PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (971551)

Clipboard (0)
None

Related Articles

1.  Association of 18 Confirmed Susceptibility Loci for Type 2 Diabetes With Indices of Insulin Release, Proinsulin Conversion, and Insulin Sensitivity in 5,327 Nondiabetic Finnish Men 
Diabetes  2009;58(9):2129-2136.
OBJECTIVE
We investigated the effects of 18 confirmed type 2 diabetes risk single nucleotide polymorphisms (SNPs) on insulin sensitivity, insulin secretion, and conversion of proinsulin to insulin.
RESEARCH DESIGN AND METHODS
A total of 5,327 nondiabetic men (age 58 ± 7 years, BMI 27.0 ± 3.8 kg/m2) from a large population-based cohort were included. Oral glucose tolerance tests and genotyping of SNPs in or near PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, LOC387761, CDKN2B, IGF2BP2, CDKAL1, HNF1B, WFS1, JAZF1, CDC123, TSPAN8, THADA, ADAMTS9, NOTCH2, KCNQ1, and MTNR1B were performed. HNF1B rs757210 was excluded because of failure to achieve Hardy-Weinberg equilibrium.
RESULTS
Six SNPs (TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1, and MTNR1B) were significantly (P < 6.9 × 10−4) and two SNPs (KCNJ11 and IGF2BP2) were nominally (P < 0.05) associated with early-phase insulin release (InsAUC0–30/GluAUC0–30), adjusted for age, BMI, and insulin sensitivity (Matsuda ISI). Combined effects of these eight SNPs reached −32% reduction in InsAUC0–30/GluAUC0–30 in carriers of ≥11 vs. ≤3 weighted risk alleles. Four SNPs (SLC30A8, HHEX, CDKAL1, and TCF7L2) were significantly or nominally associated with indexes of proinsulin conversion. Three SNPs (KCNJ11, HHEX, and TSPAN8) were nominally associated with Matsuda ISI (adjusted for age and BMI). The effect of HHEX on Matsuda ISI became significant after additional adjustment for InsAUC0–30/GluAUC0–30. Nine SNPs did not show any associations with examined traits.
CONCLUSIONS
Eight type 2 diabetes–related loci were significantly or nominally associated with impaired early-phase insulin release. Effects of SLC30A8, HHEX, CDKAL1, and TCF7L2 on insulin release could be partially explained by impaired proinsulin conversion. HHEX might influence both insulin release and insulin sensitivity.
doi:10.2337/db09-0117
PMCID: PMC2731523  PMID: 19502414
2.  Contribution of Common Genetic Variation to the Risk of Type 2 Diabetes in the Mexican Mestizo Population 
Diabetes  2012;61(12):3314-3321.
Several studies have identified nearly 40 different type 2 diabetes susceptibility loci, mainly in European populations, but few of them have been evaluated in the Mexican population. The aim of this study was to examine the extent to which 24 common genetic variants previously associated with type 2 diabetes are associated in Mexican Mestizos. Twenty-four single nucleotide polymorphisms (SNPs) in or near genes (KCNJ11, PPARG, TCF7L2, SLC30A8, HHEX, CDKN2A/2B, CDKAL1, IGF2BP2, ARHGEF11, JAZF1, CDC123/CAMK1D, FTO, TSPAN8/LGR5, KCNQ1, THADA, ADAMTS9, NOTCH2, NXPH1, RORA, UBQLNL, and RALGPS2) were genotyped in Mexican Mestizos. A case-control association study comprising 1,027 type 2 diabetic individuals and 990 control individuals was conducted. To account for population stratification, a panel of 104 ancestry-informative markers was analyzed. Association to type 2 diabetes was found for rs13266634 (SLC30A8), rs7923837 (HHEX), rs10811661 (CDKN2A/2B), rs4402960 (IGF2BP2), rs12779790 (CDC123/CAMK1D), and rs2237892 (KCNQ1). In addition, rs7754840 (CDKAL1) was associated in the nonobese type 2 diabetic subgroup, and for rs7903146 (TCF7L2), association was observed for early-onset type 2 diabetes. Lack of association for the rest of the variants may have resulted from insufficient power to detect smaller allele effects.
doi:10.2337/db11-0550
PMCID: PMC3501881  PMID: 22923468
3.  BMI at Age 8 Years Is Influenced by the Type 2 Diabetes Susceptibility Genes HHEX-IDE and CDKAL1 
Diabetes  2010;59(8):2063-2067.
OBJECTIVE
To determine whether HHEX-IDE and CDKAL1 genes, which are associated with birth weight and susceptibility to type 2 diabetes, continue to influence growth during childhood.
RESEARCH DESIGN AND METHODS
BMI, weight, and height at age 8 years expressed as age- and sex-corrected standard deviation scores (SDS) against national reference data and single-nucleotide polymorphism genotyping of HHEX-IDE and CDKAL1 loci were analyzed in 646 prospectively followed children in the German BABYDIAB cohort. All children were singleton full-term births; 386 had mothers with type 1 diabetes, and 260 had fathers with type 1 diabetes and a nondiabetic mother.
RESULTS
Type 2 diabetes risk alleles at the HHEX-IDE locus were associated with reduced BMI-SDS at age 8 years (0.17 SDS per allele; P = 0.004). After stratification for birth weight, both HHEX-IDE and CDKAL1 risk alleles were associated with reduced BMI-SDS (0.45 SDS, P = 0.0002; 0.52 SDS, P = 0.0001) and weight-SDS (0.22 SDS, P = 0.04; 0.56 SDS, P = 0.0002) in children born large for gestational age (>90th percentile) but not children born small or appropriate for gestational age. Within children born large for gestational age, BMI and weight decreased with each additional type 2 diabetes risk allele (∼ −2 kg per allele; >8 kg overall). Findings were consistent in children of mothers with type 1 diabetes (P < 0.0001) and children of nondiabetic mothers (P = 0.008).
CONCLUSIONS
The type 2 diabetes susceptibility alleles at HHEX-IDE and CDKAL1 loci are associated with low BMI at age 8 years in children who were born large for gestational age.
doi:10.2337/db10-0099
PMCID: PMC2911059  PMID: 20460429
4.  Association Analysis of Variation in/Near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B With Type 2 Diabetes and Related Quantitative Traits in Pima Indians 
Diabetes  2009;58(2):478-488.
OBJECTIVE—In recent genome-wide association studies, variants in CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, CDKN2B, LOC387761, and FTO were associated with risk for type 2 diabetes in Caucasians. We investigated the association of these single nucleotide polymorphisms (SNPs) and some additional tag SNPs with type 2 diabetes and related quantitative traits in Pima Indians.
RESEARCH DESIGN AND METHODS—Forty-seven SNPs were genotyped in 3,501 Pima Indians informative for type 2 diabetes and BMI, among whom 370 had measures of quantitative traits.
RESULTS—FTO provided the strongest evidence for replication, where SNPs were associated with type 2 diabetes (odds ratio = 1.20 per copy of the risk allele, P = 0.03) and BMI (P = 0.002). None of the other previously reported SNPs were associated with type 2 diabetes; however, associations were found between CDKAL1 and HHEX variants and acute insulin response (AIR), where the Caucasian risk alleles for type 2 diabetes were associated with reduced insulin secretion in normoglycemic Pima Indians. Multiallelic analyses of carrying risk alleles for multiple genes showed correlations between number of risk alleles and type 2 diabetes and impaired insulin secretion in normoglycemic subjects (P = 0.006 and 0.0001 for type 2 diabetes and AIR, respectively), supporting the hypothesis that many of these genes influence diabetes risk by affecting insulin secretion.
CONCLUSIONS—Variation in FTO impacts BMI, but the implicated common variants in the other genes did not confer a significant risk for type 2 diabetes in Pima Indians. However, confidence intervals for their estimated effects were consistent with the small effects reported in Caucasians, and the multiallelic “genetic risk profile” identified in Caucasians is associated with diminished early insulin secretion in Pima Indians.
doi:10.2337/db08-0877
PMCID: PMC2628623  PMID: 19008344
5.  PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 Are Associated with Type 2 Diabetes in a Chinese Population 
PLoS ONE  2009;4(10):e7643.
Background
Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism.
Methods/Principal Findings
Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with more risk allele tended to have earlier diagnostic ages (P = 0.0006).
Conclusions/Significance
The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease additively.
doi:10.1371/journal.pone.0007643
PMCID: PMC2763267  PMID: 19862325
6.  Extension of Type 2 Diabetes Genome-Wide Association Scan Results in the Diabetes Prevention Program 
Diabetes  2008;57(9):2503-2510.
OBJECTIVE— Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo.
RESEARCH DESIGN AND METHODS— We genotyped selected single nucleotide polymorphisms (SNPs) in or near diabetes-associated loci, including EXT2, CDKAL1, CDKN2A/B, IGF2BP2, HHEX, LOC387761, and SLC30A8 in DPP participants and performed Cox regression analyses using genotype, intervention, and their interactions as predictors of diabetes incidence. We evaluated their effect on insulin resistance and secretion at 1 year.
RESULTS— None of the selected SNPs were associated with increased diabetes incidence in this population. After adjustments for ethnicity, baseline insulin secretion was lower in subjects with the risk genotype at HHEX rs1111875 (P = 0.01); there were no significant differences in baseline insulin sensitivity. Both at baseline and at 1 year, subjects with the risk genotype at LOC387761 had paradoxically increased insulin secretion; adjustment for self-reported ethnicity abolished these differences. In ethnicity-adjusted analyses, we noted a nominal differential improvement in β-cell function for carriers of the protective genotype at CDKN2A/B after 1 year of troglitazone treatment (P = 0.01) and possibly lifestyle modification (P = 0.05).
CONCLUSIONS— We were unable to replicate the GWAS findings regarding diabetes risk in the DPP. We did observe genotype associations with differences in baseline insulin secretion at the HHEX locus and a possible pharmacogenetic interaction at CDKNA2/B.
doi:10.2337/db08-0284
PMCID: PMC2518503  PMID: 18544707
7.  Common Variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE Genes Are Associated With Type 2 Diabetes and Impaired Fasting Glucose in a Chinese Han Population 
Diabetes  2008;57(10):2834-2842.
OBJECTIVE— Genome-wide association studies have identified common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, HHEX/IDE, EXT2, and LOC387761 loci that significantly increase the risk of type 2 diabetes. We aimed to replicate these observations in a population-based cohort of Chinese Hans and examine the associations of these variants with type 2 diabetes and diabetes-related phenotypes.
RESEARCH DESIGN AND METHODS— We genotyped 17 single nucleotide polymorhisms (SNPs) in 3,210 unrelated Chinese Hans, including 424 participants with type 2 diabetes, 878 with impaired fasting glucose (IFG), and 1,908 with normal fasting glucose.
RESULTS— We confirmed the associations between type 2 diabetes and variants near CDKAL1 (odds ratio 1.49 [95% CI 1.27–1.75]; P = 8.91 × 10−7) and CDKN2A/B (1.31 [1.12–1.54]; P = 1.0 × 10−3). We observed significant association of SNPs in IGF2BP2 (1.17 [1.03–1.32]; P = 0.014) and SLC30A8 (1.12 [1.01–1.25]; P = 0.033) with combined IFG/type 2 diabetes. The SNPs in CDKAL1, IGF2BP2, and SLC30A8 were also associated with impaired β-cell function estimated by homeostasis model assessment of β-cell function. When combined, each additional risk allele from CDKAL1-rs9465871, CDKN2A/B-rs10811661, IGF2BP2-rs4402960, and SLC30A8-rs13266634 increased the risk for type 2 diabetes by 1.24-fold (P = 2.85 × 10−7) or for combined IFG/type 2 diabetes by 1.21-fold (P = 6.31 × 10−11). None of the SNPs in EXT2 or LOC387761 exhibited significant association with type 2 diabetes or IFG. Significant association was observed between the HHEX/IDE SNPs and type 2 diabetes in individuals from Shanghai only (P < 0.013) but not in those from Beijing (P > 0.33).
CONCLUSIONS— Our results indicate that in Chinese Hans, common variants in CDKAL1, CDKN2A/B, IGF2BP2, and SLC30A8 loci independently or additively contribute to type 2 diabetes risk, likely mediated through β-cell dysfunction.
doi:10.2337/db08-0047
PMCID: PMC2551696  PMID: 18633108
8.  Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets 
BMC Genetics  2013;14:10.
Background
Genome-wide association studies (GWAS) have recently identified many new genetic variants associated with the development of type 2 diabetes. Many of these variants are in introns of known genes or between known genes, suggesting they affect the expression of these genes. The regulation of gene expression is often tissue and context dependent, for example occurring in response to dietary changes, hormone levels, or many other factors. Thus, to understand how these new genetic variants associated with diabetes risk may act, it is necessary to understand the regulation of their cognate genes.
Results
We identified fourteen type 2 diabetes-associated genes discovered by the first waves of GWAS for which there was little prior evidence of their potential role in diabetes (Adam30, Adamts9, Camk1d, Cdc123, Cdkal1, Cdkn2a, Cdkn2b, Ext2, Hhex, Ide, Jazf1, Lgr5, Thada and Tspan8). We examined their expression in metabolically relevant tissues including liver, adipose tissue, brain, and hypothalamus obtained from mice under fasted, non-fasted and high fat diet-fed conditions. In addition, we examined their expression in pancreatic islets from these mice cultured in low and high glucose. We found that the expression of Jazf1 was reduced by high fat feeding in liver, with similar tendencies in adipose tissue and the hypothalamus. Adamts9 expression was decreased in the hypothalamus of high fat fed mice. In contrast, the expression of Camk1d, Ext2, Jazf1 and Lgr5 were increased in the brain of non-fasted animals compared to fasted mice. Most notably, the expression levels of most of the genes were decreased in islets cultured in high glucose.
Conclusions
These data provide insight into the metabolic regulation of these new type 2 diabetes genes that will be important for determining how the GWAS variants affect gene expression and ultimately the development of type 2 diabetes.
doi:10.1186/1471-2156-14-10
PMCID: PMC3664586  PMID: 23442068
Type 2 diabetes; Gene expression; Genome-wide association; High fat diet; Feeding and fasting; Mice; Pancreatic islets; Glucotoxicity
9.  Examination of Type 2 Diabetes Loci Implicates CDKAL1 as a Birth Weight Gene 
Diabetes  2009;58(10):2414-2418.
OBJECTIVE
A number of studies have found that reduced birth weight is associated with type 2 diabetes later in life; however, the underlying mechanism for this correlation remains unresolved. Recently, association has been demonstrated between low birth weight and single nucleotide polymorphisms (SNPs) at the CDKAL1 and HHEX-IDE loci, regions that were previously implicated in the pathogenesis of type 2 diabetes. In order to investigate whether type 2 diabetes risk–conferring alleles associate with low birth weight in our Caucasian childhood cohort, we examined the effects of 20 such loci on this trait.
RESEARCH DESIGN AND METHODS
Using data from an ongoing genome-wide association study in our cohort of 5,465 Caucasian children with recorded birth weights, we investigated the association of the previously reported type 2 diabetes–associated variation at 20 loci including TCF7L2, HHEX-IDE, PPARG, KCNJ11, SLC30A8, IGF2BP2, CDKAL1, CDKN2A/2B, and JAZF1 with birth weight.
RESULTS
Our data show that the minor allele of rs7756992 (P = 8 × 10−5) at the CDKAL1 locus is strongly associated with lower birth weight, whereas a perfect surrogate for variation previously implicated for the trait at the same locus only yielded nominally significant association (P = 0.01; r2 rs7756992 = 0.677). However, association was not detected with any of the other type 2 diabetes loci studied.
CONCLUSIONS
We observe association between lower birth weight and type 2 diabetes risk–conferring alleles at the CDKAL1 locus. Our data show that the same genetic locus that has been identified as a marker for type 2 diabetes in previous studies also influences birth weight.
doi:10.2337/db09-0506
PMCID: PMC2750235  PMID: 19592620
10.  Validation of Type 2 Diabetes Risk Variants Identified by Genome-Wide Association Studies in Han Chinese Population: A Replication Study and Meta-Analysis 
PLoS ONE  2014;9(4):e95045.
Background
Several genome-wide association studies (GWAS) involving European populations have successfully identified risk genetic variants associated with type 2 diabetes mellitus (T2DM). However, the effects conferred by these variants in Han Chinese population have not yet been fully elucidated.
Methods
We analyzed the effects of 24 risk genetic variants with reported associations from European GWAS in 3,040 Han Chinese subjects in Taiwan (including 1,520 T2DM cases and 1,520 controls). The discriminative power of the prediction models with and without genotype scores was compared. We further meta-analyzed the association of these variants with T2DM by pooling all candidate-gene association studies conducted in Han Chinese.
Results
Five risk variants in IGF2BP2 (rs4402960, rs1470579), CDKAL1 (rs10946398), SLC30A8 (rs13266634), and HHEX (rs1111875) genes were nominally associated with T2DM in our samples. The odds ratio was 2.22 (95% confidence interval, 1.81-2.73, P<0.0001) for subjects with the highest genetic score quartile (score>34) as compared with subjects with the lowest quartile (score<29). The incoporation of genotype score into the predictive model increased the C-statistics from 0.627 to 0.657 (P<0.0001). These estimates are very close to those observed in European populations. Gene-environment interaction analysis showed a significant interaction between rs13266634 in SLC30A8 gene and age on T2DM risk (P<0.0001). Further meta-analysis pooling 20 studies in Han Chinese confirmed the association of 10 genetic variants in IGF2BP2, CDKAL1, JAZF1, SCL30A8, HHEX, TCF7L2, EXT2, and FTO genes with T2DM. The effect sizes conferred by these risk variants in Han Chinese were similar to those observed in Europeans but the allele frequencies differ substantially between two populations.
Conclusion
We confirmed the association of 10 variants identified by European GWAS with T2DM in Han Chinese population. The incorporation of genotype scores into the prediction model led to a small but significant improvement in T2DM prediction.
doi:10.1371/journal.pone.0095045
PMCID: PMC3988150  PMID: 24736664
11.  Transferability of Type 2 Diabetes Implicated Loci in Multi-Ethnic Cohorts from Southeast Asia 
PLoS Genetics  2011;7(4):e1001363.
Recent large genome-wide association studies (GWAS) have identified multiple loci which harbor genetic variants associated with type 2 diabetes mellitus (T2D), many of which encode proteins not previously suspected to be involved in the pathogenesis of T2D. Most GWAS for T2D have focused on populations of European descent, and GWAS conducted in other populations with different ancestry offer a unique opportunity to study the genetic architecture of T2D. We performed genome-wide association scans for T2D in 3,955 Chinese (2,010 cases, 1,945 controls), 2,034 Malays (794 cases, 1,240 controls), and 2,146 Asian Indians (977 cases, 1,169 controls). In addition to the search for novel variants implicated in T2D, these multi-ethnic cohorts serve to assess the transferability and relevance of the previous findings from European descent populations in the three major ethnic populations of Asia, comprising half of the world's population. Of the SNPs associated with T2D in previous GWAS, only variants at CDKAL1 and HHEX/IDE/KIF11 showed the strongest association with T2D in the meta-analysis including all three ethnic groups. However, consistent direction of effect was observed for many of the other SNPs in our study and in those carried out in European populations. Close examination of the associations at both the CDKAL1 and HHEX/IDE/KIF11 loci provided some evidence of locus and allelic heterogeneity in relation to the associations with T2D. We also detected variation in linkage disequilibrium between populations for most of these loci that have been previously identified. These factors, combined with limited statistical power, may contribute to the failure to detect associations across populations of diverse ethnicity. These findings highlight the value of surveying across diverse racial/ethnic groups towards the fine-mapping efforts for the casual variants and also of the search for variants, which may be population-specific.
Author Summary
Type 2 diabetes mellitus (T2D) is a chronic disease which can lead to complications such as heart disease, stroke, hypertension, blindness due to diabetic retinopathy, amputations from peripheral vascular diseases, and kidney disease from diabetic nephropathy. The increasing prevalence and complications of T2D are likely to increase the health and economic burden of individuals, families, health systems, and countries. Our study carried out in three major Asian ethnic groups (Chinese, Malays, and Indians) in Singapore suggests that the findings of studies carried out in populations of European ancestry (which represents most studies to date) may be relevant to populations in Asia. However, our study also raises the possibility that different genes, and within the genes different variants, may confer susceptibility to T2D in these populations. These findings are particularly relevant in Asia, where the greatest growth of T2D is expected in the coming years, and emphasize the importance of studying diverse populations when trying to localize the regions of the genome associated with T2D. In addition, we may need to consider novel methods for combining data across populations.
doi:10.1371/journal.pgen.1001363
PMCID: PMC3072366  PMID: 21490949
12.  Expression analyses of the genes harbored by the type 2 diabetes and pediatric BMI associated locus on 10q23 
BMC Medical Genetics  2012;13:89.
Background
There is evidence that one of the key type 2 diabetes (T2D) loci identified by GWAS exerts its influence early on in life through its impact on pediatric BMI. This locus on 10q23 harbors three genes, encoding hematopoietically expressed homeobox (HHEX), insulin-degrading enzyme (IDE) and kinesin family member 11 (KIF11), respectively.
Methods
We analyzed the impact of adipogeneis on the mRNA and protein expression levels of these genes in the human adipocyte Simpson-Golabi-Behmel syndrome (SGBS) cell line in order to investigate which could be the culprit gene(s) in this region of linkage disequilibrium.
Results
Following activation of differentiation with a PPARγ ligand, we observed ~20% decrease in IDE, ~40% decrease in HHEX and in excess of 80% decrease in KIF11 mRNA levels when comparing the adipocyte and pre-adipocyte states. We also observed decreases in KIF11 and IDE protein levels, but conversely we observed a dramatic increase in HHEX protein levels. Subsequent time course experiments revealed some marked changes in expression as early as three hours after activation of differentiation.
Conclusion
Our data suggest that the expression of all three genes at this locus are impacted during SGBS adipogenesis and provides insights in to the possible mechanisms of how the genes at this 10q23 locus could influence both adipocyte differentiation and susceptibility to T2D through insulin resistance.
doi:10.1186/1471-2350-13-89
PMCID: PMC3514277  PMID: 22998375
Obesity; Pediatrics; Expression; Genomics
13.  Lack of Association of Type 2 Diabetes Susceptibility Genotypes and Body Weight on the Development of Islet Autoimmunity and Type 1 Diabetes 
PLoS ONE  2012;7(4):e35410.
Aim
To investigate whether type 2 diabetes susceptibility genes and body weight influence the development of islet autoantibodies and the rate of progression to type 1 diabetes.
Methods
Genotyping for single nucleotide polymorphisms (SNP) of the type 2 diabetes susceptibility genes CDKAL1, CDKN2A/2B, FTO, HHEX-IDE, HMGA2, IGF2BP2, KCNJ11, KCNQ1, MTNR1B, PPARG, SLC30A8 and TCF7L2 was obtained in 1350 children from parents with type 1 diabetes participating in the BABYDIAB study. Children were prospectively followed from birth for islet autoantibodies and type 1 diabetes. Data on weight and height were obtained at 9 months, 2, 5, 8, 11, and 14 years of age.
Results
None of type 2 diabetes risk alleles at the CDKAL1, CDKN2A/2B, FTO, HHEX-IDE, HMGA2, IGF2BP2, KCNJ11, KCNQ1, MTNR1B, PPARG and SLC30A8 loci were associated with the development of islet autoantibodies or diabetes. The type 2 diabetes susceptible genotype of TCF7L2 was associated with a lower risk of islet autoantibodies (7% vs. 12% by age of 10 years, P = 0.015, Pcorrected = 0.18). Overweight children at seroconversion did not progress to diabetes faster than non-overweight children (HR: 1.08; 95% CI: 0.48–2.45, P>0.05).
Conclusions
These findings do not support an association of type 2 diabetes risk factors with islet autoimmunity or acceleration of diabetes in children with a family history of type 1 diabetes.
doi:10.1371/journal.pone.0035410
PMCID: PMC3338842  PMID: 22558147
14.  Genetic Variants of IDE-KIF11-HHEX at 10q23.33 Associated with Type 2 Diabetes Risk: A Fine-Mapping Study in Chinese Population 
PLoS ONE  2012;7(4):e35060.
Background
Genome-wide association studies (GWAS) in populations of European ancestry have mapped a type 2 diabetes susceptibility region to chromosome 10q23.33 containing IDE, KIF11 and HHEX genes (IDE-KIF11-HHEX), which has also been replicated in Chinese populations. However, the functional relevance for genetic variants at this locus is still unclear. It is critical to systematically assess the relationship of genetic variants in this region with the risk of type 2 diabetes.
Methodology/Principal Findings
A fine-mapping study was conducted by genotyping fourteen tagging single-nucleotide polymorphisms (SNPs) in a 290-kb linkage disequilibrium (LD) region using a two-stage case-control study of type 2 diabetes in a Chinese Han population. Suggestive associations (P<0.05) observed from 1,200 cases and 1,200 controls in the first stage were further replicated in 1,725 cases and 2,081 controls in the second stage. Seven tagging SNPs were consistently associated with type 2 diabetes in both stages (P<0.05), with combined odds ratios (ORs) ranging from 1.14 to 1.33 in the combined analysis. The most significant locus was rs7923837 [OR = 1.33, 95% confidence interval (CI): 1.21–1.47] at the 3′-flanking region of HHEX gene. SNP rs1111875 was found to be another partially independent locus (OR = 1.23, 95% CI: 1.13–1.35) in this region that was associated with type 2 diabetes risk. A cumulative effect of rs7923837 and rs1111875 was observed with individuals carrying 1, 2, and 3 or 4 risk alleles having a 1.27, 1.44, and 1.73-fold increased risk, respectively, for type 2 diabetes (P for trend = 4.1E-10).
Conclusions/Significance
Our results confirm that genetic variants of the IDE-KIF11-HHEX region at 10q23.33 contribute to type 2 diabetes susceptibility and suggest that rs7923837 may represent the strongest signal related to type 2 diabetes risk in the Chinese Han population.
doi:10.1371/journal.pone.0035060
PMCID: PMC3323633  PMID: 22506066
15.  Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk 
BMC Medical Genetics  2008;9:59.
Background
Recent genome-wide association (GWA) studies have identified several unsuspected genes associated with type 2 diabetes (T2D) with previously unknown functions. In this investigation, we have examined the role of 9 most significant SNPs reported in GWA studies: [peroxisome proliferator-activated receptor gamma 2 (PPARG2; rs 1801282); insulin-like growth factor two binding protein 2 (IGF2BP2; rs 4402960); cyclin-dependent kinase 5, a regulatory subunit-associated protein1-like 1 (CDK5; rs7754840); a zinc transporter and member of solute carrier family 30 (SLC30A8; rs13266634); a variant found near cyclin-dependent kinase inhibitor 2A (CDKN2A; rs10811661); hematopoietically expressed homeobox (HHEX; rs 1111875); transcription factor-7-like 2 (TCF7L2; rs 10885409); potassium inwardly rectifying channel subfamily J member 11(KCNJ11; rs 5219); and fat mass obesity-associated gene (FTO; rs 9939609)].
Methods
We genotyped these SNPs in a case-control sample of 918 individuals consisting of 532 T2D cases and 386 normal glucose tolerant (NGT) subjects of an Asian Sikh community from North India. We tested the association between T2D and each SNP using unconditional logistic regression before and after adjusting for age, gender, and other covariates. We also examined the impact of these variants on body mass index (BMI), waist to hip ratio (WHR), fasting insulin, and glucose and lipid levels using multiple linear regression analysis.
Results
Four of the nine SNPs revealed a significant association with T2D; PPARG2 (Pro12Ala) [odds ratio (OR) 0.12; 95% confidence interval (CI) (0.03–0.52); p = 0.005], IGF2BP2 [OR 1.37; 95% CI (1.04–1.82); p = 0.027], TCF7L2 [OR 1.64; 95% CI (1.20–2.24); p = 0.001] and FTO [OR 1.46; 95% CI (1.11–1.93); p = 0.007] after adjusting for age, sex and BMI. Multiple linear regression analysis revealed significant association of two of nine investigated loci with diabetes-related quantitative traits. The 'C' (risk) allele of CDK5 (rs 7754840) was significantly associated with decreased HDL-cholesterol levels in both NGT (p = 0.005) and combined (NGT and T2D) (0.005) groups. The less common 'C' (risk) allele of TCF7L2 (rs 10885409) was associated with increased LDL-cholesterol (p = 0.010) in NGT and total and LDL-cholesterol levels (p = 0.008; p = 0.003, respectively) in combined cohort.
Conclusion
To our knowledge, this is first study reporting the role of some recently emerged loci with T2D in a high risk population of Asian Indian origin. Further investigations are warranted to understand the pathway-based functional implications of these important loci in T2D pathophysiology in different ethnicities.
doi:10.1186/1471-2350-9-59
PMCID: PMC2481250  PMID: 18598350
16.  Polymorphisms within Novel Risk Loci for Type 2 Diabetes Determine β-Cell Function 
PLoS ONE  2007;2(9):e832.
Background
Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or β-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity) with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761) were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or β-cell dysfunction were not assessed.
Methodology/Principal Findings
By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs), we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or β-cell dysfunction, respectively.
Conclusions/Significance
The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for β-cell dysfunction and, thus, might confer increased susceptibility of β-cells towards adverse environmental factors.
doi:10.1371/journal.pone.0000832
PMCID: PMC1952072  PMID: 17786204
17.  Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus 
BMC Medical Genomics  2009;2:72.
Background
Genome-wide association studies (GWAS) have emerged as a powerful approach for identifying susceptibility loci associated with polygenetic diseases such as type 2 diabetes mellitus (T2DM). However, it is still a daunting task to prioritize single nucleotide polymorphisms (SNPs) from GWAS for further replication in different population. Several recent studies have shown that genetic variation often affects gene-expression at proximal (cis) as well as distal (trans) genomic locations by different mechanisms such as altering rate of transcription or splicing or transcript stability.
Methods
To prioritize SNPs from GWAS, we combined results from two GWAS related to T2DM, the Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium (WTCCC), with genome-wide expression data from pancreas, adipose tissue, liver and skeletal muscle of individuals with or without T2DM or animal models thereof to identify T2DM susceptibility loci.
Results
We identified 1,170 SNPs associated with T2DM with P < 0.05 in both GWAS and 243 genes that were located in the vicinity of these SNPs. Out of these 243 genes, we identified 115 differentially expressed in publicly available gene expression profiling data. Notably five of them, IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and TSPAN8, have subsequently been shown to be associated with T2DM in different populations. To provide further validation of our approach, we reversed the approach and started with 26 known SNPs associated with T2DM and related traits. We could show that 12 (57%) (HHEX, HNF1B, IGF2BP2, IRS1, KCNJ11, KCNQ1, NOTCH2, PPARG, TCF7L2, THADA, TSPAN8 and WFS1) out of 21 genes located in vicinity of these SNPs were showing aberrant expression in T2DM from the gene expression profiling studies.
Conclusions
Utilizing of gene expression profiling data from different tissues of individuals with or without T2DM or animal models thereof is a powerful tool for prioritizing SNPs from WGAS for further replication studies.
doi:10.1186/1755-8794-2-72
PMCID: PMC2815699  PMID: 20043853
18.  EMR-linked GWAS study: investigation of variation landscape of loci for body mass index in children 
Frontiers in Genetics  2013;4:268.
Common variations at the loci harboring the fat mass and obesity gene (FTO), MC4R, and TMEM18 are consistently reported as being associated with obesity and body mass index (BMI) especially in adult population. In order to confirm this effect in pediatric population five European ancestry cohorts from pediatric eMERGE-II network (CCHMC-BCH) were evaluated.
Method: Data on 5049 samples of European ancestry were obtained from the Electronic Medical Records (EMRs) of two large academic centers in five different genotyped cohorts. For all available samples, gender, age, height, and weight were collected and BMI was calculated. To account for age and sex differences in BMI, BMI z-scores were generated using 2000 Centers of Disease Control and Prevention (CDC) growth charts. A Genome-wide association study (GWAS) was performed with BMI z-score. After removing missing data and outliers based on principal components (PC) analyses, 2860 samples were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and BMI was tested using linear regression adjusting for age, gender, and PC by cohort. The effects of SNPs were modeled assuming additive, recessive, and dominant effects of the minor allele. Meta-analysis was conducted using a weighted z-score approach.
Results: The mean age of subjects was 9.8 years (range 2–19). The proportion of male subjects was 56%. In these cohorts, 14% of samples had a BMI ≥95 and 28 ≥ 85%. Meta analyses produced a signal at 16q12 genomic region with the best result of p = 1.43 × 10-7 [p(rec) = 7.34 × 10-8) for the SNP rs8050136 at the first intron of FTO gene (z = 5.26) and with no heterogeneity between cohorts (p = 0.77). Under a recessive model, another published SNP at this locus, rs1421085, generates the best result [z = 5.782, p(rec) = 8.21 × 10-9]. Imputation in this region using dense 1000-Genome and Hapmap CEU samples revealed 71 SNPs with p < 10-6, all at the first intron of FTO locus. When hetero-geneity was permitted between cohorts, signals were also obtained in other previously identified loci, including MC4R (rs12964056, p = 6.87 × 10-7, z = -4.98), cholecystokinin CCK (rs8192472, p = 1.33 × 10-6, z = -4.85), Interleukin 15 (rs2099884, p = 1.27 × 10-5, z = 4.34), low density lipoprotein receptor-related protein 1B [LRP1B (rs7583748, p = 0.00013, z = -3.81)] and near transmembrane protein 18 (TMEM18) (rs7561317, p = 0.001, z = -3.17). We also detected a novel locus at chromosome 3 at COL6A5 [best SNP = rs1542829, minor allele frequency (MAF) of 5% p = 4.35 × 10-9, z = 5.89].
Conclusion: An EMR linked cohort study demonstrates that the BMI-Z measurements can be successfully extracted and linked to genomic data with meaningful confirmatory results. We verified the high prevalence of childhood rate of overweight and obesity in our cohort (28%). In addition, our data indicate that genetic variants in the first intron of FTO, a known adult genetic risk factor for BMI, are also robustly associated with BMI in pediatric population.
doi:10.3389/fgene.2013.00268
PMCID: PMC3847941  PMID: 24348519
BMI; obesity; polymorphism; GWAS
19.  Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in Type 2 Diabetes in a Chinese population 
BMC Medical Genetics  2010;11:81.
Background
Recently, several genome-wide and candidate gene association studies have identified many novel genetic loci for type 2 diabetes (T2D); among these genes, CDKAL1, IGF2BP2, SLC30A8, CDKN2A/B, HHEX, FTO, TCF2, KCNQ1, and WFS1 are the most important. We aimed to determine the effects of these genetic loci associated with T2D in the Chinese Han population of China.
Methods
Single-nucleotide polymorphisms (SNPs) in or near CDKAL1, IGF2BP2, SLC30A8, CDKN2A/B, HHEX, FTO, TCF2, KCNQ1, and WFS1 genes were genotyped in a case-control Chinese Han sample living in Beijing, China involving 1024 patients with T2D and 1005 control subjects.
Results
In Chinese Han, we replicated the associations between 7 genetic loci and T2D, with risk allele-specific odds ratios (ORs) as follows: 1.27 (95% CI, 1.11-1.45; p = 0.0008) for CDKAL1-rs10946398, 1.26 (95% CI, 1.08-1.47; p = 0.003) for IGF2BP2-rs4402960, 1.19 (95% CI, 1.04-1.37; p = 0.009) for SLC30A8-rs13266634, 1.22 (95% CI, 1.06-1.41; p = 0.005) for CDKN2A/B-rs10811661, 1.20 (95% CI, 1.01-1.42; p = 0.03) for HHEX-rs5015480, 1.37 (95% CI, 1.19-1.69; p = 1.0 × 10-4) for KCNQ1-rs2237892, and 1.24 (95% CI, 1.01-1.52; p = 0.046) for FTO-rs8050136 after adjustment for age, gender, and body mass index. Not only did an association between WFS1-rs6446482 and early-onset T2D exist in the subgroup analysis, but TCF2-rs7501939 and WFS1-rs6446482 were also confirmed to confer risk for T2D in this meta-analysis. Moreover, the relationship between FTO-rs8050136 and body mass index, together with the effect of CDKAL1-rs10946398 on beta cell function, was also observed in the control individuals.
Conclusions
Our findings support the important contribution of these genetic loci to susceptibility for T2D in the Chinese Han population in Beijing of China.
doi:10.1186/1471-2350-11-81
PMCID: PMC2896346  PMID: 20509872
20.  No association of multiple type 2 diabetes loci with type 1 diabetes 
Diabetologia  2009;52(10):2109-2116.
Aims/hypothesis
We used recently confirmed type 2 diabetes gene regions to investigate the genetic relationship between type 1 and type 2 diabetes, in an average of 7,606 type 1 diabetic individuals and 8,218 controls, providing >80% power to detect effects as small as an OR of 1.11 at a false-positive rate of 0.003.
Methods
The single nucleotide polymorphisms (SNPs) with the most convincing evidence of association in 12 type 2 diabetes-associated gene regions, PPARG, CDKAL1, HNF1B, WFS1, SLC30A8, CDKN2A–CDKN2B, IGF2BP2, KCNJ11, TCF7L2, FTO, HHEX–IDE and THADA, were analysed in type 1 diabetes cases and controls. PPARG and HHEX–IDE were additionally tested for association in 3,851 type 1 diabetes families. Tests for interaction with HLA class II genotypes, autoantibody status, sex, and age-at-diagnosis of type 1 diabetes were performed with all 12 gene regions.
Results
Only PPARG and HHEX–IDE showed any evidence of association with type 1 diabetes cases and controls (p=0.004 and p=0.003, respectively; p>0.05 for other SNPs). The potential association of PPARG was supported by family analyses (p=0.003; pcombined=1.0×10-4). No SNPs showed evidence of interaction with any covariate (p>0.05).
Conclusions/interpretation
We found no convincing genetic link between type 1 and type 2 diabetes. An association of PPARG (rs1801282/Pro12Ala) could be consistent with its known function in inflammation. Hence, our results reinforce evidence suggesting that type 1 diabetes is a disease of the immune system, rather than being due to inherited defects in beta cell function or regeneration or insulin resistance.
doi:10.1007/s00125-009-1391-y
PMCID: PMC2738846  PMID: 19455305
ADAMTS9; Association study; CDC123–CAMK1D; Genetics; JAZF1; NOTCH2; TSPAN8–LGR5; Type 1 diabetes; Type 2 diabetes
21.  No association of multiple type 2 diabetes loci with type 1 diabetes 
Diabetologia  2009;52(10):2109-2116.
Aims/hypothesis
We used recently confirmed type 2 diabetes gene regions to investigate the genetic relationship between type 1 and type 2 diabetes, in an average of 7,606 type 1 diabetic individuals and 8,218 controls, providing >80% power to detect effects as small as an OR of 1.11 at a false-positive rate of 0.003.
Methods
The single nucleotide polymorphisms (SNPs) with the most convincing evidence of association in 12 type 2 diabetes-associated gene regions, PPARG, CDKAL1, HNF1B, WFS1, SLC30A8, CDKN2A–CDKN2B, IGF2BP2, KCNJ11, TCF7L2, FTO, HHEX–IDE and THADA, were analysed in type 1 diabetes cases and controls. PPARG and HHEX–IDE were additionally tested for association in 3,851 type 1 diabetes families. Tests for interaction with HLA class II genotypes, autoantibody status, sex, and age-at-diagnosis of type 1 diabetes were performed with all 12 gene regions.
Results
Only PPARG and HHEX–IDE showed any evidence of association with type 1 diabetes cases and controls (p = 0.004 and p = 0.003, respectively; p > 0.05 for other SNPs). The potential association of PPARG was supported by family analyses (p = 0.003; pcombined = 1.0 × 10−4). No SNPs showed evidence of interaction with any covariate (p > 0.05).
Conclusions/interpretation
We found no convincing genetic link between type 1 and type 2 diabetes. An association of PPARG (rs1801282/Pro12Ala) could be consistent with its known function in inflammation. Hence, our results reinforce evidence suggesting that type 1 diabetes is a disease of the immune system, rather than being due to inherited defects in beta cell function or regeneration or insulin resistance.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-009-1391-y) contains supplementary material, which is available to authorised users.
doi:10.1007/s00125-009-1391-y
PMCID: PMC2738846  PMID: 19455305
Age-at-diagnosis; Association study; Autoantibodies; Genetics;  PPARG; SLC30A8; Type 1 diabetes; Type 2 diabetes
22.  Replication Study of Candidate Genes Associated With Type 2 Diabetes Based On Genome-Wide Screening 
Diabetes  2009;58(2):493-498.
OBJECTIVE—The present study was conducted to confirm possible associations between candidate genes from genome-wide association studies and type 2 diabetes in Japanese diabetic patients and a community-based general population. A total of 11 previously reported single-nucleotide polymorphisms (SNPs) from the TCF7L2, CDKAL1, HHEX, IGF2BP2, CDKN2A/B, SLC30A8, and KCNJ11 genes were analyzed.
RESEARCH DESIGN AND METHODS—Candidate SNPs were genotyped in 506 type 2 diabetic patients and 402 control subjects and meta-analyzed with six previous association studies in Japanese patients. Associations with fasting plasma insulin levels were investigated in a general population sample (n = 1,963, 61 ± 13 years).
RESULTS—In our case-control subjects, susceptibility to type 2 diabetes was replicated in TCF7L2 (rs12255372), CDKAL1 (rs7756992, rs7754840), HHEX (rs7923837), IGF2BP2 (rs4402960 and rs1470579), CDKN2A/B (rs10811661), and SLC30A8 (rs13266634). In addition to these polymorphisms, meta-analysis confirmed the association of type 2 diabetes susceptibility with KCNJ11 rs5219, TCF7L2 rs7903146, and HHEX rs1111875. The TCF7L2 rs12255372 polymorphism showed the highest odds ratio (OR) for type 2 diabetes (OR 1.714 [1.298–2.263]). Odds ratio of other polymorphisms ranged from 1.13 to 1.41. The risk allele of CDKAL1 rs7756992 was significantly associated with lower insulin levels in type 2 diabetic patients after adjustment for other confounding factors.
CONCLUSIONS—Type 2 diabetes susceptibility of seven candidate genes was confirmed in Japanese. Conservation of susceptible loci for type 2 diabetes was independent of ethnic background.
doi:10.2337/db07-1785
PMCID: PMC2628625  PMID: 19033397
23.  Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population 
BMC Medical Genetics  2010;11:97.
Background
At least twenty genes/loci were shown to be associated with type 2diabetes in European original populations. Five of these genes were shown to be associated with type 2 diabetes (T2D) in Chinese populations. The purpose of this study was to replicate the association of genetic vairants in the eight diabetes-related genes/loci with type 2 diabetes in a Han Chinese cohort from western part of China. Nineteen single nucleotide polymorphisms (SNPs) from the eight genes/loci including TCF7L2, HHEX, CDKAL1, SLC30A8, PPARG, IGF2BP2, KCNJ11, and CDKN2A/CDKN2B were genotyped in 1,529 cases and 1,439 controls in a Han Chinese population using the ABI SNaPshot method. The meta-analysis of the association between rs7903146 in TCF7L2 gene and T2D in the Han Chinese was performed.
Results
Among the eight genes/loci examined, we found that four were significantly associated with T2D. Although previous studies showed that the association between the SNP rs7903146 in the TCF7L2 gene and T2D was controversial within the Han Chinese population, we have confirmed the significant association between the SNP rs7903146 in the TCF7L2 gene and T2D in both this study and the meta-analysis in the population. In addition, we also confirmed that three SNPs (rs1111875, rs7923837 and rs5015480) in HHEX , one SNP (rs10946398) in CDKAL1, and three SNPs (rs13266634, rs3802177 and rs11558471) in SLC30A8 were significantly associated with T2D in the population being studied.
Conclusions
We demonstrated that the variants in TCF7L2, CDKAL1, HHEX, and SLC30A8 genes are associated with T2D in a Han Chinese population.
doi:10.1186/1471-2350-11-97
PMCID: PMC2894791  PMID: 20550665
24.  Use of Net Reclassification Improvement (NRI) Method Confirms The Utility of Combined Genetic Risk Score to Predict Type 2 Diabetes 
PLoS ONE  2013;8(12):e83093.
Background
Recent genome-wide association studies (GWAS) identified more than 70 novel loci for type 2 diabetes (T2D), some of which have been widely replicated in Asian populations. In this study, we investigated their individual and combined effects on T2D in a Chinese population.
Methodology
We selected 14 single nucleotide polymorphisms (SNPs) in T2D genes relating to beta-cell function validated in Asian populations and genotyped them in 5882 Chinese T2D patients and 2569 healthy controls. A combined genetic score (CGS) was calculated by summing up the number of risk alleles or weighted by the effect size for each SNP under an additive genetic model. We tested for associations by either logistic or linear regression analysis for T2D and quantitative traits, respectively. The contribution of the CGS for predicting T2D risk was evaluated by receiver operating characteristic (ROC) analysis and net reclassification improvement (NRI).
Results
We observed consistent and significant associations of IGF2BP2, WFS1, CDKAL1, SLC30A8, CDKN2A/B, HHEX, TCF7L2 and KCNQ1 (8.5×10−18
Conclusion
In a Chinese population, the use of a CGS of 8 SNPs modestly but significantly improved its discriminative ability to predict T2D above and beyond that attributed to clinical risk factors (sex, age and BMI).
doi:10.1371/journal.pone.0083093
PMCID: PMC3869744  PMID: 24376643
BMC Genomics  2013;14:136.
Background
Genome-wide association studies (GWAS) identify regions of the genome that are associated with particular traits, but do not typically identify specific causative genetic elements. For example, while a large number of single nucleotide polymorphisms associated with type 2 diabetes (T2D) and related traits have been identified by human GWAS, only a few genes have functional evidence to support or to rule out a role in cellular metabolism or dietary interactions. Here, we use a recently developed Drosophila model in which high-sucrose feeding induces phenotypes similar to T2D to assess orthologs of human GWAS-identified candidate genes for risk of T2D and related traits.
Results
Disrupting orthologs of certain T2D candidate genes (HHEX, THADA, PPARG, KCNJ11) led to sucrose-dependent toxicity. Tissue-specific knockdown of the HHEX ortholog dHHEX (CG7056) directed metabolic defects and enhanced lethality; for example, fat-body-specific loss of dHHEX led to increased hemolymph glucose and reduced insulin sensitivity.
Conclusion
Candidate genes identified in human genetic studies of metabolic traits can be prioritized and functionally characterized using a simple Drosophila approach. To our knowledge, this is the first large-scale effort to study the functional interaction between GWAS-identified candidate genes and an environmental risk factor such as diet in a model organism system.
doi:10.1186/1471-2164-14-136
PMCID: PMC3608171  PMID: 23445342
Genome-wide association study; Drosophila melanogaster; Diabetes mellitus, type 2; Hyperglycemia; Dyslipidemias; Phylogeny; Reverse genetics; High-throughput screening assays; HHEX protein, Human

Results 1-25 (971551)