 activity could be coimmunoprecipitated with either Jak1 or Tyk2. Furthermore, HeLa cells lacking Jak1 displayed no activation of STAT1alpha, STAT3, and Raf-1 by IFN-beta or OSM and also demonstrated no increase in the relative level of GTP-bound p21ras in response to OSM. The requirement for Jak1 for IFN-beta- and OSM-induced activation of Raf-1 was also seen in Jak1-deficient U4A fibrosarcoma cells. Interestingly, basal MAPK, but not Raf-1, activity was constitutively enhanced in Jak1-deficient HeLa cells. Transient expression of Jak1 in both Jak-deficient HeLa cells and U4A cells reconstituted the ability of IFN-beta and OSM to activate Raf-1 and decreased the basal activity of MAPK, while expression of a kinase-inactive form of the protein showed no effect. Moreover, U4A cells selected for stable expression of Jak1, or COS cells transiently expressing Jak1 or Tyk2 but not Jak3, exhibited enhanced Raf-1 activity. Therefore, it appears that Jak1 is required for Raf-1 activation by both IFN-beta and OSM. These results provide evidence for a link between the Jaks and the Raf/MAPK signaling pathways.
PMCID: PMC232235  PMID: 9199317
12.  Inhibition of Jak1-Dependent Signal Transduction in Airway Epithelial Cells Infected with Adenovirus 
Adenoviral evolution has generated mechanisms to resist host cell defense systems, but the biochemical basis for evasion of multiple antiviral pathways in the airway by adenoviruses is incompletely understood. We hypothesized that adenoviruses modulate airway epithelial responses to type I interferons by altering the levels and activation of specific Janus family kinase-signal transducer and activator of transcription (JAK-STAT) signaling components. In this study, specific effects of adenovirus type 5 (AdV) on selected JAK-STAT signal transduction pathways were identified in human tracheobronchial epithelial cells, with focus on type I interferon–dependent signaling and gene expression. We found that wild-type AdV infection inhibited IFN-α–induced expression of antiviral proteins in epithelial cells by blocking phosphorylation of the Stat1 and Stat2 transcription factors that are required for activation of type I interferon–dependent genes. These effects correlated with AdV-induced down-regulation of expression of the receptor-associated tyrosine kinase Jak1 through a decrease in Jak1 mRNA levels. Phosphorylation of Stat3 in response to IL-6 and oncostatin M was also lost in AdV-infected cells, indicating loss of epithelial cell responses to other cytokines that depend on Jak1. In contrast, IL-4– and IL-13–dependent phosphorylation of Stat6 was not affected during AdV infection, indicating that the virus modulates specific signaling pathways, as these Stat6-activating pathways can function independent of Jak1. Taken together, the results indicate that AdV down-regulates host epithelial cell Jak1 to assure inhibition of the antiviral effects of multiple mediators to subvert airway defense responses and establish a productive infection.
doi:10.1165/rcmb.2007-0158OC
PMCID: PMC2219548  PMID: 17641294
JAK-STAT signaling; interferon; interleukin
13.  Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells 
Molecular oncology  2012;7(3):369-378.
Constitutively-activated JAK/Stat3 or Src/Stat3 signaling plays a crucial role in tumor cell survival, proliferation, angiogenesis and immune suppression. Activated JAK/Stat3 or Src/Stat3 has been validated as a promising molecular target for cancer therapy. However, prolonged inhibition of Src family kinases (SFKs) leads to reactivation of signal transducer and activator of transcript 3 (Stat3) and tumor cell survival through altered JAK/Stat3 interaction. This compensatory feedback suggests that dual inhibition of Janus kinases (JAKs) and SFKs might be a promising strategy for targeting downstream Stat3 signaling in the clinic. In this study, we identify that the natural product derivative E738 is a novel dual inhibitor of JAKs and SFKs. The IC50 values of E738 against recombinant JAKs and SFKs in vitro are in the ranges of 0.7 nM to 74.1 nM and 10.7 nM to 263.9 nM, respectively. We observed that phosphorylation of both Jak2 and Src was substantially inhibited in the submicromolar range by E738 in cultured human pancreatic tumor cells, followed by blockade of downstream Stat3 activation. E738 down-regulated expression of the Stat3 target proteins Mcl-1 and survivin, associated with induction of apoptosis. Computational models and molecular dynamics simulations of E738/Tyk2 or E738/Src in silico suggest that E738 inhibits both tyrosine kinase 2 (Tyk2) and Src as an ATP-competitive ligand. Moreover, the planar E738 molecule demonstrates a strong binding affinity in the compact ATP-binding site of Tyk2. In sum, E738 is the first dual inhibitor of JAKs and SFKs, followed by inhibition of Stat3 signaling. Thus, according to in vitro experiments, E738 is a promising new therapeutic agent for human pancreatic cancer treatment by blocking both oncogenic pathways simultaneously.
doi:10.1016/j.molonc.2012.10.013
PMCID: PMC3968804  PMID: 23206899
Indirubin derivative (IRD); JAK; SFK; Stat3; Apoptosis
14.  The JAK-STAT Transcriptional Regulator, STAT-5, Activates the ATM DNA Damage Pathway to Induce HPV 31 Genome Amplification upon Epithelial Differentiation 
PLoS Pathogens  2013;9(4):e1003295.
High-risk human papillomavirus (HPV) must evade innate immune surveillance to establish persistent infections and to amplify viral genomes upon differentiation. Members of the JAK-STAT family are important regulators of the innate immune response and HPV proteins downregulate expression of STAT-1 to allow for stable maintenance of viral episomes. STAT-5 is another member of this pathway that modulates the inflammatory response and plays an important role in controlling cell cycle progression in response to cytokines and growth factors. Our studies show that HPV E7 activates STAT-5 phosphorylation without altering total protein levels. Inhibition of STAT-5 phosphorylation by the drug pimozide abolishes viral genome amplification and late gene expression in differentiating keratinocytes. In contrast, treatment of undifferentiated cells that stably maintain episomes has no effect on viral replication. Knockdown studies show that the STAT-5β isoform is mainly responsible for this activity and that this is mediated through the ATM DNA damage response. A downstream target of STAT-5, the peroxisome proliferator-activated receptor γ (PPARγ) contributes to the effects on members of the ATM pathway. Overall, these findings identify an important new regulatory mechanism by which the innate immune regulator, STAT-5, promotes HPV viral replication through activation of the ATM DNA damage response.
Author Summary
Over 120 types of human papillomavirus (HPV) have been identified, and approximately one-third of these infect epithelial cells of the genital mucosa. A subset of HPV types are the causative agents of cervical and other anogenital cancers. The infectious life cycle of HPV is dependent on differentiation of the host epithelial cell, with viral genome amplification and virion production restricted to differentiated suprabasal cells. While normal keratinocytes exit the cell cycle upon differentiation, HPV-positive suprabasal cells are able to re-enter S-phase to mediate productive replication. HPV induces an ATM-dependent DNA damage response in differentiating cells that is essential for viral genome amplification. Our studies describe an important mechanism by which human papillomaviruses activate a member of the JAK/STAT innate immune signaling pathway to induce the ATM DNA damage pathway. This is necessary for differentiation-dependent productive viral replication. HPVs must suppress the transcription of one member of the JAK/STAT pathway, STAT-1, while at the same time activating STAT-5 to regulate genome amplification in suprabasal cells. The E7 protein activates STAT-5 leading to induction of ATM phosphorylation through the PPARγ pathway. Our study identifies important links between innate immune signaling, the ATM DNA damage pathway and productive HPV replication that may lead to the characterization of new targets for the development of therapeutics to treat HPV-induced infections.
doi:10.1371/journal.ppat.1003295
PMCID: PMC3616964  PMID: 23593005
15.  Cis3/Socs3/Ssi3 Plays a Negative Regulatory Role in Stat3 Activation and Intestinal Inflammation 
Immune and inflammatory systems are controlled by multiple cytokines, including interleukins (ILs) and interferons. These cytokines exert their biological functions through Janus tyrosine kinases and signal transducer and activator of transcription (STAT) transcription factors. We recently identified two intrinsic Janus kinase (JAK) inhibitors, JAK binding protein (JAB; also referred to as suppressor of cytokine signaling [SOCS1]/STAT-induced STAT inhibitor [SSI1]) and cytokine-inducible SH2 protein (CIS)3 (or SOCS3/SSI3), which play an essential role in the negative regulation of cytokine signaling. We have investigated the role of STATs and these JAK inhibitors in intestinal inflammation. Among STAT family members, STAT3 was most strongly tyrosine phosphorylated in human ulcerative colitis and Crohn's disease patients as well as in dextran sulfate sodium (DSS)-induced colitis in mice. Development of colitis as well as STAT3 activation was significantly reduced in IL-6–deficient mice treated with DSS, suggesting that STAT3 plays an important role in the perpetuation of colitis. CIS3, but not JAB, was highly expressed in the colon of DSS-treated mice as well as several T cell–dependent colitis models. To define the physiological role of CIS3 induction in colitis, we developed a JAB mutant (F59D-JAB) that overcame the inhibitory effect of both JAB and CIS3 and created transgenic mice. DSS induced stronger STAT3 activation and more severe colitis in F59D-JAB transgenic mice than in their wild-type littermates. These data suggest that hyperactivation of STAT3 results in severe colitis and that CIS3 plays a negative regulatory role in intestinal inflammation by downregulating STAT3 activity.
PMCID: PMC2195913  PMID: 11181699
Janus kinase; CIS/SOCS; interleukin 6; ulcerative colitis; negative regulation
16.  The Janus kinases (Jaks) 
Genome Biology  2004;5(12):253.
The Janus kinase (Jak) family, including Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2), bind cytokine receptors through amino-terminal FERM domains and link them to other molecules, especially members of the signal transducer and activator of transcription (Stat) family.
The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs.
doi:10.1186/gb-2004-5-12-253
PMCID: PMC545791  PMID: 15575979
17.  Mast cell homeostasis and the JAK–STAT pathway 
Genes and immunity  2010;11(8):599-608.
The Janus kinase/signal transducer and activator of transcription (JAK–STAT) pathway mediates important responses in immune cells. Activation of any of the four JAK family members leads to phosphorylation of one or more of seven STAT family members. Phosphorylation of STAT family members leads to their dimerization and translocation into the nucleus, in which they bind specific DNA sequences to activate gene transcription. Regulation of JAKs and STATs therefore has a significant effect on signal transduction and subsequent cellular responses. Mast cells are important mediators of allergic disease and asthma. These cells have the ability to cause profound inflammation and vasodilation upon the release of preformed mediators, as well as subsequent synthesis of new inflammatory mediators. The regulation of mast cells is therefore of intense interest for the treatment of allergic disease. An important regulator of mast cells, STAT5, is activated downstream of the receptors for immunoglobulin E, interleukin-3 and stem cell factor. STAT5 contributes to mast cell homeostasis, by mediating proliferation, survival, and mediator release. Regulators of the JAK–STAT pathway, such as the suppressors of cytokine signaling (SOCS) and protein inhibitor of activated STAT (PIAS) proteins, are required to fine tune the immune response and maintain homeostasis. A better understanding of the role and regulation of JAKs and STATs in mast cells is vital for the development of new therapeutics.
doi:10.1038/gene.2010.35
PMCID: PMC3099592  PMID: 20535135
mast cell; JAK; STAT; allergy; IgE
18.  Phosphorylation of Human Jak3 at Tyrosines 904 and 939 Positively Regulates Its Activity▿  
Molecular and Cellular Biology  2008;28(7):2271-2282.
Janus tyrosine kinase 3 (Jak3) is essential for signaling by interleukin-2 (IL-2) family cytokines and proper immune function. Dysfunctional regulation of Jak3 may result in certain disease states. However, the molecular mechanisms governing Jak3 activation are not fully understood. In this study, we used a functional-proteomics approach to identify two novel tyrosine phosphorylation sites within Jak3, Y904 and Y939, which are conserved among Jak family proteins. By using phosphospecific antibodies, both residues were observed to be rapidly induced by stimulation of cells with IL-2 or other γc cytokines. Mechanistic studies indicated that Y904 and Y939 regulate Jak3 activities. A phenylalanine substitution at either site greatly reduced Jak3 kinase activity in vitro and its ability to phosphorylate signal transducer and activator of transcription 5 (Stat5) in vivo, suggesting that phosphorylation of these previously unrecognized residues positively regulates Jak3 activity. Y904 and Y939 were required for optimal ATP usage by Jak3, while phosphorylation of Y939 preferentially promoted Stat5 activity in intact cells. Together, these findings demonstrate positive functional roles for two novel Jak3 phosphoregulatory sites which may be similarly important for other Jak family members. Identification of these sites also provides new therapeutic opportunities to modulate Jak3 function.
doi:10.1128/MCB.01789-07
PMCID: PMC2268424  PMID: 18250158
19.  Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells 
Purinergic Signalling  2011;8(2):207-221.
Several purine receptors have been localised on skeletal muscle membranes. Previous data support the hypothesis that extracellular guanosine 5′-triphosphate (GTP) is an important regulatory factor in the development and function of muscle tissue. We have previously described specific extracellular binding sites for GTP on the plasma membrane of mouse skeletal muscle (C2C12) cells. Extracellular GTP induces an increase in intracellular Ca2+ concentrations that results in membrane hyperpolarisation through Ca2+-activated K+ channels, as has been demonstrated by patch-clamp experiments. This GTP-evoked increase in intracellular Ca2+ is due to release of Ca2+ from intracellular inositol-1,4,5-trisphosphate-sensitive stores. This enhances the expression of the myosin heavy chain in these C2C12 myoblasts and commits them to fuse into multinucleated myotubes, probably via a phosphoinositide-3-kinase-dependent signal-transduction mechanism. To define the signalling of extracellular GTP as an enhancer or modulator of myogenesis, we investigated whether the gene-expression profile of differentiated C2C12 cells (4 and 24 h in culture) is affected by extracellular GTP. To investigate the nuclear activity and target genes modulated by GTP, transcriptional profile analysis and real-time PCR were used. We demonstrate that in the early stages of differentiation, GTP up-regulates genes involved in different pathways associated with myogenic processes, including cytoskeleton structure, the respiratory chain, myogenesis, chromatin reorganisation, cell adhesion, and the Jak/Stat pathway, and down-regulates the mitogen-activated protein kinase pathway. GTP also increases the expression of three genes involved in myogenesis, Pp3ca, Gsk3b, and Pax7. Our data suggests that in the myogenic C2C12 cell line, extracellular GTP acts as a differentiative factor in the induction and sustaining of myogenesis.
doi:10.1007/s11302-011-9266-3
PMCID: PMC3350577  PMID: 22127439
Transcriptome; Myogenesis; GTP
20.  Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells 
Virology Journal  2005;2:89.
Alcohol abuse reduces response rates to IFN therapy in patients with chronic hepatitis C. To model the molecular mechanisms behind this phenotype, we characterized the effects of ethanol on Jak-Stat and MAPK pathways in Huh7 human hepatoma cells, in HCV replicon cell lines, and in primary human hepatocytes. High physiological concentrations of acute ethanol activated the Jak-Stat and p38 MAPK pathways and inhibited HCV replication in several independent replicon cell lines. Moreover, acute ethanol induced Stat1 serine phosphorylation, which was partially mediated by the p38 MAPK pathway. In contrast, when combined with exogenously applied IFN-α, ethanol inhibited the antiviral actions of IFN against HCV replication, involving inhibition of IFN-induced Stat1 tyrosine phosphorylation. These effects of alcohol occurred independently of i) alcohol metabolism via ADH and CYP2E1, and ii) cytotoxic or cytostatic effects of ethanol. In this model system, ethanol directly perturbs the Jak-Stat pathway, and HCV replication.
Infection with Hepatitis C virus is a significant cause of morbidity and mortality throughout the world. With a propensity to progress to chronic infection, approximately 70% of patients with chronic viremia develop histological evidence of chronic liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The situation is even more dire for patients who abuse ethanol, where the risk of developing end stage liver disease is significantly higher as compared to HCV patients who do not drink [1,2].
Recombinant interferon alpha (IFN-α) therapy produces sustained responses (ie clearance of viremia) in 8–12% of patients with chronic hepatitis C [3]. Significant improvements in response rates can be achieved with IFN plus ribavirin combination [4-6] and pegylated IFN plus ribavirin [7,8] therapies. However, over 50% of chronically infected patients still do not clear viremia. Moreover, HCV-infected patients who abuse alcohol have extremely low response rates to IFN therapy [9], but the mechanisms involved have not been clarified.
MAPKs play essential roles in regulation of differentiation, cell growth, and responses to cytokines, chemokines and stress. The core element in MAPK signaling consists of a module of 3 kinases, named MKKK, MKK, and MAPK, which sequentially phosphorylate each other [10]. Currently, four MAPK modules have been characterized in mammalian cells: Extracellular Regulated Kinases (ERK1 and 2), Stress activated/c-Jun N terminal kinase (SAPK/JNK), p38 MAP kinases, and ERK5 [11]. Interestingly, ethanol modulates MAPKs [12]. However, information on how ethanol affects MAPKs in the context of innate antiviral pathways such as the Jak-Stat pathway in human cells is extremely limited.
When IFN-α binds its receptor, two receptor associated tyrosine kinases, Tyk2 and Jak1 become activated by phosphorylation, and phosphorylate Stat1 and Stat2 on conserved tyrosine residues [13]. Stat1 and Stat2 combine with the IRF-9 protein to form the transcription factor interferon stimulated gene factor 3 (ISGF-3), which binds to the interferon stimulated response element (ISRE), and induces transcription of IFN-α-induced genes (ISG). The ISGs mediate the antiviral effects of IFN. The transcriptional activities of Stats 1, 3, 4, 5a, and 5b are also regulated by serine phosphorylation [14]. Phosphorylation of Stat1 on a conserved serine amino acid at position 727 (S727), results in maximal transcriptional activity of the ISGF-3 transcription factor complex [15]. Although cross-talk between p38 MAPK and the Jak-Stat pathway is essential for IFN-induced ISRE transcription, p38 does not participate in IFN induction of Stat1 serine phosphorylation [14,16-19]. However, cellular stress responses induced by stimuli such as ultraviolet light do induce p38 MAPK mediated Stat1 S727 phosphorylation [18].
In the current report, we postulated that alcohol and HCV proteins modulate MAPK and Jak-Stat pathways in human liver cells. To begin to address these issues, we characterized the interaction of acute ethanol on Jak-Stat and MAPK pathways in Huh7 cells, HCV replicon cells lines, and primary human hepatocytes.
doi:10.1186/1743-422X-2-89
PMCID: PMC1318489  PMID: 16324217
HCV; IFN; virus-host interactions; signal transduction; alcohol
21.  Human cytokines activate JAK–STAT signaling pathway in porcine ocular tissue 
Xenotransplantation  2013;20(6):469-480.
Background
The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways.
Methods
Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3–8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells.
Results
JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-α had an inhibitory effect on porcine ocular cells in proliferation assays.
Conclusion
Our study demonstrated that some types of human cytokines and interferon activate intracellular JAK-STAT signaling pathways in porcine ocular cells. We hypothesize that direct stimulation of the JAK-STAT pathway in porcine cells in response to human cytokines will lead to complications or failure, if pig-to-human ocular tissue xenotransplantation were to be carried out. For successful xenotransplantation among other obstacles there must be new approaches developed to regulate signaling pathways.
doi:10.1111/xen.12070
PMCID: PMC4235432  PMID: 24289470
cytokine signaling; interferon; pig retina; STAT proteins; xenotransplantation
22.  Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. 
Molecular and Cellular Biology  1994;14(7):4342-4349.
Interferon regulation of gene expression is dependent on the tyrosine phosphorylation and activation of the DNA-binding activity of two related proteins of 91 kDa (STAT1) and/or 113 kDa (STAT2). Recent studies have suggested that these proteins are substrates of Janus kinases and that proteins related in STAT1 are involved in a number of signalling pathways, including those activated in myeloid cells by erythropoietin and interleukin-3 (IL-3). To clone STAT-related proteins from myeloid cells, degenerate oligonucleotides were used in PCRs to identify novel family members expressed in myeloid cells. This approach allowed the identification and cloning of the Stat4 gene, which is 52% identical to STAT1. Unlike STAT1, Stat4 expression is restricted but includes myeloid cells and spermatogonia. In the erythroid lineage, Stat4 expression is differentially regulated during differentiation. Functionally, Stat4 has the properties of other STAT family genes. In particular, cotransfection of expression constructs for Stat4 and Jak1 and Jak2 results in the tyrosine phosphorylation of Stat4 and the acquisition of the ability to bind to the gamma interferon (IFN-gamma)-activated sequence of the interferon regulatory factor 1 (IRF-1) gene. Stat4 is located on mouse chromosome 1 and is tightly linked to the Stat1 gene, suggesting that the genes arose by gene duplication. Unlike Stat1, neither IFN-alpha nor IFN-gamma activates Stat4. Nor is Stat4 activated in myeloid cells by a number of cytokines, including erythropoietin, IL-3, granulocyte colony-stimulating factor, stem cell factor, colon-stimulating factor 1, hepatocyte growth factor, IL-2, IL-4, and IL-6.
Images
PMCID: PMC358805  PMID: 8007943
23.  Comparison of the transactivation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells. 
Molecular and Cellular Biology  1997;17(7):3663-3678.
Stat (signal transducers and activators of transcription) and Jak (Janus kinases) proteins are central components in the signal transduction events in hematopoietic and epithelial cells. They are rapidly activated by various cytokines, hormones, and growth factors. Upon ligand binding and cytokine receptor dimerization, Stat proteins are phosphorylated on tyrosine residues by Jak kinases. Activated Stat proteins form homo- or heterodimers, translocate to the nucleus, and induce transcription from responsive genes. Stat5 and Stat6 are transcription factors active in mammary epithelial cells and immune cells. Prolactin activates Stat5, and interleukin-4 (IL-4) activates Stat6. Both cytokines are able to stimulate cell proliferation, differentiation, and survival. We investigated the transactivation potential of Stat6 and found that it is not restricted to lymphocytes. IL-4-dependent activation of Stat6 was also observed in HC11 mammary epithelial cells. In these cells, Stat6 activation led to the induction of the beta-casein gene promoter. The induction of this promoter was confirmed in COS7 cells. The glucocorticoid receptor was able to further enhance IL-4-induced gene transcription through the action of Stat6. Deletion analysis of the carboxyl-terminal region of Stat6 and recombination of this region with a heterologous DNA binding domain allowed the delimitation and characterization of the transactivation domain of Stat6. The potencies of the transactivation domains of Stat5, Stat6, and viral protein VP16 were compared. Stat6 had a transactivation domain which was about 10-fold stronger than that of Stat5. In pre-B cells (Ba/F3), the transactivation domain of Stat6 was IL-4 regulated, independently from its DNA binding function.
PMCID: PMC232218  PMID: 9199300
24.  Mechanisms of Myogenic Tone of Coronary Arteriole: Role of Down Stream Signaling of the EGFR Tyrosine Kinase 
Microvascular research  2010;81(1):135-142.
Background and purpose
We previously showed that epidermal growth factor receptor tyrosine kinase (EGFRtk) is essential in the development of myogenic tone. GRB2-SOS, protein kinase B (Akt), Janus kinase (JAK), and Signal Transducer and Activator of Transcription 3 (STAT3) are activated by stretch. Thus, we hypothesized that GRB2-SOS, Akt, JAK and STAT3 are downstream signaling of the EGFR and play role in myogenic tone.
Experimental approach
Myogenic tone was determined in freshly isolated coronary arterioles from C57/BL6 mice with and without inhibitors. Pressurized coronary arterioles under 25 and 75 mm Hg were subjected to Western blot analysis to determine signaling phosphorylation. Smooth muscle cells (SMC) stimulated with EGF were used to determine the interaction between signaling.
Key results
Coronary arteriole myogenic tone was significantly reduced under EGFRtk, GRB2-SOS, JAK, and STAT3 inhibition (53.6±2 vs. 83.4±1.3; 82.8±1; 83.6±1; 86.1±1 % of passive diameter at 75 mm Hg, p<0.05, respectively). However, Akt inhibition had no effect on coronary arteriole myogenic tone. Western blot analysis showed increased EGFRtk, STAT3, JAK, and Akt phosphorylation at 75mm Hg, which was significantly inhibited under EGFRtk inhibition. Interestingly, immunoprecipitation/Western blot analysis showed two intracellular complexes (ERK1/2-JAK-STAT3) involved in myogenic tone and (Akt-JAK-STAT3) not involved in myogenic tone.
Conclusion and implications
These findings demonstrate that ERK1/2-JAK-STAT3 complex and GRB2-SOS, down stream signaling of the EGFRtk, are critical in the development of myogenic tone, thereby highlighting these signaling events as potential therapeutic targets in cardiovascular disease states associated with altered myogenic tone.
doi:10.1016/j.mvr.2010.11.001
PMCID: PMC3022328  PMID: 21067705
Coronary arterioles; myogenic tone; signaling; EGFR tyrosine kinase; GRB2-SOS; JAK; STAT3; Akt
25.  Direct Interaction of Jak1 and v-Abl Is Required for v-Abl-Induced Activation of STATs and Proliferation 
Molecular and Cellular Biology  1998;18(11):6795-6804.
In Abelson murine leukemia virus (A-MuLV)-transformed cells, members of the Janus kinase (Jak) family of non-receptor tyrosine kinases and the signal transducers and activators of transcription (STAT) family of signaling proteins are constitutively activated. In these cells, the v-Abl oncoprotein and the Jak proteins physically associate. To define the molecular mechanism of constitutive Jak-STAT signaling in these cells, the functional significance of the v-Abl–Jak association was examined. Mapping the Jak1 interaction domain in v-Abl demonstrates that amino acids 858 to 1080 within the carboxyl-terminal region of v-Abl bind Jak1 through a direct interaction. A mutant of v-Abl lacking this region exhibits a significant defect in Jak1 binding in vivo, fails to activate Jak1 and STAT proteins, and does not support either the proliferation or the survival of BAF/3 cells in the absence of cytokine. Cells expressing this v-Abl mutant show extended latency and decreased frequency in generating tumors in nude mice. In addition, inducible expression of a kinase-inactive mutant of Jak1 protein inhibits the ability of v-Abl to activate STATs and to induce cytokine-independent proliferation, indicating that an active Jak1 is required for these v-Abl-induced signaling pathways in vivo. We propose that Jak1 is a mediator of v-Abl-induced STAT activation and v-Abl induced proliferation in BAF/3 cells, and may be important for efficient transformation of immature B cells by the v-abl oncogene.
PMCID: PMC109263  PMID: 9774693

Results 1-25 (1124642)