Search tips
Search criteria

Results 1-25 (639596)

Clipboard (0)

Related Articles

1.  Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone 
Annals of forest science  2009;66(5):503.
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
PMCID: PMC3059571  PMID: 21423861
dendrometer; Pinus cembra; radial increment; treeline ecotone; xylem formation
2.  How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan 
Annals of Botany  2012;109(6):1165-1174.
Background and Aims
Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline.
One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350–2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only.
Key Results
The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage.
This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage due to strong wind and snow rather than by growth limitation due to low temperature. Therefore, the timberline would not move upward even under global warming if these growth and mortality characteristics do not change for a long time.
PMCID: PMC3336954  PMID: 22451598
Abies mariesii; Betula ermanii; climate change; disturbance; global warming; Pinus pumila; timberline
3.  Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables 
Trees (Berlin, Germany : West)  2009;23(3):623-635.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.
At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.
The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.
Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
PMCID: PMC3078619  PMID: 21509148
Cambium; intra-annual growth; Pinus cembra; temperature; tracheid production
4.  Long-term changes in tree-ring – climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s 
Trees (Berlin, Germany : West)  2008;22(1):31-40.
Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate-growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (c. 2000 – 2200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥ 19 trees) throughout most of the time period analysed. MRF calculated for the period 1866-1999 and 1901-1999 for c. 200 and c. 100 yr old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid 1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a < 10 % increase in annual increments of c. 50 yr old trees at the timberline and at the tree line in 2003 compared to 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the 20th century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology.
PMCID: PMC3083837  PMID: 21532976
Climate warming; moving response function; Pinus cembra; temperature sensitivity; tree ring
5.  Cambial activity and xylem cell development in Pinus cembra and Pinus sylvestris at their climatic limits in the Eastern Alps in 2007 
Phyton; annales rei botanicae  2011;51(2):299-313.
It has been frequently stressed that at distributional boundaries, like at the Alpine timberline and within dry inner Alpine environments, tree growth will be affected first by changing climate conditions. Climate in 2007 was characterized by the occurrence of exceptionally mild temperatures in spring (3.4 and 2.7 °C above long-term mean (LTM) at timberline and the valley sites, respectively) with an almost continuous drought period recorded in April and slightly warmer than average temperatures throughout summer (1.3 °C above LTM at both sites).
We compared temporal dynamics of cambial activity and xylem cell development in Pinus cembra at the Alpine timberline (1950 m a.s.l.) and Pinus sylvestris at a xeric inner Alpine site (750 m a.s.l.) by repeated cellular analyses of micro-cores (n = 5 trees/site). While onset of wood formation in P. sylvestris and P. cembra differed by about two weeks (12 and 27 April, respectively), maximum daily growth rates peaked on 6 May at the valley site and on 23 June at timberline. At both sites maximum tracheid production was reached prior to occurrence of more favourable climatic conditions during summer, i.e. an increase in precipitation and temperature. Xylem formation ended on 31 August and 28 October at the xeric site and at timberline, respectively.
This study demonstrates the plasticity of tree-ring formation along an altitudinal transect in response to water availability and temperature. Whether early achievement of maximum growth rates is an adaptation to cope with extreme environmental conditions prevailing at limits of tree growth needs to be analysed more closely by taking belowground carbon allocation into account.
PMCID: PMC3837289  PMID: 24273354
Alpine timberline; cambium; dry inner Alpine valley; intra-annual growth; Scots pine; Stone pine; wood anatomy; xylogenesis
6.  Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps 
Annals of forest science  2010;67(2):201.
Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.
We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.
In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.
Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.
PMCID: PMC3047779  PMID: 21379394
net photosynthesis; temperature; cembran pine; timberline ecotone; global warming
7.  Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment 
Trees (Berlin, Germany : West)  2013;27(1):61-69.
We applied dendroclimatological techniques to determine long-term stationarity of climate-growth relationships and recent growth trends of three widespread coniferous tree species of the central Austrian Alps, which grow intermixed at dry-mesic sites within a dry inner Alpine environment (750 m asl). Time series of annual increments were developed from > 120 mature trees of Picea abies, Larix decidua and Pinus sylvestris. Calculation of response functions for the period 1911 – 2009 revealed significant differences among species in response to climate variables. While precipitation in May – June favoured radial growth of Picea abies and Larix decidua, Pinus sylvestris growth mainly depended on April – May precipitation. P. abies growth was most sensitive to May – June temperature (inverse relationship). Moving response function coefficients indicated increasing drought sensitivity of all species in recent decades, which is related to a decline in soil moisture availability due to increasing stand density and tree size and higher evapotranspiration rates in a warmer climate. While recent trend in basal area increment (BAI) of L. decidua distinctly declined implying high vulnerability to drought stress, moderately shade-tolerant P. abies showed steadily increasing BAI and quite constant BAI was maintained in drought adapted P. sylvestris, although at lowest level of all species. We conclude that synergistic effects of stand dynamics and climate warming increased drought sensitivity, which changed competitive strength of co-occurring conifers due to differences in inherent adaptive capacity.
PMCID: PMC3750198  PMID: 23976821
Basal area increment; Dendroclimatology; Inner Alpine valley; Radial growth; Moving response function; Tree-ring analysis
8.  Growth and Phenology of Three Dwarf Shrub Species in a Six-Year Soil Warming Experiment at the Alpine Treeline 
PLoS ONE  2014;9(6):e100577.
Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007–2012) on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus) in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012), especially new shoot biomass (+63% in 2012), as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007–2012). These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%), and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming.
PMCID: PMC4067323  PMID: 24956273
9.  Spatial and seasonal variations in mobile carbohydrates in Pinus cembra in the timberline ecotone of the Central Austrian Alps 
European journal of forest research  2011;130(2):173-179.
To test whether the altitudinal limit of tree growth is determined by carbons shortage or by a limitation in growth we investigated non structural carbohydrates and their components starch and total soluble sugars in Pinus cembra trees along an elevational gradient in the timberline ecotone of the Central Austrian Alps. NSC contents in needles, branches, stems, and coarse roots were measured throughout an entire growing season. At the tissue level NSC contents were not significantly more abundant in treeline trees as compared to trees at lower elevations. Along our 425 m elevational transect from the closed forest to the treeline we failed to find a stable elevational trend in the total NSC pool of entire trees and observed within season increases in the tree’s NSC pool that can be attributed to an altitudinal increase in leaf mass as needles contained the largest NSC fraction of the whole tree NSC pool. Furthermore, whole tree NSC contents were positively correlated with net photosynthetic capacity. Although our observed NSC characteristics do not support the hypothesis that tree life at their upper elevational limit is determined by an insufficient carbon balance we found no consistent confirmation for the sink limitation hypothesis.
PMCID: PMC3191523  PMID: 22003357
Non structural carbohydrates; seasonal variation; elevational gradient; timberline ecotone; treeline formation; treelife limitation
10.  Four Decades of Andean Timberline Migration and Implications for Biodiversity Loss with Climate Change 
PLoS ONE  2013;8(9):e74496.
Rapid 21st-century climate change may lead to large population decreases and extinction in tropical montane cloud forest species in the Andes. While prior research has focused on species migrations per se, ecotones may respond to different environmental factors than species. Even if species can migrate in response to climate change, if ecotones do not they can function as hard barriers to species migrations, making ecotone migrations central to understanding species persistence under scenarios of climate change. We examined a 42-year span of aerial photographs and high resolution satellite imagery to calculate migration rates of timberline–the grassland-forest ecotone–inside and outside of protected areas in the high Peruvian Andes. We found that timberline in protected areas was more likely to migrate upward in elevation than in areas with frequent cattle grazing and fire. However, rates in both protected (0.24 m yr−1) and unprotected (0.05 m yr−1) areas are only 0.5–2.3% of the rates needed to stay in equilibrium with projected climate by 2100. These ecotone migration rates are 12.5 to 110 times slower than the observed species migration rates within the same forest, suggesting a barrier to migration for mid- and high-elevation species. We anticipate that the ecotone will be a hard barrier to migration under future climate change, leading to drastic population and biodiversity losses in the region unless intensive management steps are taken.
PMCID: PMC3770544  PMID: 24040260
11.  Climate change and the northern Russian treeline zone 
The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800–1300) or the Holocene Thermal Maximum (HTM; ca 10 000–3000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.
PMCID: PMC2606780  PMID: 18006415
Arctic; Eurasia; Holocene; boreal forest; treeline; climate change
12.  Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions 
Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios.
Results show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis.
Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.
PMCID: PMC3933049  PMID: 24495313
Carbon sequestration; Climate change; Forest vegetation simulator; General circulation model; Growth and yield; LiDAR
13.  Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions 
Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios.
Results show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis.
Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.
PMCID: PMC3933049  PMID: 24495313
Carbon sequestration; Climate change; Forest vegetation simulator; General circulation model; Growth and yield; LiDAR
14.  Forest Structure, Stand Composition, and Climate-Growth Response in Montane Forests of Jiuzhaigou National Nature Reserve, China 
PLoS ONE  2013;8(8):e71559.
Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.
PMCID: PMC3739742  PMID: 23951188
15.  Climate Warming and the Recent Treeline Shift in the European Alps: The Role of Geomorphological Factors in High-Altitude Sites 
Ambio  2010;40(3):264-273.
Global warming and the stronger regional temperature trends recently recorded over the European Alps have triggered several biological and physical dynamics in high-altitude environments. We defined the present treeline altitude in three valleys of a region in the western Italian Alps and reconstructed the past treeline position for the last three centuries in a nearly undisturbed site by means of a dendrochronological approach. We found that the treeline altitude in this region is mainly controlled by human impacts and geomorphological factors. The reconstruction of the altitudinal dynamics at the study site reveals that the treeline shifted upwards of 115 m over the period 1901–2000, reaching the altitude of 2505 m in 2000 and 2515 m in 2008. The recent treeline shift and the acceleration of tree colonization rates in the alpine belt can be mainly ascribed to the climatic input. However, we point out the increasing role of geomorphological factors in controlling the future treeline position and colonization patterns in high mountains.
PMCID: PMC3357808  PMID: 21644455
Climate change; Treeline; Geomorphology; Tree rings; Larix decidua; European Alps
16.  Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site 
European journal of forest research  2014;133(3):467-479.
Dendroclimatological studies in a dry inner Alpine environment (750 m a.s.l.) revealed different growth response of co-occurring coniferous species to climate, which is assumed to be caused by a temporal shift in wood formation among species. The main focus of this study therefore was to monitor intra-annual dynamics of radial increment growth of mature deciduous and evergreen coniferous species (Pinus sylvestris, Larix decidua and Picea abies) during two consecutive years with contrasting climatic conditions. Radial stem growth was continuously followed by band dendrometers and modelled using Gompertz functions to determine time of maximum growth. Histological analyses of tree ring formation allowed determination of temporal dynamics of cambial activity and xylem cell development. Daily fluctuations in stem radius and radial stem increments were extracted from dendrometer traces, and correlations with environmental variables were performed. While a shift in temporal dynamics of radial growth onset and cessation was detected among co-occurring species, intra-annual radial growth peaked synchronously in late May 2011 and early June 2012. Moist atmospheric conditions, i.e. high relative air humidity, low vapour pressure deficit and low air temperature during the main growing period, favoured radial stem increment of all species. Soil water content and soil temperature were not significantly related to radial growth. Although a temporal shift in onset and cessation of wood formation was detected among species, synchronous culmination of radial growth indicates homogenous exogenous and/or endogenous control. The close coupling of radial growth to atmospheric conditions points to the importance of stem water status for intra-annual growth of drought-prone conifers.
PMCID: PMC4035765  PMID: 24883053
Cambial activity; Climate–growth relationship; Conifers; Dendrometer; Drought; Intra-annual radial growth
17.  Late Pleistocene climate change and landscape dynamics in the Eastern Alps: the inner-alpine Unterangerberg record (Austria) 
Quaternary Science Reviews  2013;68(100):17-42.
Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria, offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic deposits originating from two paleo-landslide events are present. Multi-proxy analyses including sedimentological and palynological investigations as well as radiocarbon and luminescence data record the onset of the last glacial period (Würmian) at Unterangerberg at ∼120–110 ka. This first time period, correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions, with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events occurred during this time interval. No record of the first Early Würmian interstadial (MIS 5c) is preserved. During the second Early Würmian interstadial (MIS 5a), the local vegetation was characterised by a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the vegetation is recorded by sediments dated to ∼70–60 ka (i.e. MIS 4), with very low pollen concentrations and the potential presence of permafrost. Climatic conditions improved again between ∼55 and 45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegetation. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from today's alpine timberline. The Unterangerberg record ended at ∼45 ka and/or was truncated by ice during the Last Glacial Maximum.
► We investigated drillcores from a site inside the Eastern Alps of Austria. ► The Late Pleistocene sedimentation history of a palaeolake was reconstructed. ► Pollen analysis gives insights into environmental dynamics during stadials and interstadials. ► Impacts of last glacial climate changes on Alpine vegetation can be traced.
PMCID: PMC3688313  PMID: 23805019
Late Pleistocene; Lake sediments; European Alps; Luminescence dating; Pollen analysis; Stratigraphy
18.  A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs 
Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.
PMCID: PMC3720052  PMID: 23836785
Arctic; climatic niche modelling; climate change impact; disequilibrium; postglacial re-colonization; shrub expansion
19.  Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau 
Annals of Botany  2009;104(4):665-670.
Background and Aims
Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated.
Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data.
Key Results
The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation.
The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.
PMCID: PMC2729637  PMID: 19556264
South-east Tibetan Plateau; Rhododendron nivale; alpine shrub; growth ring; cross-dating; dendroclimatological potential; climate/growth association
20.  Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra 
Tree physiology  2009;29(5):641-649.
The relationship between stem CO2 efflux (ES), cambial activity and xylem production in Pinus cembra was determined at the timberline (1950 m a.s.l.) of the Central Austrian Alps, throughout one year. ES was measured continuously from June 2006 to August 2007 using an infrared gas-analysis system. Cambial activity and xylem production was determined by repeated microcore sampling of the developing tree ring and radial increment was monitored using automated point dendrometers. Aside of temperature, the number of living tracheids and cambial cells was predominantly responsible for ES: ES normalized to 10°C (ES10) was significantly correlated to number of living cells throughout the year (r2 = 0,574; p < 0,001). However, elevated ES and missing correlation between ES10 and xylem production was detected during cambial reactivation in April and during transition from active phase to rest, which occurred in August and lasted until early September. Results of this study indicate that (i) during seasonal variations in cambial activity non-linearity between ES and xylem production occurs and (ii) elevated metabolic activity during transition stages in the cambial activity-dormancy cycle influence the carbon budget of Pinus cembra. Daily radial stem increment was primarily influenced by the number of enlarging cells and was not correlated to ES.
PMCID: PMC3013296  PMID: 19203979
cambial reactivation; dormancy; Pinus cembra; radial stem growth; sap flow; stem CO2 efflux; stem respiration; xylem production
21.  Tree-line changes along the Andes: implications of spatial patterns and dynamics 
The Andes provide an extensive latitudinal and topographical framework for studying the factors that control the spatial patterns of forests (timberlines) and their species components expressed through the presence of tree growth forms (tree lines). Despite consistent overall similarities in landscape patterns, many processes must be unique, given the dramatic differences in species richness and biophysical constraints along the Andes. In all cases evaluated to date, morphological plasticity is a common trait of plant species that dominate at tree lines. In fact, many changes observed can be related to species-specific traits. Physiological limitations on tree growth form only explain species limits, while disturbances and cyclical climate fluctuations interact to affect many landscape patterns. Over long periods of time, tree lines provide unique habitats and perhaps opportunities for speciation. Understanding the spatial organization of tree-line dynamics is one viable research approach for evaluating the likely past fluxes and possible future changes.
PMCID: PMC2311430  PMID: 17255035
Andes Mountains; biodiversity; timberline; tree line
22.  Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem 
PLoS ONE  2010;5(8):e12480.
Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks.
To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events.
Principal Findings
We show that fuel build-up from arolla pine (Pinus cembra) always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp.), then by ericaceous species after 25–75 years, and by herbs after 50–100 years. European larch (Larix decidua), which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate), with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years.
Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less than 150 years would threaten the dominant species and might override the resilience of subalpine forests.
PMCID: PMC2930012  PMID: 20814580
23.  Climate Control on Tree Growth at the Upper and Lower Treelines: A Case Study in the Qilian Mountains, Tibetan Plateau 
PLoS ONE  2013;8(7):e69065.
It is generally hypothesized that tree growth at the upper treeline is normally controlled by temperature while that at the lower treeline is precipitation limited. However, uniform patterns of inter-annual ring-width variations along altitudinal gradients are also observed in some situations. How changing elevation influences tree growth in the cold and arid Qilian Mountains, on the northeastern Tibetan Plateau, is of considerable interest because of the sensitivity of the region’s local climate to different atmospheric circulation patterns. Here, a network of four Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies was developed from trees distributed on a typical mountain slope at elevations ranging from 3000 to 3520 m above sea level (a.s.l.). The statistical characteristics of the four tree-ring chronologies show no significant correlation with increasing elevation. All the sampled tree growth was controlled by a common climatic signal (local precipitation) across the investigated altitudinal gradient (520 m). During the common reliable period, covering the past 450 years, the four chronologies have exhibited coherent growth patterns in both the high- and low-frequency domains. These results contradict the notion of contrasting climate growth controls at higher and lower elevations, and specifically the assumption that inter-annual tree-growth variability is controlled by temperature at the upper treeline. It should be stressed that these results relate to the relatively arid conditions at the sampling sites in the Qilian Mountains.
PMCID: PMC3708892  PMID: 23874871
24.  Integrated approaches to climate–crop modelling: needs and challenges 
This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.
PMCID: PMC1569576  PMID: 16433093
climate change; crop modelling; Earth System modelling; feedbacks; climate impacts; land use
25.  Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species 
Understanding the stability of realized niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic.
European Alps and Norwegian Finnmark.
We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multispecies comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 m above ground level and (2) elevation distances to the tree line (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism.
We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet along the 2-m temperature gradient the cold thermal limits of species in the Alps were lower on average than those in Finnmark.
Main conclusion
We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit are likely to modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is probably responsible for the observed differences in realized niches.
PMCID: PMC4001081  PMID: 24790524
Air–soil temperature; biotic interactions; disjunct distribution; distance to tree line; European Alps; niche conservatism; Norwegian Finnmark; realized niche; species distribution models

Results 1-25 (639596)