PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (710776)

Clipboard (0)
None

Related Articles

1.  Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions 
AoB Plants  2016;8:plw053.
Alpine treelines globally may move upslope due to climatic warming. Such movement would need, as the first steps, seed germination and seedling establishment above current treelines. These processes were studied experimentally in five common European treeline tree species. Surprisingly, each species responded very differently to moisture and temperature gradients, with positive and negative responses possible. These results match the heterogeneity observed in treeline dynamics and spatial patterns globally. They strongly emphasize the need for species-specific parameterisations in predictive models of treeline responses to climatic change.
On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics.
doi:10.1093/aobpla/plw053
PMCID: PMC4988811  PMID: 27402618
Alpine treelines; climate change; early seedling survival; germination; temperature–moisture interactions; time-to-event analysis
2.  Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone 
Annals of forest science  2009;66(5):503.
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
doi:10.1051/forest/2009038
PMCID: PMC3059571  PMID: 21423861
dendrometer; Pinus cembra; radial increment; treeline ecotone; xylem formation
3.  How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan 
Annals of Botany  2012;109(6):1165-1174.
Background and Aims
Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline.
Methods
One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350–2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only.
Key Results
The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage.
Conclusions
This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage due to strong wind and snow rather than by growth limitation due to low temperature. Therefore, the timberline would not move upward even under global warming if these growth and mortality characteristics do not change for a long time.
doi:10.1093/aob/mcs043
PMCID: PMC3336954  PMID: 22451598
Abies mariesii; Betula ermanii; climate change; disturbance; global warming; Pinus pumila; timberline
4.  Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline 
The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ13C and Δ18O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.
doi:10.3389/fpls.2016.00799
PMCID: PMC4894875  PMID: 27375653
stable isotopes; intrinsic water use efficiency; tree growth; climate change; treeline; Central Alps
5.  Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables 
Trees (Berlin, Germany : West)  2009;23(3):623-635.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.
At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.
The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.
Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
PMCID: PMC3078619  PMID: 21509148
Cambium; intra-annual growth; Pinus cembra; temperature; tracheid production
6.  Long-term changes in tree-ring – climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s 
Trees (Berlin, Germany : West)  2008;22(1):31-40.
Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate-growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (c. 2000 – 2200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥ 19 trees) throughout most of the time period analysed. MRF calculated for the period 1866-1999 and 1901-1999 for c. 200 and c. 100 yr old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid 1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a < 10 % increase in annual increments of c. 50 yr old trees at the timberline and at the tree line in 2003 compared to 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the 20th century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology.
doi:10.1007/s00468-007-0166-7
PMCID: PMC3083837  PMID: 21532976
Climate warming; moving response function; Pinus cembra; temperature sensitivity; tree ring
7.  Cambial activity and xylem cell development in Pinus cembra and Pinus sylvestris at their climatic limits in the Eastern Alps in 2007 
Phyton; annales rei botanicae  2011;51(2):299-313.
Summary
It has been frequently stressed that at distributional boundaries, like at the Alpine timberline and within dry inner Alpine environments, tree growth will be affected first by changing climate conditions. Climate in 2007 was characterized by the occurrence of exceptionally mild temperatures in spring (3.4 and 2.7 °C above long-term mean (LTM) at timberline and the valley sites, respectively) with an almost continuous drought period recorded in April and slightly warmer than average temperatures throughout summer (1.3 °C above LTM at both sites).
We compared temporal dynamics of cambial activity and xylem cell development in Pinus cembra at the Alpine timberline (1950 m a.s.l.) and Pinus sylvestris at a xeric inner Alpine site (750 m a.s.l.) by repeated cellular analyses of micro-cores (n = 5 trees/site). While onset of wood formation in P. sylvestris and P. cembra differed by about two weeks (12 and 27 April, respectively), maximum daily growth rates peaked on 6 May at the valley site and on 23 June at timberline. At both sites maximum tracheid production was reached prior to occurrence of more favourable climatic conditions during summer, i.e. an increase in precipitation and temperature. Xylem formation ended on 31 August and 28 October at the xeric site and at timberline, respectively.
This study demonstrates the plasticity of tree-ring formation along an altitudinal transect in response to water availability and temperature. Whether early achievement of maximum growth rates is an adaptation to cope with extreme environmental conditions prevailing at limits of tree growth needs to be analysed more closely by taking belowground carbon allocation into account.
PMCID: PMC3837289  PMID: 24273354
Alpine timberline; cambium; dry inner Alpine valley; intra-annual growth; Scots pine; Stone pine; wood anatomy; xylogenesis
8.  Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps 
Annals of forest science  2010;67(2):201.
Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.
We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.
In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.
Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.
doi:10.1051/forest/2009094
PMCID: PMC3047779  PMID: 21379394
net photosynthesis; temperature; cembran pine; timberline ecotone; global warming
9.  Spatial and seasonal variations in mobile carbohydrates in Pinus cembra in the timberline ecotone of the Central Austrian Alps 
European journal of forest research  2011;130(2):173-179.
To test whether the altitudinal limit of tree growth is determined by carbons shortage or by a limitation in growth we investigated non structural carbohydrates and their components starch and total soluble sugars in Pinus cembra trees along an elevational gradient in the timberline ecotone of the Central Austrian Alps. NSC contents in needles, branches, stems, and coarse roots were measured throughout an entire growing season. At the tissue level NSC contents were not significantly more abundant in treeline trees as compared to trees at lower elevations. Along our 425 m elevational transect from the closed forest to the treeline we failed to find a stable elevational trend in the total NSC pool of entire trees and observed within season increases in the tree’s NSC pool that can be attributed to an altitudinal increase in leaf mass as needles contained the largest NSC fraction of the whole tree NSC pool. Furthermore, whole tree NSC contents were positively correlated with net photosynthetic capacity. Although our observed NSC characteristics do not support the hypothesis that tree life at their upper elevational limit is determined by an insufficient carbon balance we found no consistent confirmation for the sink limitation hypothesis.
doi:10.1007/s10342-010-0419-7
PMCID: PMC3191523  PMID: 22003357
Non structural carbohydrates; seasonal variation; elevational gradient; timberline ecotone; treeline formation; treelife limitation
10.  Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment 
Trees (Berlin, Germany : West)  2013;27(1):61-69.
We applied dendroclimatological techniques to determine long-term stationarity of climate-growth relationships and recent growth trends of three widespread coniferous tree species of the central Austrian Alps, which grow intermixed at dry-mesic sites within a dry inner Alpine environment (750 m asl). Time series of annual increments were developed from > 120 mature trees of Picea abies, Larix decidua and Pinus sylvestris. Calculation of response functions for the period 1911 – 2009 revealed significant differences among species in response to climate variables. While precipitation in May – June favoured radial growth of Picea abies and Larix decidua, Pinus sylvestris growth mainly depended on April – May precipitation. P. abies growth was most sensitive to May – June temperature (inverse relationship). Moving response function coefficients indicated increasing drought sensitivity of all species in recent decades, which is related to a decline in soil moisture availability due to increasing stand density and tree size and higher evapotranspiration rates in a warmer climate. While recent trend in basal area increment (BAI) of L. decidua distinctly declined implying high vulnerability to drought stress, moderately shade-tolerant P. abies showed steadily increasing BAI and quite constant BAI was maintained in drought adapted P. sylvestris, although at lowest level of all species. We conclude that synergistic effects of stand dynamics and climate warming increased drought sensitivity, which changed competitive strength of co-occurring conifers due to differences in inherent adaptive capacity.
doi:10.1007/s00468-012-0768-6
PMCID: PMC3750198  PMID: 23976821
Basal area increment; Dendroclimatology; Inner Alpine valley; Radial growth; Moving response function; Tree-ring analysis
11.  Growth and Phenology of Three Dwarf Shrub Species in a Six-Year Soil Warming Experiment at the Alpine Treeline 
PLoS ONE  2014;9(6):e100577.
Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007–2012) on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus) in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012), especially new shoot biomass (+63% in 2012), as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007–2012). These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%), and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming.
doi:10.1371/journal.pone.0100577
PMCID: PMC4067323  PMID: 24956273
12.  Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients 
Annals of Botany  2013;112(3):623-631.
Background and Aims
The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous–evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations.
Methods
Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous–evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra).
Key Results
Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood.
Conclusions
Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.
doi:10.1093/aob/mct127
PMCID: PMC3718216  PMID: 23788748
Carbon supply; elevational gradient; Larix decidua; Nothofagus betuloides; Nothofagus pumilio; Patagonia; Pinus cembra; Pinus sylvestris; Swiss Alps; Alpine treeline
13.  Integrated metagenomics and network analysis of soil microbial community of the forest timberline 
Scientific Reports  2015;5:7994.
The forest timberline responds quickly and markedly to climate changes, rendering it a ready indicator. Climate warming has caused an upshift of the timberline worldwide. However, the impact on belowground ecosystem and biogeochemical cycles remain elusive. To understand soil microbial ecology of the timberline, we analyzed microbial communities via 16s rRNA Illumina sequencing, a microarray-based tool named GeoChip 4.0 and a random matrix theory-based association network approach. We selected 24 sampling sites at two vegetation belts forming the timberline of Shennongjia Mountain in Hubei Province of China, a region with extraordinarily rich biodiversity. We found that temperature, among all of measured environmental parameters, showed the most significant and extensive linkages with microbial biomass, microbial diversity and composition at both taxonomic and functional gene levels, and microbial association network. Therefore, temperature was the best predictor for microbial community variations in the timberline. Furthermore, abundances of nitrogen cycle and phosphorus cycle genes were concomitant with NH4+-N, NO3−-N and total phosphorus, offering tangible clues to the underlying mechanisms of soil biogeochemical cycles. As the first glimpse at both taxonomic and functional compositions of soil microbial community of the timberline, our findings have major implications for predicting consequences of future timberline upshift.
doi:10.1038/srep07994
PMCID: PMC4303876  PMID: 25613225
14.  Climate Warming and the Recent Treeline Shift in the European Alps: The Role of Geomorphological Factors in High-Altitude Sites 
Ambio  2010;40(3):264-273.
Global warming and the stronger regional temperature trends recently recorded over the European Alps have triggered several biological and physical dynamics in high-altitude environments. We defined the present treeline altitude in three valleys of a region in the western Italian Alps and reconstructed the past treeline position for the last three centuries in a nearly undisturbed site by means of a dendrochronological approach. We found that the treeline altitude in this region is mainly controlled by human impacts and geomorphological factors. The reconstruction of the altitudinal dynamics at the study site reveals that the treeline shifted upwards of 115 m over the period 1901–2000, reaching the altitude of 2505 m in 2000 and 2515 m in 2008. The recent treeline shift and the acceleration of tree colonization rates in the alpine belt can be mainly ascribed to the climatic input. However, we point out the increasing role of geomorphological factors in controlling the future treeline position and colonization patterns in high mountains.
doi:10.1007/s13280-010-0096-2
PMCID: PMC3357808  PMID: 21644455
Climate change; Treeline; Geomorphology; Tree rings; Larix decidua; European Alps
15.  Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers 
Tree physiology  2013;33(10):1076-1083.
Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra and Larix decidua growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation in the course of the year. After a delayed start in spring, NSC concentrations in Larix decidua were significantly higher in all sampled tissues from August until end of growing season. In both species NSC concentrations were five to seven times higher in phloem than in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long term carbon reserves in both tissues. In Larix decidua also free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while missing correlations between xylem and phloem free sugar pools in Pinus cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand.
doi:10.1093/treephys/tpt088
PMCID: PMC4816195  PMID: 24186941
carbohydrates; Central Alps; Larix decidua; NSC; phloem; Pinus cembra; storage; xylem
16.  Forest Structure, Stand Composition, and Climate-Growth Response in Montane Forests of Jiuzhaigou National Nature Reserve, China 
PLoS ONE  2013;8(8):e71559.
Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.
doi:10.1371/journal.pone.0071559
PMCID: PMC3739742  PMID: 23951188
17.  Climate change and the northern Russian treeline zone 
The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800–1300) or the Holocene Thermal Maximum (HTM; ca 10 000–3000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.
doi:10.1098/rstb.2007.2200
PMCID: PMC2606780  PMID: 18006415
Arctic; Eurasia; Holocene; boreal forest; treeline; climate change
18.  Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps 
Tree physiology  2015;35(3):279-288.
The study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra at treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3, and 1.0 °C at 5, 10, and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapor, so that water-use efficiency stayed unchanged as confirmed by needle δ13C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment.
doi:10.1093/treephys/tpv009
PMCID: PMC4820648  PMID: 25737326
Sap flow; soil temperature manipulation; treeline; climate change; leaf conductance; cembran pine
19.  Four Decades of Andean Timberline Migration and Implications for Biodiversity Loss with Climate Change 
PLoS ONE  2013;8(9):e74496.
Rapid 21st-century climate change may lead to large population decreases and extinction in tropical montane cloud forest species in the Andes. While prior research has focused on species migrations per se, ecotones may respond to different environmental factors than species. Even if species can migrate in response to climate change, if ecotones do not they can function as hard barriers to species migrations, making ecotone migrations central to understanding species persistence under scenarios of climate change. We examined a 42-year span of aerial photographs and high resolution satellite imagery to calculate migration rates of timberline–the grassland-forest ecotone–inside and outside of protected areas in the high Peruvian Andes. We found that timberline in protected areas was more likely to migrate upward in elevation than in areas with frequent cattle grazing and fire. However, rates in both protected (0.24 m yr−1) and unprotected (0.05 m yr−1) areas are only 0.5–2.3% of the rates needed to stay in equilibrium with projected climate by 2100. These ecotone migration rates are 12.5 to 110 times slower than the observed species migration rates within the same forest, suggesting a barrier to migration for mid- and high-elevation species. We anticipate that the ecotone will be a hard barrier to migration under future climate change, leading to drastic population and biodiversity losses in the region unless intensive management steps are taken.
doi:10.1371/journal.pone.0074496
PMCID: PMC3770544  PMID: 24040260
20.  Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions 
Background
Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios.
Results
Results show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis.
Conclusions
Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.
doi:10.1186/1750-0680-9-1
PMCID: PMC3933049  PMID: 24495313
Carbon sequestration; Climate change; Forest vegetation simulator; General circulation model; Growth and yield; LiDAR
21.  Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions 
Background
Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios.
Results
Results show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis.
Conclusions
Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.
doi:10.1186/1750-0680-9-1
PMCID: PMC3933049  PMID: 24495313
Carbon sequestration; Climate change; Forest vegetation simulator; General circulation model; Growth and yield; LiDAR
22.  Late Pleistocene climate change and landscape dynamics in the Eastern Alps: the inner-alpine Unterangerberg record (Austria) 
Quaternary Science Reviews  2013;68:17-42.
Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria, offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic deposits originating from two paleo-landslide events are present. Multi-proxy analyses including sedimentological and palynological investigations as well as radiocarbon and luminescence data record the onset of the last glacial period (Würmian) at Unterangerberg at ∼120–110 ka. This first time period, correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions, with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events occurred during this time interval. No record of the first Early Würmian interstadial (MIS 5c) is preserved. During the second Early Würmian interstadial (MIS 5a), the local vegetation was characterised by a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the vegetation is recorded by sediments dated to ∼70–60 ka (i.e. MIS 4), with very low pollen concentrations and the potential presence of permafrost. Climatic conditions improved again between ∼55 and 45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegetation. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from today's alpine timberline. The Unterangerberg record ended at ∼45 ka and/or was truncated by ice during the Last Glacial Maximum.
Highlights
► We investigated drillcores from a site inside the Eastern Alps of Austria. ► The Late Pleistocene sedimentation history of a palaeolake was reconstructed. ► Pollen analysis gives insights into environmental dynamics during stadials and interstadials. ► Impacts of last glacial climate changes on Alpine vegetation can be traced.
doi:10.1016/j.quascirev.2013.02.008
PMCID: PMC3688313  PMID: 23805019
Late Pleistocene; Lake sediments; European Alps; Luminescence dating; Pollen analysis; Stratigraphy
23.  Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site 
European journal of forest research  2014;133(3):467-479.
Dendroclimatological studies in a dry inner Alpine environment (750 m a.s.l.) revealed different growth response of co-occurring coniferous species to climate, which is assumed to be caused by a temporal shift in wood formation among species. The main focus of this study therefore was to monitor intra-annual dynamics of radial increment growth of mature deciduous and evergreen coniferous species (Pinus sylvestris, Larix decidua and Picea abies) during two consecutive years with contrasting climatic conditions. Radial stem growth was continuously followed by band dendrometers and modelled using Gompertz functions to determine time of maximum growth. Histological analyses of tree ring formation allowed determination of temporal dynamics of cambial activity and xylem cell development. Daily fluctuations in stem radius and radial stem increments were extracted from dendrometer traces, and correlations with environmental variables were performed. While a shift in temporal dynamics of radial growth onset and cessation was detected among co-occurring species, intra-annual radial growth peaked synchronously in late May 2011 and early June 2012. Moist atmospheric conditions, i.e. high relative air humidity, low vapour pressure deficit and low air temperature during the main growing period, favoured radial stem increment of all species. Soil water content and soil temperature were not significantly related to radial growth. Although a temporal shift in onset and cessation of wood formation was detected among species, synchronous culmination of radial growth indicates homogenous exogenous and/or endogenous control. The close coupling of radial growth to atmospheric conditions points to the importance of stem water status for intra-annual growth of drought-prone conifers.
doi:10.1007/s10342-013-0777-z
PMCID: PMC4035765  PMID: 24883053
Cambial activity; Climate–growth relationship; Conifers; Dendrometer; Drought; Intra-annual radial growth
24.  Warming and neighbor removal affect white spruce seedling growth differently above and below treeline 
SpringerPlus  2015;4:79.
Climate change is expected to be pronounced towards higher latitudes and altitudes. Warming triggers treeline and vegetation shifts, which may aggravate interspecific competition and affect biodiversity. This research tested the effects of a warming climate, habitat type, and neighboring plant competition on the establishment and growth of white spruce (Picea glauca (Moench) Voss) seedlings in a subarctic mountain region. P. glauca seedlings were planted in June 2010 under 4 different treatments (high/control temperatures, with/without competition) in 3 habitats (alpine ridge above treeline/tundra near treeline /forest below treeline habitats). After two growing seasons in 2011, growth, photosynthesis and foliar C and N data were obtained from a total of 156, one-and-a-half year old seedlings that had survived. Elevated temperatures increased growth and photosynthetic rates above and near treeline, but decreased them below treeline. Competition was increased by elevated temperatures in all habitat types. Our results suggest that increasing temperatures will have positive effects on the growth of P. glauca seedlings at the locations where P. glauca is expected to expand its habitat, but increasing temperatures may have negative effects on seedlings growing in mature forests. Due to interspecific competition, possibly belowground competition, the upslope expansion of treelines may not be as fast in the future as it was the last fifty years.
Electronic supplementary material
The online version of this article (doi:10.1186/s40064-015-0833-x) contains supplementary material, which is available to authorized users.
doi:10.1186/s40064-015-0833-x
PMCID: PMC4339320  PMID: 25729635
Picea glauca; Boreal forest; Climate change; Competition; Subarctic; Alaska
25.  A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs 
Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.
doi:10.1098/rstb.2012.0479
PMCID: PMC3720052  PMID: 23836785
Arctic; climatic niche modelling; climate change impact; disequilibrium; postglacial re-colonization; shrub expansion

Results 1-25 (710776)