PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (599620)

Clipboard (0)
None

Related Articles

1.  Association of the +45T>G and +276G>T polymorphisms in the adiponectin gene with insulin resistance in nondiabetic Greek women 
Objective
We explored potential associations of two single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ; +45T>G, rs2241766 and +276G>T, rs1501299) with circulating total and high-molecular weight (HMW) adiponectin, insulin resistance (IR), and markers of obesity in a healthy Greek female population.
Design and methods
The two SNPs were genotyped in 349 women without diabetes (mean age: 47.0±12.1 years, mean body mass index: 28.9±5.6 kg/m2). Total and HMW adiponectin concentrations, body composition variables, IR parameters, and plasma lipid levels were determined.
Results
In single SNP analysis adjusting for several potential confounders, SNP +276G>T was associated with higher fasting insulin levels (P = 0.01) and higher homeostasis model assessment index for IR (HOMA-IR; P = 0.009), and SNP +45T>G was associated with lower insulin levels and HOMA-IR (P = 0.05 and P = 0.07 respectively). No association with total or HMW adiponectin, plasma lipid levels, and body composition variables was observed; however, haplotype analysis revealed that subjects homozygous for the most common +45T/+276G haplotype had lower total adiponectin levels than did noncarriers of this haplotype (P = 0.02). The observed differences in HOMA-IR were very significant among women with a higher body fat (BF) percentage (≥ the population median of 41%; all P ≤ 0.005), but not among leaner individuals (P for interactions 0.01–0.07), thus suggesting that ADIPOQ effects on insulin sensitivity may depend upon BF status.
Conclusion
Our data suggest a significant role of ADIPOQ variants at positions +45 and +276 in the development of IR in healthy Greek women possibly through an interaction with BF.
doi:10.1530/EJE-09-0492
PMCID: PMC2896503  PMID: 19755407
2.  Maternal Serum Adiponectin Multimers in Preeclampsia 
Journal of perinatal medicine  2009;37(4):349-363.
Objective
Obesity, insulin resistance, and dyslipidemia are associated with preeclampsia. Recently, “adipose tissue failure”, characterized by dysregulation of adipokine production, has been implicated in the pathophysiology of these metabolic complications. Adiponectin, an insulin-sensitizing, anti-atherogenic, anti-inflammatory and angiogenic adipokine, circulates in oligomeric complexes including: low-molecular-weight (LMW) trimers, medium-molecular-weight (MMW) hexamers and high-molecular-weight (HMW) isoforms. These multimers exert differential biological effects, and HMW to total adiponectin ratio (SA) has been reported to be a specific marker of adiponectin activity. The aim of this study was to determine whether preeclampsia is associated with changes in circulating adiponectin multimers.
Study design
This cross-sectional study included women with: 1) normal pregnancy (n=225); and 2) patients with mild preeclampsia (n=111). The study population was further stratified by first trimester BMI (normal weight <25 kg/m2 vs. overweight/obese ≥25 kg/m2). Serum adiponectin multimers (total, HMW, MMW and LMW) concentrations were determined by ELISA. Non-parametric statistics were used for analysis.
Results
1) The median maternal HMW and LMW adiponectin concentrations were lower in patients with preeclampsia than in those with normal pregnancies (p<0.001 and p=0.01, respectively); 2) patients with preeclampsia had a lower HMW/Total adiponectin ratio (p<0.001) and higher MMW/Total adiponectin and LMW/Total adiponectin ratios than those with a normal pregnancy (p<0.001 and p=0.009, respectively); 3) the presence of preeclampsia was independently associated with lower maternal serum HMW adiponectin concentrations (p=0.001) and with a low HMW/Total adiponectin ratio (p<0.001) after correction for maternal age, maternal BMI, the difference in BMI between the third and the first trimester, and gestational age at sampling; and 4) overweight/obese pregnant women had a lower median total and HMW adiponectin concentration than normal weight pregnant women among women with normal pregnancies, but not among those with preeclampsia.
Conclusion
1) Preeclampsia is associated with a lower median concentration of the HMW adiponectin isoform, the most active form of this adipokine, and a low HMW/Total adiponectin ratio, a specific marker of adiponectin biologic activity; 2) in contrast to normal pregnancy, preeclampsia is not associated with decreased circulating adiponectin multimers in overweight/obese individuals suggesting altered regulation of this adipokine in preeclampsia; 3) collectively, these findings suggest that preeclampsia is characterized by alterations in adiponectin multimers and their relative distribution implying a role for adiponectin multimers in the mechanism of disease in preeclampsia.
doi:10.1515/JPM.2009.085
PMCID: PMC3166229  PMID: 19348608
Adipokines; Pregnancy; High-molecular-weight (HMW) adiponectin; Medium-molecular-weight (MMW) adiponectin; Low-molecular-weight (LMW) adiponectin; BMI; overweight; obesity
3.  Paradoxically Low Levels of Total and HMW Adiponectin in Relation to Metabolic Parameters in a Tongan Population 
ISRN Endocrinology  2013;2013:873507.
Aim. Adiponectin has demonstrated anti-inflammatory and insulin sensitising properties, and low circulating levels may be an important risk factor for diabetes. We examined levels of adiponectin and its insulin-sensitising HMW isoform and their relationship with metabolic parameters in Tongans, a population prone to type II diabetes. Methods. Adiponectin and its HMW isoform were quantitated by Elisa in specimens from a randomly recruited, multistage cluster population survey of Tongans and from a group of Caucasians. Anthropometric, clinical, and biochemical data were collected on each subject. Results. Both male and female Tongans had lower levels of total and HMW adiponectin than their Caucasian counterparts. Levels of total and HMW adiponectin were higher in females than males in each group. Adiponectin levels were inversely related to BMI, weight, and HOMA in Tongan males and females, as well as to dyslipidemia in both sexes. Conclusion. Tongans had lower levels of both total and HMW adiponectin than Caucasians population, even after matching Tongans to their Caucasian counterparts based on BMI, age, and sex. These findings may reflect differences in body composition between the populations not adequately assessed by BMI, lifestyle factors, or a genetic variant likely in a genetically homogenous population.
doi:10.1155/2013/873507
PMCID: PMC3727086  PMID: 23936666
4.  Distribution of Adiponectin Multimeric Forms In Chinese Women With Polycystic Ovary Syndrome and Their Relation To Insulin Resistance 
Objective
Adiponectin, an abundant adipokine with insulin sensitizing properties, exists different multimeric forms, including low molecular weight (LMW), medium molecular weight (MMW), and high molecular weight (HMW) species. Alterations in the distribution of adiponectin multimers and the relationship between adiponectin multimers and insulin resistance (IR) in women with the polycystic ovary syndrome (PCOS) remain unclear. To compare adiponectin multimerization status and estimate of insulin sensitivity in Chinese women with PCOS compared with age and body mass index (BMI)-matched controls.
Methods
Cross-sectional study involving 64 Chinese women with PCOS and 59 normal women. Circulating total adiponectin and its multimeric forms were determined by ELISA and insulin resistance was estimated using the homeostasis assessment insulin resistance index (HOMA-IR).
Results
After controlling for BMI status, levels of both total and HMW adiponectin were significantly lower in women with PCOS compared with normal women (P<0.05). Furthermore, HMW adiponectin provided a stronger contribution to models predicting insulin resistance than total adiponectin. Lastly, decreased HMW adiponectin was associated with increased HOMA-IR in both normal and PCOS women, and this association was independent of both overall adiposity and visceral adiposity.
Conclusion
Levels of both total and HMW adiponectin are decreased in Chinese women with PCOS compared with normal control women and the differences in HMW adiponectin persists after controlling for BMI. Furthermore, HMW adiponectin is a stronger predictor of insulin resistance in both women with PCOS and normal women than total adiponectin.
doi:10.1530/EJE-10-0021
PMCID: PMC3683393  PMID: 20530094
Polycystic ovary syndrome; adiponectin; insulin resistance; HMW-adiponectin
5.  Variants of the Adiponectin and Adiponectin Receptor 1 Genes and Breast Cancer Risk 
Cancer research  2008;68(9):3178-3184.
Breast cancer risk is higher among obese women and women with diabetes. Adiponectin is a protein exclusively secreted by adipose tissue, circulating levels of which have been associated with breast cancer risk. Whether genetic variants within the adiponectin pathway are associated with breast cancer risk is unknown. To explore the association of genetic variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes with breast cancer risk, we conducted a case control study of female patients with breast cancer and healthy female controls from New York City recruited between 1999 and 2004. We genotyped 733 hospital-based breast cancer cases and 839 controls for 10 haplotype-tagging single nucleotide polymorphisms (SNP) of ADIPOQ and ADIPOR1. Two ADIPOQ SNPs (rs2241766 and rs1501299), which have been associated with circulating levels of adiponectin, were associated with breast cancer risk [rs1501299*GG: odd ratios (OR), 1.80; 95% confidence interval (95% CI), 1.14–2.85; rs2241766*TG: OR, 0.61; 95% CI, 0.46–0.80]. One ADIPOR1 SNP (rs7539542), which modulates expression of adiponectin receptor 1 mRNA, was also associated with breast cancer risk (OR, 0.51; 95% CI, 0.28–0.92). Based on the known function of rs2241766 and rs1501299, we categorized individuals by adiponectin signaling status and found that, when compared with high signalers, intermediate signalers had a 4.16-fold increase in breast cancer risk (95% CI, 0.49–35.19), and low signalers had a 6.56-fold increase in breast cancer risk (95% CI, 0.78–54.89; Ptrend = 0.001). This is the first report of an association between functionally relevant variants of the adiponectin pathway and breast cancer risk. The results warrant further studies of the adiponectin pathway in breast cancer.
doi:10.1158/0008-5472.CAN-08-0533
PMCID: PMC2685173  PMID: 18451143
6.  Adiponectin Multimers in Normal Pregnancy 
Objective
Adiponectin is an anti-diabetic, anti-atherogenic, anti-inflammatory and angiogenic adipokine that circulates in oligomeric complexes including: low-molecular-weight (LMW) trimers, medium-molecular-weight (MMW) hexamers and high-molecular-weight (HMW) isoforms. The aim of this study was to determine whether there are changes in adiponectin multimers in pregnancy and as a function of maternal weight.
Study design
In this cross-sectional study, serum concentrations of total, HMW, MMW and LMW adiponectin were determined in women included in three groups: 1) normal pregnant women of normal body mass index (BMI) (n=466); 2) overweight/obese pregnant women (BMI ≥25; n=257); and 3) non-pregnant women of normal weight (n=40). Blood samples were collected once from each pregnant woman between 11 and 42 weeks of gestation. Serum adiponectin multimers concentrations were determined by ELISA. Non-parametric statistics were used for analysis.
Results
1) The median HMW adiponectin concentration and the median HMW/Total adiponectin ratio were significantly higher and the median LMW adiponectin concentration was significantly lower in pregnant than in non-pregnant women; 2) among pregnant women, the median serum concentration of total, HMW and MMW adiponectin was significantly higher in normal weight women than in overweight/obese patients; 3) HMW adiponectin was the most prevalent multimer in maternal serum regardless of gestational age or BMI status; 4) there were no significant differences in the median concentration of total, MMW, LMW adiponectin, and their relative distribution with advancing gestation.
Conclusion
Human pregnancy is characterized by quantitative and qualitative changes in adiponectin multimers, especially of the most active isoform, HMW adiponectin.
doi:10.1080/14767050802266881
PMCID: PMC2729195  PMID: 19031276
Adiponectin; Adipokines; Pregnancy; High molecular weight (HMW) adiponectin; Medium molecular weigh (MMW) adiponectin; Low molecular weight (LMW) adiponectin; BMI
7.  Maternal Serum Adiponectin Multimers In Gestational Diabetes 
Journal of perinatal medicine  2009;37(6):637-650.
Objective
Adiponectin, an adipokine with profound insulin-sensitizing effect, consists of heterogeneous species of multimers. These oligomeric complexes circulate as low-molecular-weight (LMW) trimers, medium-molecular-weight (MMW) hexamers and high-molecular-weight (HMW) isoforms and can exert differential biological effects. The aims of this study were to determine whether there is a change in circulating adiponectin multimers in the presence of gestational diabetes mellitus (GDM), overweight/obesity or with a treatment with sulfonylurea or insulin in patients with GDM.
Study design
This cross-sectional study included women with: 1) normal pregnancy (n=149); and 2) patients with GDM (n=72). Thirty three patients with GDM were managed with diet alone. Among the others 39 diabetic patients, 17 were treated with Glyburide and 22 with insulin. The study population was further stratified by first trimester BMI (normal weight <25 kg/m2 vs. overweight/obese ≥25 kg/m2). Serum adiponectin multimers (total, HMW, MMW and LMW) concentrations were determined by ELISA.
Results
1) The median maternal serum of total, HMW, MMW and LMW were lower in patients with GDM than in those with normal pregnancies (p<0.001 for all comparisons); 2) patients with GDM had a lower HMW/Total adiponectin ratio and a higher MMW/Total and LMW/Total adiponectin ratio than those with a normal pregnancy (p<0.001 for all comparisons); and 3) among GDM patients, there were no differences in the concentrations and relative distribution of adiponectin multimers between those who were managed with diet, and those who were treated with pharmacological agents.
Conclusion
1) GDM is characterized by a distinctive pattern of concentrations and relative distribution of adiponectin multimers akin to Type-2 diabetes mellitus; 2) dysregulation of adiponectin multimeres can provide a mechanistic basis for the association between adiposity and GDM.
doi:10.1515/JPM.2009.101
PMCID: PMC3593069  PMID: 19530957
Adipokines; Pregnancy; High-molecular-weight (HMW) adiponectin; Medium-molecular-weight (MMW) adiponectin; Low-molecular-weight (LMW) adiponectin; BMI; Gestational Diabetes; Diabetes; Overweight; Obesity
8.  ESTIMATING THE CONTRIBUTIONS OF RARE AND COMMON GENETIC VARIATIONS AND CLINICAL MEASURES TO A MODEL TRAIT: ADIPONECTIN 
Genetic epidemiology  2012;37(1):13-24.
Common genetic variation frequently accounts for only a modest amount of inter-individual variation in quantitative traits and complex disease susceptibility. Circulating adiponectin, an adipocytokine implicated in metabolic disease, is a model for assessing the contribution of genetic and clinical factors to quantitative trait variation. The adiponectin locus, ADIPOQ, is the primary source of genetically-mediated variation in plasma adiponectin levels. This study sought to define the genetic architecture of ADIPOQ in the comprehensively phenotyped Hispanic (n=1151) and African American (n=574) participants from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Through resequencing and bioinformatic analysis, rare/low frequency (<5% MAF) and common variants (>5% MAF) in ADIPOQ were identified. Genetic variants and clinical variables were assessed for association with adiponectin levels and contribution to adiponectin variance in the Hispanic and African American cohorts. Clinical traits accounted for the greatest proportion of variance (POV) at 31% (p=1.16×10−47) and 47% (p=5.82×10−20), respectively. Rare/low frequency variants contributed more than common variants to variance in Hispanics: POV=18% (p= 6.40×10−15) and POV=5% (p=0.19), respectively. In African Americans, rare/low frequency and common variants both contributed approximately equally to variance: POV=6% (p=5.44×10−12) and POV=9% (P=1.44×10−10), respectively. Importantly, single low frequency alleles in each ethnic group were as important as, or more important than, common variants in explaining variation in adiponectin. Cumulatively, these clinical and ethnicity-specific genetic contributors explained half or more of the variance in Hispanic and African Americans and provide new insight into the sources of variation for this important adipocytokine.
doi:10.1002/gepi.21685
PMCID: PMC3736586  PMID: 23032297
adiponectin; proportion of variation; rare variants; common variants; clinical traits
9.  ADIPOQ, ADIPOR1, and ADIPOR2 Polymorphisms in Relation to Serum Adiponectin Levels and Body Mass Index in Black and White Women 
Obesity (Silver Spring, Md.)  2011;19(10):2053-2062.
Adiponectin is an adipose-secreted protein with influence on several physiologic pathways including those related to insulin sensitivity, inflammation, and atherogenesis. Adiponectin levels are highly heritable and several single nucleotide polymorphisms (SNPs) in adiponectin-related genes (ADIPOQ, ADIPOR1, ADIPOR2) have been examined in relation to circulating adiponectin levels and obesity phenotypes, but despite differences in adiponectin levels and obesity prevalence by race, few studies have included black participants. Using cross-sectional interview data and blood samples collected from 990 black and 977 white women enrolled in the Southern Community Cohort Study from 2002 to 2006, we examined 25 SNPs in ADIPOQ, 19 in ADIPOR1, and 27 in ADIPOR2 in relation to serum adiponectin levels and body mass index (BMI) using race-stratified linear regression models adjusted for age and percentage African ancestry. SNP rs17366568 in ADIPOQ was significantly associated with serum adiponectin levels in white women only (adjusted mean adiponectin levels = 15.9 for G/G genotype, 13.7 for A/G, and 9.3 for A/A, p=0.00036). No other SNPs were associated with adiponectin or BMI among blacks or whites. Because adiponectin levels as well as obesity are highly heritable and vary by race but associations with polymorphisms in the ADIPOQ, ADIPOR1, and ADIPOR2 genes have been few in this and other studies, future work including large populations from diverse racial groups is needed to detect additional genetic variants that influence adiponectin and BMI.
doi:10.1038/oby.2010.346
PMCID: PMC3474141  PMID: 21273992
Adiponectin; obesity; genetics; African Americans
10.  A comprehensive investigation of variants in genes encoding adiponectin (ADIPOQ) and its receptors (ADIPOR1/R2), and their association with serum adiponectin, type 2 diabetes, insulin resistance and the metabolic syndrome 
BMC Medical Genetics  2013;14:15.
Background
Low levels of serum adiponectin have been linked to central obesity, insulin resistance, metabolic syndrome, and type 2 diabetes. Variants in ADIPOQ, the gene encoding adiponectin, have been shown to influence serum adiponectin concentration, and along with variants in the adiponectin receptors (ADIPOR1 and ADIPOR2) have been implicated in metabolic syndrome and type 2 diabetes. This study aimed to comprehensively investigate the association of common variants in ADIPOQ, ADIPOR1 and ADIPOR2 with serum adiponectin and insulin resistance syndromes in a large cohort of European-Australian individuals.
Methods
Sixty-four tagging single nucleotide polymorphisms in ADIPOQ, ADIPOR1 and ADIPOR2 were genotyped in two general population cohorts consisting of 2,355 subjects, and one cohort of 967 subjects with type 2 diabetes. The association of tagSNPs with outcomes were evaluated using linear or logistic modelling. Meta-analysis of the three cohorts was performed by random-effects modelling.
Results
Meta-analysis revealed nine genotyped tagSNPs in ADIPOQ significantly associated with serum adiponectin across all cohorts after adjustment for age, gender and BMI, including rs10937273, rs12637534, rs1648707, rs16861209, rs822395, rs17366568, rs3774261, rs6444175 and rs17373414. The results of haplotype-based analyses were also consistent. Overall, the variants in the ADIPOQ gene explained <5% of the variance in serum adiponectin concentration. None of the ADIPOR1/R2 tagSNPs were associated with serum adiponectin. There was no association between any of the genetic variants and insulin resistance or metabolic syndrome. A multi-SNP genotypic risk score for ADIPOQ alleles revealed an association with 3 independent SNPs, rs12637534, rs16861209, rs17366568 and type 2 diabetes after adjusting for adiponectin levels (OR=0.86, 95% CI=(0.75, 0.99), P=0.0134).
Conclusions
Genetic variation in ADIPOQ, but not its receptors, was associated with altered serum adiponectin. However, genetic variation in ADIPOQ and its receptors does not appear to contribute to the risk of insulin resistance or metabolic syndrome but did for type 2 diabetes in a European-Australian population.
doi:10.1186/1471-2350-14-15
PMCID: PMC3598639  PMID: 23351195
Adiponectin; ADIPOQ; ADIPOR; Type 2 diabetes; Insulin resistance and Metabolic syndrome
11.  Novel Locus FER Is Associated With Serum HMW Adiponectin Levels 
Diabetes  2011;60(8):2197-2201.
OBJECTIVE
High molecular weight (HMW) adiponectin is a predominant isoform of circulating adiponectin and has been related to type 2 diabetes. Previous linkage studies suggest that different genetic components might be involved in determining HMW and total adiponectin levels.
RESEARCH DESIGN AND METHODS
We performed a genome-wide association study (GWAS) of serum HMW adiponectin levels in individuals of European ancestry drawn from the Nurses’ Health Study (NHS) (N = 1,591). The single nucleotide polymorphisms (SNPs) identified in the GWAS analysis were replicated in an independent cohort of Europeans (N = 626). We examined the associations of the identified variations with diabetes risk and metabolic syndrome.
RESULTS
We identified a novel locus near the FER gene (5q21) at a genome-wide significance level, best represented by SNP rs10447248 (P = 4.69 × 10−8). We also confirmed that variations near the adiponectin-encoding ADIPOQ locus (3q27) were related to serum HMW adiponectin levels. In addition, we found that FER SNP rs10447248 was related to HDL cholesterol levels (P = 0.009); ADIPOQ variation was associated with fasting glucose (P = 0.04), HDL cholesterol (P = 0.04), and a metabolic syndrome score (P = 0.002).
CONCLUSIONS
Our results suggest that different loci may be involved in regulation of circulating HMW adiponectin levels and provide novel insight into the mechanisms that affect HMW adiponectin homeostasis.
doi:10.2337/db10-1645
PMCID: PMC3142072  PMID: 21700879
12.  Altered distribution of adiponectin isoforms in children with Prader–Willi syndrome (PWS): association with insulin sensitivity and circulating satiety peptide hormones 
Clinical endocrinology  2007;67(6):944-951.
Summary
Objective
Prader–Willi syndrome (PWS) is a genetic syndrome characterized by relative hypoinsulinaemia and normal or increased insulin sensitivity despite profound obesity. We hypothesized that this increased insulin sensitivity is mediated by increased levels of total and high molecular weight adiponectin and associated with changes in levels of satiety hormones.
Design, patients and measurements
We measured total adiponectin and its isoforms [high molecular weight (HMW), middle molecular weight (MMW) and low molecular weight (LMW) adiponectin] and satiety hormones in 14 children with PWS [median age 11.35 years, body mass index (BMI) Z-score 2.15] and 14 BMI-matched controls (median age 11.97 years, BMI Z-score 2.34).
Results
Despite comparable BMI Z-scores and leptin levels, the PWS children exhibited lower fasting insulin and HOMA-IR (homeostasis model assessment of insulin resistance) scores compared to obese controls. For any given BMI Z-score, the PWS children showed higher concentrations of fasting total and HMW adiponectin and higher HMW/total adiponectin ratios. The HMW/total adioponectin ratio was preserved in children with PWS at high degrees of obesity. In PWS children, fasting plasma total adiponectin, HMW adiponectin and HMW/total adiponectin ratio correlated negatively with age (P < 0.05), HOMA-IR (P < 0.01), BMI Z-score (P < 0.05), insulin (P < 0.01) and leptin (P < 0.05). In addition to higher fasting ghrelin concentrations, the PWS children showed significantly higher fasting levels of total peptide YY (PYY) and gastric inhibitory polypeptide (GIP) compared to obese controls.
Conclusions
Relative to controls of similar age and BMI Z-score, the PWS children had significantly higher levels of total and HMW adiponectin, and increased ratios of HMW/total adiponectin. These findings may explain in part the heightened insulin sensitivity of PWS children relative to BMI-matched controls.
doi:10.1111/j.1365-2265.2007.02991.x
PMCID: PMC2605973  PMID: 17666087
13.  A Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin Levels 
PLoS Genetics  2009;5(12):e1000768.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.
Author Summary
Through a meta-analysis of genome-wide association studies of 14,733 individuals, we identified common base-pair variants in the genome which influence circulating adiponectin levels. Since adiponectin is an adipocyte-derived circulating protein which has been inversely associated with risk of obesity-related diseases such as type 2 diabetes (T2D) and coronary heart disease (CHD), we next sought to understand if the identified variants influencing adiponectin levels also influence risk of T2D, CHD, and several metabolic traits. In addition to confirming that variation at the ADIPOQ locus influences adiponectin levels, our analyses point to a variant in the ARL15 (ADP-ribosylation factor-like 15) locus which decreases adiponectin levels and increases risk of CHD and T2D. Further, this same variant was associated with increased fasting insulin levels and glycated hemoglobin. While the function of ARL15 is not known, we provide insight into the tissue specificity of ARL15 expression. These results thus provide novel insights into the physiology of the adiponectin pathway and obesity-related diseases.
doi:10.1371/journal.pgen.1000768
PMCID: PMC2781107  PMID: 20011104
14.  Biomarkers of Adiponectin: Plasma Protein Variation and Genomic DNA Polymorphisms 
Biomarker Insights  2009;4:123-133.
Adiponectin is secreted by white adipose tissue and exists as the most abundant adipokine in the human plasma. Recent research has indicated that plasma adiponectin levels are inversely correlated with body mass index (BMI) and insulin resistance. Reduction of plasma adiponectin levels is commonly observed in the patients with type 2 diabetes (T2D) and/or in those who are obese in comparison with healthy control individuals. The adiponectin (AdipoQ) gene has a moderate linkage disequilibrium (LD), but two small LD blocks are observed, respectively, in the promoter region and the boundary of exon 2-intron 2. Genetic association studies have demonstrated that single nucleotide polymorphisms (SNPs) +45G15G(T/G) in exon 2 and +276G/T in intron 2 of the AdipoQ gene confer the risk susceptibility to the development of T2D, obesity and diabetic nephropathy (DN). The SNPs in the promoter region, including −11426A/G, −11377C/G and −11391G/A, are found to be associated with T2D and DN. Recent research has indicated that the promoter polymorphisms interfere with the AdipoQ promoter activity. The haplotypes constructed by the promoter polymorphisms and SNP +276G/T in intron 2 are associated with circulating adiponectin levels. This review summarises genetic and pathophysiological relevancies of adiponectin and discusses about the biomarkers of adiponectin plasma protein variation and genomic DNA polymorphisms.
PMCID: PMC2796863  PMID: 20029651
adiponectin; biomarker; genetic polymorphism; protein variation
15.  DYSREGULATION OF MATERNAL SERUM ADIPONECTIN IN PRETERM LABOR 
Objective
Intra-amniotic and systemic infection/inflammation have been causally linked to preterm parturition and fetal injury. An emerging theme is that adipose tissue can orchestrate a metabolic response to insults, but also an inflammatory response via the production of adipocytokines, and that these two phenomenon are interrelated. Adiponectin, an insulin-sensitizing, anti-inflammatory adipocytokine, circulates in multimeric complexes including low-molecular-weight (LMW) trimers, medium-molecular-weight (MMW) hexamers and high-molecular-weight (HMW) isoforms. Each of these complexes can exert differential biological effects. The aim of this study was to determine whether spontaneous preterm labor (PTL) with intact membranes and intra-amniotic infection/inflammation (IAI) is associated with changes in maternal serum circulating adiponectin multimers.
Study design
This cross-sectional study included patients in the following groups: 1) normal pregnant women (n=158); 2) patients with an episode of preterm labor and intact membranes without IAI who delivered at term (n=41); 3) preterm labor without IAI who delivered preterm (n=27); and 4) preterm labor with IAI who delivered preterm (n=36). Serum adiponectin multimers (total, HMW, MMW and LMW) concentrations were determined by ELISA. Non-parametric statistics were used for analyses.
Results
1) Preterm labor leading to preterm delivery or an episode of preterm labor which does not lead to preterm delivery, was associated with a lower median maternal serum concentration of total and HMW adiponectin, a lower median HMW/total adiponectin ratio, and a higher median LMW/total adiponectin ratio than normal pregnancy; 2) among patients with preterm labor, those with IAI had the lowest median concentration of total and HMW adiponectin, as well as the lowest median HMW/total adiponectin ratio; 3) The changes in maternal adiponectin and adiponectin multimers remained significant after adjusting for confounding factors such as maternal age, BMI, gestational age at sampling, and parity.
Conclusion
1) Preterm labor is characterized by a change in the profile of adiponectin multimers concentrations and their relative isoforms. These changes were observed in patients with an episode of preterm labor not leading to preterm delivery, in patients with intra-amniotic inflammation, or in those without evidence of intra-amniotic inflammation; 2) The changes in adiponectin multimer concentrations reported in preterm labor are different from those previously reported in spontaneous labor at term, suggesting that there is a fundamental difference between preterm labor and labor at term; 3) The findings reported herein, provide the first evidence for the participation of adiponectin multimer in preterm parturition. We propose that adiponectins and adipokines in general provide a mechanism to organize the metabolic demands generated by the process of preterm parturition regardless of the nature of the insult (intra-amniotic inflammation or not).
doi:10.1080/14767050902994655
PMCID: PMC3600360  PMID: 19579094
Adiponectin; Adipokines; Pregnancy; High molecular weight (HMW); Medium molecular weight (MMW); Low molecular weight (LMW); Preterm labor; Intra-amniotic infection; Inflammation; Chorioamnionitis; Preterm delivery; Energy Requirements; Energy Expenditure; Preterm Birth; Metabolism; Metaflammation
16.  Polymorphisms of ADIPOQ and ADIPOR1 and prostate cancer risk 
Objective
Studies have linked prostate cancer risk with insulin resistance and obesity. Circulating levels of adiponectin, a protein involved in insulin resistance and obesity, have been associated with prostate cancer risk. We studied the association of prostate cancer risk with haplotype tagging single nucleotide polymorphisms (SNPs) of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) chosen based on their functional relevance or association with other types of cancer.
Materials-Methods
DNA samples from 465 cases and 441 healthy volunteers from New York City were genotyped for ADIPOQ rs266729, rs822395, rs822396, rs1501299 and rs2241766 SNPs and ADIPOR1 rs12733285, rs1342387, rs7539542, rs2232853 and rs10920531 SNPs. We performed both single and multiple SNP analyses.
Results
We found that rs12733285, rs7539452, rs266729, rs822395, rs822396 and rs1501299 were significantly associated with prostate cancer risk. Haplotype analysis confirmed these results and identified five ADIPOQ 4-SNP haplotypes and one ADIPOR1 2-SNP haplotype tightly associated with prostate cancer risk. Importantly two ADIPOQ SNPs, rs266729 and rs1501299 have been previously associated with colon and breast cancer risk, respectively, in the same direction as in this study.
Conclusions
These findings suggest that variants of the adiponectin pathway may be associated with susceptibility to various forms of common cancers and warrant validation studies.
doi:10.1016/j.metabol.2011.01.005
PMCID: PMC3134585  PMID: 21397927
17.  Adiponectin Multimers and Metabolic Syndrome Traits: Relative Adiponectin Resistance in African Americans 
Obesity (Silver Spring, Md.)  2008;16(12):2616-2623.
African Americans (AAs) tend to have lower total adiponectin levels compared to European Americans (EA); however, it is not known whether race affects adiponectin multimer distribution and their relationships to metabolic traits. We measured total adiponectin, high molecular weight (HMW), low molecular weight (LMW) (i.e., hexamer), and trimer adiponectin in 132 normoglycemic premenopausal women (75 AAs, 57 EAs), together with measures of total and abdominal fat, plasma lipids, insulin sensitivity (Si), and genetic admixture estimates. We found that lower total adiponectin in AAs was explained by reduced LMW, and trimer forms because levels of HMW did not differ between races. In EAs, HMW was highly correlated with multiple metabolic syndrome traits. In contrast, the LMW and trimer forms were most highly correlated with metabolic traits in AAs, including abdominal adiposity, lipids, and Si. At similar levels of visceral adiposity, AAs exhibited significantly lower LMW adiponectin than EAs. Similarly, at comparable levels of HMW and LMW adiponectin, AAs were more insulin resistant than their EA counterparts. In conclusion, (i) serum adiponectin is lower in AAs predominantly as a result of reduced concentrations of LMW and trimers multimeric forms; (ii) LMW and trimer, not HMW, are most broadly correlated with metabolic traits in AAs. Thus, HMW adiponectin may exert less bioactivity in explaining the metabolic syndrome trait cluster in populations of predominant African genetic background.
doi:10.1038/oby.2008.411
PMCID: PMC2721223  PMID: 18820653
18.  Functional Characterization of Promoter Variants of the Adiponectin Gene Complemented by Epidemiological Data 
Diabetes  2008;58(4):984-991.
OBJECTIVE
Adiponectin (APM1, ACDC) is an adipocyte-derived protein with downregulated expression in obesity and insulin-resistant states. Several potentially regulatory single nucleotide polymorphisms (SNPs) within the APM1 gene promoter region have been associated with circulating adiponectin levels. None of them have been functionally characterized in adiponectin-expressing cells. Hence, we investigated three SNPs (rs16861194, rs17300539, and rs266729) for their influence on adiponectin promoter activity and their association with circulating adiponectin levels.
RESEARCH DESIGN AND METHODS
Basal and rosiglitazone-induced promoter activity of different SNP combinations (haplotypes) was analyzed in 3T3-L1 adipocytes using luciferase reporter gene assays and DNA binding studies comparing all possible APM1 haplotypes. This functional approach was complemented with analysis of epidemiological population-based data of 1,692 participants of the MONICA/KORA S123 cohort and 696 participants from the KORA S4 cohort for SNP and haplotype association with circulating adiponectin levels.
RESULTS
Major to minor allele replacements of the three SNPs revealed significant effects on promoter activity in luciferase assays. Particularly, a minor variant in rs16861194 resulted in reduced basal and rosiglitazone-induced promoter activity and hypoadiponectinemia in the epidemiological datasets. The haplotype with the minor allele in all three SNPs showed a complete loss of promoter activity, and no subject carried this haplotype in either of the epidemiological samples (combined P value for statistically significant difference from a random sample was 0.006).
CONCLUSIONS
Our results clearly demonstrate that promoter variants associated with hypoadiponectinemia in humans substantially affect adiponectin promoter activity in adipocytes. Our combination of functional experiments with epidemiological data overcomes the drawback of each approach alone.
doi:10.2337/db07-1646
PMCID: PMC2661577  PMID: 19074982
19.  Association of Plasma Retinol-Binding Protein 4, Adiponectin, and High Molecular Weight Adiponectin with Insulin Resistance in Non-Diabetic Hypertensive Patients 
Yonsei Medical Journal  2010;51(3):375-384.
Purpose
The aim of this study was to determine whether retinol-binding protein 4 (RBP4), adiponectin and high molecular weight (HMW) adiponectin are associated with insulin resistance (IR) and metabolic parameters in non-diabetic hypertensive patients. Also, we sought to compare the predictive values of these adipocytokines for IR in non-diabetic hypertensive patients.
Materials and Methods
Analyses of RBP4, adiponectin, and HMW adiponectin were performed on 308 non-diabetic hypertensives (148 males, age 58 ± 10 years, 189 non-metabolic syndrome and 119 metabolic syndrome). The homeostasis model assessment (HOMA) index for IR, lipid profiles, and anthropometric measure-ments were assessed.
Results
There was no significant difference in RBP4 levels according to the presence of metabolic syndrome, although adiponectin and HMW adiponectin were significantly lower in metabolic syndrome. Correlation analysis of log RBP4 with IR and metabolic indices revealed that there was no significant correlation of RBP4 with waist circumference (r = 0.056, p = 0.324), HDL cholesterol (r = 0.005, p = 0.934), ApoB/ApoAI ratio (r = 0.066, p = 0.270), and the HOMA index (r = 0.017, p = 0.756). However, adiponectin and HMW adiponectin showed significant correlations with the HOMA index (r = - 0.247, p < 0.001; r = - 0.296, p < 0.001) and metabolic parameters. With IR defined as HOMA index ≥ 2.5, HMW adiponectin did not demonstrate a superior predictive value for IR compared to adiponectin (AUC = 0.680 vs. 0.648, p = 0.083). The predictive value of RBP4 for IR was minimal (AUC = 0.534).
Conclusion
RBP4 was not associated with IR or metabolic indices and the predictive value for IR was minimal in hypertensives. HMW adiponectin didn't have a superior predictive value for IR compared to adiponectin. Therefore, we can suggest that RBP4 and HMW adiponectin don't have more additive information than adiponectin in non-diabetic hypertensives.
doi:10.3349/ymj.2010.51.3.375
PMCID: PMC2852793  PMID: 20376890
Retinol-binding proteins; adiponectin; hypertension; insulin resistance
20.  Adiponectin pathway polymorphisms and risk of breast cancer in African Americans and Hispanics in the Women’s Health Initiative 
Background
Adiponectin, a protein secreted by the adipose tissue, is an endogenous insulin sensitizer with circulating levels that are decreased in obese and diabetic subjects. Recently, circulating levels of adiponectin have been correlated with breast cancer risk. Our previous work showed that polymorphisms of the adiponectin pathway are associated with breast cancer risk.
Methods
We conducted the first study of adiponectin pathways in African Americans and Hispanics in the Women’s Health Initiative (WHI) SNP Health Association Resource (SHARe) cohort of 3,642 self-identified Hispanic women and 8,515 self-identified African American women who provided consent for DNA analysis. Single nucleotide polymorphisms (SNPs) from three genes were included in this analysis: ADIPOQ, ADIPOR1 and ADIPOR2. The Genome-wide Human SNP Array 6.0 (909,622 SNPs) (www.affymetrix.com) was used.
Results
We found that rs1501299, a functional SNP of ADIPOQ that we previously reported was associated with breast cancer risk in a mostly Caucasian population, was also significantly associated with breast cancer incidence (HR for the GG/TG genotype: 1.23; 95% CI: 1.059–1.43) in African American women. We did not find any other SNPs in these genes to be associated with breast cancer incidence.
Conclusions
This is the first study assessing the role of adiponectin pathway SNPs in breast cancer risk in African Americans and Hispanics. RS1501299 is significantly associated with breast cancer risk in African American women. Impact: As the rates of obesity and diabetes increase in African Americans and Hispanics, adiponectin and its functional SNPs may aid in breast cancer risk assessment.
doi:10.1007/s10549-013-2546-6
PMCID: PMC3773607  PMID: 23624817
adiponectin; polymorphisms; breast cancer; African Americans; Hispanics
21.  Association of Atherosclerotic Peripheral Arterial Disease with Adiponectin Genes SNP+45 and SNP+276: A Case-Control Study 
BioMed Research International  2013;2013:501203.
Objectives. We hypothesized that adiponectin gene SNP+45 (rs2241766) and SNP+276 (rs1501299) would be associated with atherosclerotic peripheral arterial disease (PAD). Furthermore, the association between circulating adiponectin levels, fetuin-A, and tumoral necrosis factor-alpha (TNF-α) in patients with atherosclerotic peripheral arterial disease was investigated. Method. Several blood parameters (such as adiponectin, fetuin-A, and TNF-α) were measured in 346 patients, 226 with atherosclerotic peripheral arterial disease (PAD) and 120 without symptomatic PAD (non-PAD). Two common SNPs of the ADIPOQ gene represented by +45T/G 2 and +276G/T were also investigated. Results. Adiponectin concentrations showed lower circulating levels in the PAD patients compared to non-PAD patients (P < 0.001). Decreasing adiponectin concentration was associated with increasing serum levels of fetuin-A in the PAD patients. None of the investigated adiponectin SNPs proved to be associated with the subjects' susceptibility to PAD (P > 0.05). Conclusion. The results of our study demonstrated that neither adiponectin SNP+45 nor SNP+276 is associated with the risk of PAD.
doi:10.1155/2013/501203
PMCID: PMC3686066  PMID: 23819115
22.  MATERNAL SERUM ADIPONECTIN MULTIMERS IN PATIENTS WITH A SMALL-FOR-GESTATIONAL-AGE NEWBORN 
Journal of perinatal medicine  2009;37(6):623-635.
Objective
Several mechanisms of disease have been implicated in the pathophysiology of SGA including an anti-angiogenic state, failure of physiologic transformation of spiral arteries, and an exaggerated intravascular pro-inflammatory response. Adiponectin, an insulin-sensitizing, anti-atherogenic, anti-inflammatory and angiogenic adipokine circulates in oligomeric complexes including low-molecular-weight (LMW) trimers, medium-molecular-weight (MMW) hexamers and high-molecular-weight (HMW) isoforms. Adiponectin plays a role in a wide range of biological activities including those that have been implicated in the pathophysiology SGA. Thus, the aim of this study was to determine if third trimester adiponectin concentrations differed between women with normal weight infants and those with an SGA neonate.
Study design
This cross-sectional study included women with: 1) a normal pregnancy (n=234); and 2) an SGA neonate (n=78). The study population was further stratified by first trimester BMI (normal weight <25 kg/m2 vs. overweight/obese ≥25 kg/m2). Maternal serum adiponectin multimers (total, HMW, MMW and LMW) concentrations were determined by ELISA. Non-parametric statistics were used for analyses.
Results
1) The median maternal serum concentrations of total, HMW and MMW adiponectin were significantly lower in patients with an SGA neonate than in those with normal pregnancies; 2) patients with an SGA neonate had a significantly lower median HMW/total adiponectin ratio and higher median MMW/total adiponectin and LMW/total adiponectin ratios than those with a normal pregnancy; 3) among patients with an SGA neonate, neither maternal serum concentrations of adiponectin multimers, nor their relative distribution differ between normal weight and overweight/obese patients.
Conclusion
1) Pregnancies complicated by an SGA neonate are characterized by a alterations in the maternal serum adiponectin multimers concentrations and their relative abundance; 2) in contrast to normal pregnancies, those complicated by an SGA neonate are not associated with low circulating adiponectin multimers in overweight/obese individuals suggesting altered regulation of this adipokine in the presence of an SGA neonate; 3) collectively, the findings reported herein suggest that maternal adipose tissue may play a role, in the pathogenesis of SGA.
doi:10.1515/JPM.2009.128
PMCID: PMC3594513  PMID: 19530958
Adipokines; Pregnancy; High-molecular-weight (HMW) adiponectin; Medium-molecular-weight (MMW) adiponectin; Low-molecular-weight (LMW) adiponectin; BMI; overweight; obesity; fetal growth; SGA; pregnancy; Adipose tissue
23.  Maternal and Cord Blood Adiponectin Multimeric Forms in Gestational Diabetes Mellitus 
Diabetes Care  2011;34(11):2418-2423.
OBJECTIVE
To analyze the relationship between maternal adiponectin (mAdiponectin) and cord blood adiponectin (cbAdiponectin) multimeric forms (high molecular weight [HMW], medium molecular weight [MMW], and low molecular weight [LMW]) in a cohort of gestational diabetes mellitus (GDM) and normal glucose–tolerant (NGT) pregnant women.
RESEARCH DESIGN AND METHODS
A total of 212 women with a singleton pregnancy, 132 with NGT and 80 with GDM, and their offspring were studied. Maternal blood was obtained in the early third trimester and cord blood was obtained at delivery. Total adiponectin and the multimeric forms of adiponectin were determined in cord blood and maternal serum. Spearman rank correlation and stepwise linear correlation analysis were used to assess the relationship between cbAdiponectin levels and clinical and analytical parameters.
RESULTS
No differences in cbAdiponectin concentration or its multimeric forms were observed in the offspring of diabetic mothers compared with NGT mothers. The HMW-to-total adiponectin ratio was higher in cord blood than in maternal serum, whereas the MMW- and LMW-to-total adiponectin ratio was lower. Cord blood total and HMW adiponectin levels were positively correlated with birth weight and the ponderal index (PI), whereas cord blood MMW adiponectin was negatively correlated with the PI. In addition, cbAdiponectin and its multimeric forms were correlated with mAdiponectin concentrations. In the multivariate analysis, maternal multimeric forms of adiponectin emerged as independent predictors of cbAdiponectin, its multimers, and their distribution.
CONCLUSIONS
cbAdiponectin concentrations are independently related to mAdiponectin levels and unrelated to the diagnosis of GDM. Maternal multimeric forms of adiponectin are independent predictors of the concentrations of cbAdiponectin and its multimeric forms at delivery.
doi:10.2337/dc11-0788
PMCID: PMC3198272  PMID: 21911780
24.  Suggestion for linkage of chromosome 1p35.2 and 3q28 to plasma adiponectin concentrations in the GOLDN Study 
BMC Medical Genetics  2009;10:39.
Background
Adiponectin is inversely associated with obesity, insulin resistance, and atherosclerosis, but little is known about the genetic pathways that regulate the plasma level of this protein. To find novel genes that influence circulating levels of adiponectin, a genome-wide linkage scan was performed on plasma adiponectin concentrations before and after 3 weeks of treatment with fenofibrate (160 mg daily) in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. We studied Caucasian individuals (n = 1121) from 190 families in Utah and Minnesota. Of these, 859 individuals from 175 families had both baseline and post-fenofibrate treatment measurements for adiponectin. Plasma adiponectin concentrations were measured with an ELISA assay. All participants were typed for microsatellite markers included in the Marshfield Mammalian Genotyping Service marker set 12, which includes 407 markers spaced at approximately 10 cM regions across the genome. Variance components analysis was used to estimate heritability and to perform genome-wide scans. Adiponectin was adjusted for age, sex, and field center. Additional models also included BMI adjustment.
Results
Baseline and post-fenofibrate adiponectin measurements were highly correlated (r = 0.95). Suggestive (LOD > 2) peaks were found on chromosomes 1p35.2 and 3q28 (near the location of the adiponectin gene).
Conclusion
Two candidate genes, IL22RA1 and IL28RA, lie under the chromosome 1 peak; further analyses are needed to identify the specific genetic variants in this region that influence circulating adiponectin concentrations.
doi:10.1186/1471-2350-10-39
PMCID: PMC2691741  PMID: 19426517
25.  Genetic polymorphisms in obesity-related genes and endometrial cancer risk 
Cancer  2011;118(13):3356-3364.
Background
Obesity is associated with circulating levels of adiponectin and leptin and endometrial cancer risk. Little is known about whether single nucleotide polymorphisms (SNPs) in the genes that encode adiponectin (ADIPOQ), leptin (LEP), adiponectin receptor 1 (ADIPOR1), adiponectin receptor 2 (ADIPOR2), and leptin receptor (LEPR) are associated with endometrial cancer.
Methods
We selected 87 tagging SNPs to capture common genetic variants in these five genes. These SNPs were evaluated in 1,028 endometrial cancer cases and 1,932 community controls recruited from Chinese women. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs).
Results
Three of the 10 SNPs evaluated in the ADIPOQ gene were significantly associated with reduced cancer risk. The OR for women homozygous for the minor allele (A/A) for rs3774262 was 0.68 (95% CI: 0.48-0.97) compared with women homozygous for the major allele (G/G). Similar results were found for SNPs rs1063539 and rs12629945 in ADIPOQ, which were in linkage disequilibrium with rs3774262. These associations became non-significant after Bonferroni correction was applied. Controls with the minor allele A at rs3774262 had lower weight, waist circumference, hip circumference, and BMI than controls with the major allele G (all P<0.05). Women homozygous for the minor allele (T/T) of rs2071045 in the LEP gene also had significantly lower risk (OR=0.70 (0.54-0.90)) than women homozygous for the major allele (C/C). No other SNPs in the LEP, ADIPOR1, ADIPOR2, or LEPR genes were found to be associated with cancer risk.
Conclusions
Although a chance finding cannot be ruled out, the consistency of findings for gene-endometrial cancer risk and gene-obesity measurements suggests that genetic polymorphisms in the ADIPOQ genes may play a role in endometrial cancer development.
doi:10.1002/cncr.26552
PMCID: PMC3270123  PMID: 22038736
adipokine; adiponectin; leptin; polymorphism; obesity; endometrial cancer

Results 1-25 (599620)