Search tips
Search criteria

Results 1-25 (880382)

Clipboard (0)

Related Articles

1.  Is group size related to longevity in mammals? 
Biology Letters  2010;6(6):736-739.
Life-history theory predicts that reduced extrinsic risk of mortality should increase species longevity over evolutionary time. Increasing group size should reduce an individual's risk of predation, and consequently reduce its extrinsic risk of mortality. Therefore, we should expect a relationship between group size and maximum longevity across species, while controlling for well-known correlates of longevity. We tested this hypothesis using a dataset of 253 mammal species and phylogenetic comparative methods. We found that group size was a poor predictor of maximum longevity across all mammals, as well as within primates and rodents. We found a weak but significant group-size effect on artiodactyl longevity, but in a negative direction. Body mass was consistently the best predictor of maximum longevity, which may be owing to lower predation risk and/or lower basal metabolic rates for large species. Artiodactyls living in large groups may exhibit higher rates of extrinsic mortality because of being more conspicuous to predators in open habitats, resulting in shorter lifespans.
PMCID: PMC3001368  PMID: 20462887
lifespan; senescence; life history; predation; sociality
2.  Foraging Ecology of Fall-Migrating Shorebirds in the Illinois River Valley 
PLoS ONE  2012;7(9):e45121.
Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity would need to be revised downward if Oligochaetes are truly avoided or unavailable for consumption.
PMCID: PMC3445572  PMID: 23028795
3.  The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals 
During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i) the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii) the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii) the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity). These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation.
A phylogenetic analysis of cytochrome b third-codon position confirms that the mitochondrial DNA mutation rate is quite variable in birds, passerines being the fastest evolving order. On average, mitochondrial DNA evolves slower in birds than in mammals of similar body size. This result is in agreement with the longevity hypothesis, and contradicts the hypothesis of a metabolic rate-dependent mutation rate. Birds show no footprint of adaptive selection on cytochrome b evolutionary patterns, but no link between direct estimates of population size and cytochrome b diversity. The mutation rate is the best predictor we have of within-species mitochondrial diversity in birds. It partly explains the differences in mitochondrial DNA diversity patterns observed between mammals and birds, previously interpreted as reflecting Hill-Robertson interferences with the W chromosome.
Mitochondrial DNA diversity patterns in birds are strongly influenced by the wide, unexpected variation of mutation rate across species. From a fundamental point of view, these results are strongly consistent with a relationship between species maximal longevity and mitochondrial mutation rate, in agreement with the mitochondrial theory of ageing. Form an applied point of view, this study reinforces and extends the message of caution previously expressed for mammals: mitochondrial data tell nothing about species population sizes, and strongly depart the molecular clock assumption.
PMCID: PMC2660308  PMID: 19284537
4.  Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in Different Ecological Guilds and Taxa of Migrating Birds†  
Applied and Environmental Microbiology  2002;68(12):5911-5917.
A total of 1,794 migrating birds trapped at a coastal site in southern Sweden were sampled for detection of Campylobacter spp. All isolates phenotypically identified as Campylobacter jejuni and a subset of those identified as non-C. jejuni were identified to the species level by PCR-based techniques. C. jejuni was found in 5.0% of the birds, Campylobacter lari was found in 5.6%, and Campylobacter coli was found in 0.9%. An additional 10.7% of the tested birds were infected with hippurate hydrolysis-negative Campylobacter spp. that were not identified to the species level. The prevalence of Campylobacter spp. differed significantly between ecological guilds of birds. Shoreline-foraging birds feeding on invertebrates and opportunistic feeders were most commonly infected (76.8 and 50.0%, respectively). High prevalence was also shown in other ground-foraging guilds, i.e., ground-foraging invertebrate feeders (11.0%), ground-foraging insectivores (20.3%), and plant-eating species (18.8%). Almost no Campylobacter spp. were found in ground-foraging granivores (2.3%), arboreal insectivores (0.6%), aerial insectivores (0%), or reed- and herbaceous plant-foraging insectivores (3.5%). During the autumn migration, a high proportion of samples from juveniles were positive (7.1% in passerines, 55.0% in shorebirds), indicating transmission on the breeding grounds or during the early part of migration. Prevalence of Campylobacter spp. was associated with increasing body mass among passerine bird species. Furthermore, prevalence was higher in short-distance migrants wintering in Europe than in long-distance migrants wintering in Africa, the Middle East, or Asia. Among ground-foraging birds of the Muscicapidae, those of the subfamily Turdinae (i.e., Turdus spp.) showed a high prevalence of Campylobacter spp., while the organism was not isolated in any member of the subfamily Muscicapinae (i.e., Erithacus and Luscinia). The prevalence of Campylobacter infection in wild birds thus seems to be linked to various ecological and phylogenetic factors, with great variations in carriership between different taxa and guilds.
PMCID: PMC134389  PMID: 12450810
5.  Phylogenetic and ecological determinants of the neotropical dawn chorus 
The concentration of avian song at first light (i.e. the dawn chorus) is widely appreciated, but has an enigmatic functional significance. One widely accepted explanation is that birds are active at dawn, but light levels are not yet adequate for foraging. In forest communities, the onset to singing should thus be predictable from the species' foraging strata, which is ultimately related to ambient light level. To test this, we collected data from a tropical forest of Ecuador involving 57 species from 27 families of birds. Time of first song was a repeatable, species-specific trait, and the majority of resident birds, including non-passerines, sang in the dawn chorus. For passerine birds, foraging height was the best predictor of time of first song, with canopy birds singing earlier than birds foraging closer to the forest floor. A weak and opposite result was observed for non-passerines. For passerine birds, eye size also predicted time of first song, with larger eyed birds singing earlier, after controlling for body mass, taxonomic group and foraging height. This is the first comparative study of the dawn chorus in the Neotropics, and it provides the first evidence for foraging strata as the primary determinant of scheduling participation in the dawn chorus of birds.
PMCID: PMC1560234  PMID: 16627286
song; dawn chorus; foraging strata; tropical forest
6.  Is sociality associated with high longevity in North American birds? 
Biology Letters  2008;4(2):146-148.
Sociality, as a life-history trait, should be associated with high longevity because complex sociality is characterized by reproductive suppression, delayed breeding, increased care and survival, and some of these traits select for high longevity. We studied the relationship between cooperative parental care (a proxy of complex sociality) and relative maximum lifespan in 257 North American bird species. After controlling for variation in maximum lifespan explained by body mass, sampling effort, latitude, mortality rate, migration distance and age at first reproduction, we found no significant effect of cooperative care on longevity in analyses of species-specific data or phylogenetically independent standardized linear contrasts. Thus, sociality itself is not associated with high longevity. Rather, longevity is correlated with increased body size, survival rate and age of first reproduction.
PMCID: PMC2429933  PMID: 18182364
cooperative breeding; life-history theory of senescence; longevity; maximum lifespan
7.  Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera 
Frontiers in Zoology  2013;10:36.
Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading.
Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits.
Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera. Release from load-carrying constraints related to foraging, which took place with the evolution of food load manipulation ability, has selected against the maintenance of a powerful flight apparatus. This could be the case since investment in flight muscles may have to be traded against other life-history traits, such as reproductive investment.
PMCID: PMC3698194  PMID: 23805850
Bees; Flight Muscle Ratio; Foraging; Wasps; Wing Loading
8.  Spatial, temporal, molecular, and intraspecific differences of haemoparasite infection and relevant selected physiological parameters of wild birds in Georgia, USA☆ 
Graphical abstract
•Variable prevalences of different haemoparasite species noted among passerine hosts.•Different foraging guilds associated with different haemoparasite infections.•Prevalence of Haemoproteus, Plasmodium, and Trypanosoma higher in breeding season.•PCV differences noted between bird species but no effect of haemoparasites on PCV or polychromasia.•Novel haplotypes detected and new geographic and host associations noted for seven haplotypes.
The prevalence of five avian haemoparasite groups was examined for effects on health and associations with extrinsic factors. Overall, 786 samples were examined from six sites in two Georgia (USA) watersheds, during breeding and non-breeding periods in 2010 and 2011. Among the four most commonly infected species, Haemoproteus prevalence was significantly higher in Northern Cardinals (Cardinalis cardinalis) compared to Indigo Buntings (Passerina cyanea) and Tufted Titmice (Baeolophus bicolor) while prevalence in White-throated Sparrows (Zonotrichia albicollis) was significantly higher than in Indigo Buntings. Higher prevalence of Plasmodium was noted in Tufted Titmice and Northern Cardinals. While Leucocytozoon prevalence was highest in White-throated Sparrows, Trypanosoma prevalence was highest in Tufted Titmice. Interesting differences in infection probabilities were noted between foraging guilds with Haemoproteus associated with low-middle level strata and birds in the middle-upper strata were more likely to be infected with Plasmodium and Trypanosoma. In contrast, ground-foraging birds were more likely to be infected with Leucocytozoon. Breeding season was correlated with higher polychromasia counts and higher prevalence of Haemoproteus, Plasmodium and Trypanosoma. In addition, prevalence of infection with certain haemoparasite genera and packed cell volume (PCV) were different among host species. Body mass index was inversely correlated with prevalence of microfilaria infection but positively related to Haemoproteus infection. However, we found no relationship between PCV or polychromasia levels with haemoparasite infection. Molecular characterization of 61 samples revealed 19 unique Haemoproteus (n = 7) and Plasmodium (n = 12) haplotypes with numerous new host records. No differences were noted in haplotype diversity among birds with different migratory behaviors or foraging heights, thus additional studies are needed that incorporate molecular analysis, host biology, and vector biology into comprehensive models on parasite ecology. Detailed morphological examination of these parasites is also necessary to determine if closely related haplotypes represent single species or morphologically distinct, but closely related, haplotypes.
PMCID: PMC3862535  PMID: 24533333
Blood parasite; Body mass index; Breeding season; Haemoparasite; Hematology; Prevalence; Wild bird
9.  Evolution of embryonic developmental period in the marine bird families Alcidae and Spheniscidae: roles for nutrition and predation? 
Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP.
Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so.
Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as well as other life history parameters.
PMCID: PMC2896374  PMID: 20546608
10.  Buffering Mechanisms in Aging: A Systems Approach Toward Uncovering the Genetic Component of Aging 
PLoS Computational Biology  2007;3(8):e170.
An unrealized potential to understand the genetic basis of aging in humans, is to consider the immense survival advantage of the rare individuals who live 100 years or more. The Longevity Gene Study was initiated in 1998 at the Albert Einstein College of Medicine to investigate longevity genes in a selected population: the “oldest old” Ashkenazi Jews, 95 years of age and older, and their children. The study proved the principle that some of these subjects are endowed with longevity-promoting genotypes. Here we reason that some of the favorable genotypes act as mechanisms that buffer the deleterious effect of age-related disease genes. As a result, the frequency of deleterious genotypes may increase among individuals with extreme lifespan because their protective genotype allows disease-related genes to accumulate. Thus, studies of genotypic frequencies among different age groups can elucidate the genetic determinants and pathways responsible for longevity. Borrowing from evolutionary theory, we present arguments regarding the differential survival via buffering mechanisms and their target age-related disease genes in searching for aging and longevity genes. Using more than 1,200 subjects between the sixth and eleventh decades of life (at least 140 subjects in each group), we corroborate our hypotheses experimentally. We study 66 common allelic site polymorphism in 36 candidate genes on the basis of their phenotype. Among them we have identified a candidate-buffering mechanism and its candidate age-related disease gene target. Previously, the beneficial effect of an advantageous cholesteryl ester transfer protein (CETP-VV) genotype on lipoprotein particle size in association with decreased metabolic and cardiovascular diseases, as well as with better cognitive function, have been demonstrated. We report an additional advantageous effect of the CETP-VV (favorable) genotype in neutralizing the deleterious effects of the lipoprotein(a) (LPA) gene. Finally, using literature-based interaction discovery methods, we use the set of longevity genes, buffering genes, and their age-related target disease genes to construct the underlying subnetwork of interacting genes that is expected to be responsible for longevity. Genome wide, high-throughput hypothesis-free analyses are currently being utilized to elucidate unknown genetic pathways in many model organisms, linking observed phenotypes to their underlying genetic mechanisms. The longevity phenotype and its genetic mechanisms, such as our buffering hypothesis, are similar; thus, the experimental corroboration of our hypothesis provides a proof of concept for the utility of high-throughput methods for elucidating such mechanisms. It also provides a framework for developing strategies to prevent some age-related diseases by intervention at the appropriate level.
Author Summary
Previous research showed that the frequency of deleterious genotype of some age-related disease decreases its prevalence as the population ages, as expected, since subjects with deleterious genotype are weeded out due to mortality. There exists, however, a set of age-related genes whose deleterious genotype indeed decreases up to ages 80–85, but subsequently increases monotonically, until by age 100 its prevalence is similar to that at age ∼60. Why is a known harmful genotype so prevalent among centenarians? Most likely because this genotype is protected by longevity genes. We corroborated this hypothesis by studying gene–gene interactions between age-related disease genotypes and longevity genotypes. Our findings suggest that individuals with the favorable longevity genotype can have just as many deleterious aging genotypes as the rest of the population because their longevity genotype protects them from the harmful effects of the other. We identify genes contributing to extreme lifespan as well as their counterpart, age-related disease genes. Our findings provide a proof of concept for the utility of high-throughput methods, and for elucidating mechanisms by which longevity genes buffer the effects of disease genes. Our approach gives hope for developing new medications that will protect against several age-related diseases.
PMCID: PMC1963511  PMID: 17784782
11.  Shrewd alliances: mixed foraging associations between treeshrews, greater racket-tailed drongos and sparrowhawks on Great Nicobar Island, India 
Biology Letters  2009;6(3):304-307.
Mixed-species foraging associations may form to enhance feeding success or to avoid predators. We report the costs and consequences of an unusual foraging association between an endemic foliage gleaning tupaid (Nicobar treeshrew Tupaia nicobarica) and two species of birds; one an insectivorous commensal (greater racket-tailed drongo Dicrurus paradiseus) and the other a diurnal raptor and potential predator (Accipiter sp.). In an alliance driven, and perhaps engineered, by drongos, these species formed cohesive groups with predictable relationships. Treeshrew breeding pairs were found more frequently than solitary individuals with sparrowhawks and were more likely to tolerate sparrowhawks in the presence of drongos. Treeshrews maintained greater distances from sparrowhawks than drongos, and permitted the raptors to come closer when drongos were present. Treeshrew foraging rates declined in the presence of drongos; however, the latter may provide them predator avoidance benefits. The choice of the raptor to join the association is intriguing; particular environmental resource states may drive the evolution of such behavioural strategies. Although foraging benefits seem to be the primary driver of this association, predator avoidance also influences interactions, suggesting that strategies driving the formation of flocks may be complex and context dependent with varying benefits for different actors.
PMCID: PMC2880059  PMID: 20007167
mixed foraging associations; predator avoidance; context dependence; treeshrews; drongos; sparrowhawks
12.  Daily foraging patterns in free-living birds: exploring the predation–starvation trade-off 
Daily patterns in the foraging behaviour of birds are assumed to balance the counteracting risks of predation and starvation. Predation risks are a function of the influence of weight on flight performance and foraging behaviours that may expose individuals to predators. Although recent research sheds light on daily patterns in weight gain, little data exist on daily foraging routines in free-living birds. In order to test the predictions of various hypotheses about daily patterns of foraging, we quantified the activity of four species of passerines in winter using radio-frequency identification receivers built into supplemental feeding stations. From records of 472 368 feeder visits by tagged birds, we found that birds generally started to feed before sunrise and continued to forage at a steady to increasing rate throughout the day. Foraging in most species terminated well before sunset, suggesting their required level of energy reserves was being reached before the end of the day. These results support the risk-spreading theorem over a long-standing hypothesis predicting bimodality in foraging behaviour purportedly driven by a trade-off between the risks of starvation and predation. Given the increased energetic demands experienced by birds during colder weather, our results suggest that birds' perceptions of risk are biased towards starvation avoidance in winter.
PMCID: PMC3652453  PMID: 23595267
foraging behaviour; starvation–predation trade-off; risk-spreading theorem; resident birds; radio-frequency identification; optimal foraging
13.  Behavioral suites mediate group-level foraging dynamics in communities of tropical stingless bees 
Insectes Sociaux  2009;57(1):105-113.
Competition for floral resources is a key force shaping pollinator communities, particularly among social bees. The ability of social bees to recruit nestmates for group foraging is hypothesized to be a major factor in their ability to dominate rich resources such as mass-flowering trees. We tested the role of group foraging in attaining dominance by stingless bees, eusocial tropical pollinators that exhibit high diversity in foraging strategies. We provide the first experimental evidence that meliponine group foraging strategies, large colony sizes and aggressive behavior form a suite of traits that enable colonies to improve dominance of rich resources. Using a diverse assemblage of Brazilian stingless bee species and an array of artificial “flowers” that provided a sucrose reward, we compared species’ dominance and visitation under unrestricted foraging conditions and with experimental removal of group-foraging species. Dominance does not vary with individual body size, but rather with foraging group size. Species that recruit larger numbers of nestmates (Scaptotrigona aff. depilis, Trigona hyalinata, Trigona spinipes) dominated both numerically (high local abundance) and behaviorally (controlling feeders). Removal of group-foraging species increased feeding opportunities for solitary foragers (Frieseomelitta varia, Melipona quadrifasciata and Nannotrigona testaceicornis). Trigona hyalinata always dominated under unrestricted conditions. When this species was removed, T. spinipes or S. aff. depilis controlled feeders and limited visitation by solitary-foraging species. Because bee foraging patterns determine plant pollination success, understanding the forces that shape these patterns is crucial to ensuring pollination of both crops and natural areas in the face of current pollinator declines.
Electronic supplementary material
The online version of this article (doi:10.1007/s00040-009-0055-8) contains supplementary material, which is available to authorized users.
PMCID: PMC2803754  PMID: 20098501
Aggression; Dominance; Group foraging; Species removal; Superorganism
14.  Evolving the selfish herd: emergence of distinct aggregating strategies in an individual-based model 
From zebra to starlings, herring and even tadpoles, many creatures move in an organized group. The emergent behaviour arises from simple underlying movement rules, but the evolutionary pressure which favours these rules has not been conclusively identified. Various explanations exist for the advantage to the individual of group formation: reduction of predation risk; increased foraging efficiency or reproductive success. Here, we adopt an individual-based model for group formation and subject it to simulated predation and foraging; the haploid individuals evolve via a genetic algorithm based on their relative success under such pressure. Our work suggests that flock or herd formation is likely to be driven by predator avoidance. Individual fitness in the model is strongly dependent on the presence of other phenotypes, such that two distinct types of evolved group can be produced by the same predation or foraging conditions, each stable against individual mutation. We draw analogies with multiple Nash equilibria theory of iterated games to explain and categorize these behaviours. Our model is sufficient to capture the complex behaviour of dynamic collective groups, yet is flexible enough to manifest evolutionary behaviour.
PMCID: PMC2169279  PMID: 17472913
flocking; evolution; genetic algorithm; predation; foraging; Nash equilibrium
15.  Parents are a Drag: Long-Lived Birds Share the Cost of Increased Foraging Effort with Their Offspring, but Males Pass on More of the Costs than Females 
PLoS ONE  2013;8(1):e54594.
Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males.
PMCID: PMC3559872  PMID: 23382921
16.  Functional Linkages for the Pace of Life, Life-history, and Environment in Birds 
For vertebrates, body mass underlies much of the variation in metabolism, but among animals of the same body mass, metabolism varies six-fold. Understanding how natural selection can influence variation in metabolism remains a central focus of Physiological Ecologists. Life-history theory postulates that many physiological traits, such as metabolism, may be understood in terms of key maturational and reproductive characteristics over an organism’s life-span. Although it is widely acknowledged that physiological processes serve as a foundation for life-history trade-offs, the physiological mechanisms that underlie the diversification of life-histories remain elusive. Data show that tropical birds have a reduced basal metabolism (BMR), field metabolic rate, and peak metabolic rate compared with temperate counterparts, results consistent with the idea that a low mortality, and therefore increased longevity, and low productivity is associated with low mass-specific metabolic rate. Mass-adjusted BMR of tropical and temperate birds was associated with survival rate, in accordance with the view that animals with a slow pace of life tend to have increased life spans. To understand the mechanisms responsible for a reduced rate of metabolism in tropical birds compared with temperate species, we summarized an unpublished study, based on data from the literature, on organ masses for both groups. Tropical birds had smaller hearts, kidneys, livers, and pectoral muscles than did temperate species of the same body size, but they had a relatively larger skeletal mass. Direct measurements of organ masses for tropical and temperate birds showed that the heart, kidneys, and lungs were significantly smaller in tropical birds, although sample sizes were small. Also from an ongoing study, we summarized results to date on connections between whole-organism metabolism in tropical and temperate birds and attributes of their dermal fibroblasts grown in cell culture. Cells derived from tropical birds had a slower rate of growth, consistent with the hypothesis that these cells have a slower metabolism. We found that dermal fibroblasts from tropical birds resisted chemical agents that induce oxidative and non-oxidative stress better than do cells from temperate species, consistent with the hypothesis that birds that live longer invest more in self-maintenance such as antioxidant properties of cells.
PMCID: PMC3140270  PMID: 21558245
17.  Relative Importance of Social Status and Physiological Need in Determining Leadership in a Social Forager 
PLoS ONE  2013;8(5):e64778.
Group decisions on the timing of mutually exclusive activities pose a dilemma: monopolized decision-making by a single leader compromises the optimal timing of activities by the others, while independent decision-making by all group members undermines group coherence. Theory suggests that initiation of foraging should be determined by physiological demand in social foragers, thereby resolving the dilemma of group coordination. However, empirical support is scant, perhaps because intrinsic qualities predisposing individuals to leadership (social status, experience or personality), or their interactions with satiation level, have seldom been simultaneously considered. Here, we examine which females initiated foraging in eider (Somateria mollissima) brood-rearing coalitions, characterized by female dominance hierarchies and potentially large individual differences in energy requirements due to strenuous breeding effort. Several physiological and social factors, except for female breeding experience and boldness towards predators, explained foraging initiation. Initiators spent a larger proportion of time submerged during foraging bouts, had poorer body condition and smaller structural size, but they were also aggressive and occupied central positions. Initiation probability also declined with female group size as expected given random assignment of initiators. However, the relative importance of physiological predictors of leadership propensity (active foraging time, body condition, structural size) exceeded those of social predictors (aggressiveness, spatial position) by an order of magnitude. These results confirm recent theoretical work suggesting that ‘leading according to need’ is an evolutionary viable strategy regardless of group heterogeneity or underlying dominance structure.
PMCID: PMC3655176  PMID: 23691258
18.  Honey bee (Apis mellifera) workers live longer in small than in large colonies 
Experimental gerontology  2009;44(6-7):447-452.
Social insect colonies are highly integrated units that can be regarded in some respects as superorganisms, with colony size and individuals analogous to body size and cells in unitary organisms. In both, unitary organisms and superorganisms, the relation between body/colony size and lifespan of the constituent units (cells/individuals) is important for understanding systemic aging but remains to be explored. Therefore, this study compared the life-history and longevity of individual honey bee workers between a large and a small colony social environment. We found that individuals in large colonies were consistently shorter lived than individuals in small colonies. This experimental effect occurred in both principal life history phases of honey bee workers, the in-hive and the foraging stage, independently of the age of the workers at their transition between the two. Nevertheless, this age of first foraging was a key determinant of worker longevity, in accordance with previous studies. The large colonies raised more brood, built more comb, and foraged at higher rates. Our results do not comply with the idea that social group size has a positive effect on individual longevity. Instead, our findings suggest that large and small colonies follow different demographic growth trajectories, trading off longevity of individuals for overall colony growth. Similarly, multi-cellular organisms might sacrifice maintenance and repair of their individual constituent cells for enhanced metabolic activity and organismal growth, leading to the widely-observed negative correlation between longevity and body size within species.
PMCID: PMC2690613  PMID: 19389467
Ageing; Biodemography; Colony growth; Mortality dynamics; Social insects; Sociality; Super-organism
19.  Predators' decisions to eat defended prey depend on the size of undefended prey☆ 
Animal Behaviour  2013;85(6):1315-1321.
Predators that have learned to associate warning coloration with toxicity often continue to include aposematic prey in their diet in order to gain the nutrients and energy that they contain. As body size is widely reported to correlate with energetic content, we predicted that prey size would affect predators' decisions to eat aposematic prey. We used a well-established system of wild-caught European starlings, Sturnus vulgaris, foraging on mealworms, Tenebrio molitor, to test how the size of undefended (water-injected) and defended (quinine-injected) prey, on different coloured backgrounds, affected birds’ decisions to eat defended prey. We found that birds ate fewer defended prey, and less quinine, when undefended prey were large compared with when they were small, but that the size of the defended prey had no effect on the numbers eaten. Consequently, we found no evidence that the mass of the defended prey or the overall mass of prey ingested affected the amount of toxin that a predator was willing to ingest, and instead the mass of undefended prey eaten was more important. This is a surprising finding, challenging the assumptions of state-dependent models of aposematism and mimicry, and highlighting the need to understand better the mechanisms of predator decision making. In addition, the birds did not learn to discriminate visually between defended and undefended prey based on size, but only on the basis of colour. This suggests that colour signals may be more salient to predators than size differences, allowing Batesian mimics to benefit from aposematic models even when they differ in size.
•The size of toxic prey did not affect the amount of toxin ingested by birds.•Total prey mass eaten did not affect the amount of toxin ingested by birds.•The amount of toxin ingested by birds depended on the mass of nontoxic prey.•Colour signals may be more salient to predators than size differences.•Findings have implications for the selection pressures acting on aposematic prey.
PMCID: PMC3693033  PMID: 23814280
aposematism; educated predator; energy; European starling; foraging; mimicry; prey size; Sturnus vulgaris; toxic prey
20.  Estimating resource acquisition and at-sea body condition of a marine predator 
The Journal of Animal Ecology  2013;82(6):1300-1315.
Body condition plays a fundamental role in many ecological and evolutionary processes at a variety of scales and across a broad range of animal taxa. An understanding of how body condition changes at fine spatial and temporal scales as a result of interaction with the environment provides necessary information about how animals acquire resources.However, comparatively little is known about intra- and interindividual variation of condition in marine systems. Where condition has been studied, changes typically are recorded at relatively coarse time-scales. By quantifying how fine-scale interaction with the environment influences condition, we can broaden our understanding of how animals acquire resources and allocate them to body stores.Here we used a hierarchical Bayesian state-space model to estimate the body condition as measured by the size of an animal's lipid store in two closely related species of marine predator that occupy different hemispheres: northern elephant seals (Mirounga angustirostris) and southern elephant seals (Mirounga leonina). The observation model linked drift dives to lipid stores. The process model quantified daily changes in lipid stores as a function of the physiological condition of the seal (lipid:lean tissue ratio, departure lipid and departure mass), its foraging location, two measures of behaviour and environmental covariates.We found that physiological condition significantly impacted lipid gain at two time-scales – daily and at departure from the colony – that foraging location was significantly associated with lipid gain in both species of elephant seals and that long-term behavioural phase was associated with positive lipid gain in northern and southern elephant seals. In northern elephant seals, the occurrence of short-term behavioural states assumed to represent foraging were correlated with lipid gain. Lipid gain was a function of covariates in both species. Southern elephant seals performed fewer drift dives than northern elephant seals and gained lipids at a lower rate.We have demonstrated a new way to obtain time series of body condition estimates for a marine predator at fine spatial and temporal scales. This modelling approach accounts for uncertainty at many levels and has the potential to integrate physiological and movement ecology of top predators. The observation model we used was specific to elephant seals, but the process model can readily be applied to other species, providing an opportunity to understand how animals respond to their environment at a fine spatial scale.
PMCID: PMC4028992  PMID: 23869551
resource acquisition; Bayesian; elephant seals; Markov chain Monte Carlo; satellite telemetry; state-space model; body condition; Año Nuevo; Macquarie Island
21.  Noise Pollution Filters Bird Communities Based on Vocal Frequency 
PLoS ONE  2011;6(11):e27052.
Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure.
Methodology/Principal Findings
Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency.
Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as to which species traits influence tolerance of these novel acoustics.
PMCID: PMC3212537  PMID: 22096517
22.  Evidence of the Trade-Off between Starvation and Predation Risks in Ducks 
PLoS ONE  2011;6(7):e22352.
The theory of trade-off between starvation and predation risks predicts a decrease in body mass in order to improve flight performance when facing high predation risk. To date, this trade-off has mainly been validated in passerines, birds that store limited body reserves for short-term use. In the largest avian species in which the trade-off has been investigated (the mallard, Anas platyrhynchos), the slope of the relationship between mass and flight performance was steeper in proportion to lean body mass than in passerines. In order to verify whether the same case can be applied to other birds with large body reserves, we analyzed the response to this trade-off in two other duck species, the common teal (Anas crecca) and the tufted duck (Aythya fuligula). Predation risk was simulated by disturbing birds. Ducks within disturbed groups were compared to non-disturbed control birds. In disturbed groups, both species showed a much greater decrease in food intake and body mass during the period of simulated high risk than those observed in the control group. This loss of body mass allows reaching a more favourable wing loading and increases power for flight, hence enhancing flight performances and reducing predation risk. Moreover, body mass loss and power margin gain in both species were higher than in passerines, as observed in mallards. Our results suggest that the starvation-predation risk trade-off is one of the major life history traits underlying body mass adjustments, and these findings can be generalized to all birds facing predation. Additionally, the response magnitude seems to be influenced by the strategy of body reserve management.
PMCID: PMC3138777  PMID: 21789252
23.  Good foragers can also be good at detecting predators. 
The degree to which foraging and vigilance are mutually exclusive is crucial to understanding the management of the predation and starvation risk trade-off in animals. We tested whether wild-caught captive chaffinches that feed at a higher rate do so at the expense of their speed in responding to a model sparrowhawk flying nearby, and whether consistently good foragers will therefore tend to respond more slowly on average. First, we confirmed that the time taken to respond to the approaching predator depended on the rate of scanning: as head-up rate increased so chaffinches responded more quickly. However, against predictions, as peck rate increased so head-up rate increased and mean length of head-up and head-down periods decreased. Head-up rate was probably dependent on peck rate because almost every time a seed was found, a bird raised its head to handle it. Therefore chaffinches with higher peck rates responded more quickly. Individual chaffinches showed consistent durations of both their head-down and head-up periods and, therefore, individuals that were good foragers were also good detectors of predators. In relation to the broad range of species that have a similar foraging mode to chaffinches, our results have two major implications for predation/starvation risk trade-offs: (i) feeding rate can determine vigilance scanning patterns; and (ii) the best foragers can also be the best at detecting predators. We discuss how our results can be explained in mechanistic terms relating to fundamental differences in how the probabilities of detecting food rather than a predator are affected by time. In addition, our results offer a plausible explanation for the widely observed effect that vigilance continues to decline with group size even when there is no further benefit to reducing vigilance.
PMCID: PMC1691342  PMID: 12803897
24.  Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae) 
The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony.
PMCID: PMC4267257  PMID: 25525497
Review; trunk trails; group recruitment; networks; collective behavior; honeydew; phylogeny; evolution; pheromone; framework
25.  Ecology and Caudal Skeletal Morphology in Birds: The Convergent Evolution of Pygostyle Shape in Underwater Foraging Taxa 
PLoS ONE  2014;9(2):e89737.
Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc.) and foraging style (aerial, terrestrial, plunge dive, etc.). Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also the underlying caudal skeleton, reinforcing the importance of the entire caudal locomotor module in avian ecological diversification.
PMCID: PMC3935938  PMID: 24586998

Results 1-25 (880382)