PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (924678)

Clipboard (0)
None

Related Articles

1.  Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. 
Journal of Bacteriology  1990;172(11):6557-6567.
A simple procedure for cloning and stable insertion of foreign genes into the chromosomes of gram-negative eubacteria was developed by combining in two sets of plasmids (i) the transposition features of Tn10 and Tn5; (ii) the resistances to the herbicide bialaphos, to mercuric salts and organomercurial compounds, and to arsenite, and (iii) the suicide delivery properties of the R6K-based plasmid pGP704. The resulting constructions contained unique NotI or SfiI sites internal to either the Tn10 or the Tn5 inverted repeats. These sites were readily used for cloning DNA fragments with the help of two additional specialized cloning plasmids, pUC18Not and pUC18Sfi. The newly derived constructions could be maintained only in donor host strains that produce the R6K-specified pi protein, which is an essential replication protein for R6K and plasmids derived therefrom. Donor plasmids containing hybrid transposons were transformed into a specialized lambda pir lysogenic Escherichia coli strain with a chromosomally integrated RP4 that provided broad-host-range conjugal transfer functions. Delivery of the donor plasmids into selected host bacteria was accomplished through mating with the target strain. Transposition of the hybrid transposon from the delivered suicide plasmid to a replicon in the target cell was mediated by the cognate transposase encoded on the plasmid at a site external to the transposon. Since the transposase function was not maintained in target cells, such cells were not immune to further transposition rounds. Multiple insertions in the same strain are therefore only limited by the availability of distinct selection markers. The utility of the system was demonstrated with a kanamycin resistance gene as a model foreign insert into Pseudomonas putida and a melanin gene from Streptomyces antibioticus into Klebsiella pneumoniae. Because of the modular nature of the functional parts of the cloning vectors, they can be easily modified and further selection markers can be incorporated. The cloning system described here will be particularly useful for the construction of hybrid bacteria that stably maintain inserted genes, perhaps in competitive situations (e.g., in open systems and natural environments), and that do not carry antibiotic resistance markers characteristic of most available cloning vectors (as is currently required of live bacterial vaccines).
Images
PMCID: PMC526845  PMID: 2172216
2.  Live bacterial vaccines – a review and identification of potential hazards 
The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.
doi:10.1186/1475-2859-5-23
PMCID: PMC1538998  PMID: 16796731
3.  Novel methods for expression of foreign antigens in live vector vaccines 
Human Vaccines & Immunotherapeutics  2013;9(7):1558-1564.
Bacterial live vector vaccines represent a vaccine development strategy that offers exceptional flexibility. In this approach, genes encoding protective antigens of unrelated bacterial, viral or parasitic pathogens are expressed in an attenuated bacterial vaccine strain that delivers these foreign antigens to the immune system, thereby eliciting relevant immune responses. Rather than expressing these antigens using low copy expression plasmids, here we pursue expression of foreign proteins from the live vector chromosome. Our strategy is designed to compensate for the inherent disadvantage of loss of gene dosage (vs. plasmid-based expression) by integrating antigen-encoding gene cassettes into multiple chromosomal sites already inactivated in an attenuated Salmonella enterica serovar Typhi vaccine candidate. We tested expression of a cassette encoding the green fluorescent protein (GFPuv) integrated separately into native guaBA, htrA or clyA chromosomal loci. Using single integrations, we show that expression levels of GFPuv are significantly affected by the site of integration, regardless of the inclusion of additional strong promoters within the incoming cassette. Using cassettes integrated into both guaBA and htrA, we observe cumulative synthesis levels from two integration sites superior to single integrations. Most importantly, we observe that GFPuv expression increases in a growth phase-dependent manner, suggesting that foreign antigen synthesis may be “tuned” to the physiology of the live vaccine. We expect this novel platform expression technology to prove invaluable in the development of a wide variety of multivalent live vector vaccines, capable of expressing multiple antigens from both chromosomal and plasmid-based expression systems within a single strain.
doi:10.4161/hv.23248
PMCID: PMC3890216  PMID: 23406777
Salmonella; chromosomal expression; foreign gene; live vector; vaccine
4.  Presence of Extensive Wolbachia Symbiont Insertions Discovered in the Genome of Its Host Glossina morsitans morsitans 
Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol) in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis.
Author Summary
African trypanosomes are transmitted to man and animals by tsetse fly, a blood sucking insect. Tsetse flies include all Glossina species with the genome of Glossina morsitans morsitans (Gmm) being sequenced under the International Glossina Genome Initiative. The endosymbionts Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia) have been found to establish symbiotic associations with Gmm. Wolbachia is known to be present in natural and laboratory populations of Glossina species. In this study we report the genome sequence of the Wolbachia strain that is associated with Gmm. With the aid of in silico and molecular and cytogenetic analyses, multiple insertions of the Wolbachia genome were revealed and confirmed in Gmm chromosome. Comparison of the cytoplasmic Wolbachia draft genome and the chromosomal insertions enabled us to infer the evolutionary history of the Wolbachia horizontal transfer events. These findings are discussed in relation to their impact on the development of Wolbachia-based strategies for the control of tsetse flies and trypanosomiasis.
doi:10.1371/journal.pntd.0002728
PMCID: PMC3998919  PMID: 24763283
5.  Listeria monocytogenes-Based Antibiotic Resistance Gene-Free Antigen Delivery System Applicable to Other Bacterial Vectors and DNA Vaccines  
Infection and Immunity  2004;72(11):6418-6425.
Plasmids represent a powerful tool to rapidly introduce genes into bacteria and help them reach high expression levels. In vaccine development, with live vaccine vectors, this allows greater flexibility and the ability to induce larger antigen amounts through multiple gene copies. However, plasmid retention often requires antibiotic resistance markers, the presence of which has been discouraged in clinical applications by the Food and Drug Administration. Therefore, we developed a Listeria monocytogenes-Escherichia coli shuttle plasmid that is retained by complementation of d-alanine racemase-deficient mutant strains both in vitro and in vivo. Our technology potentially allows the production of antibiotic resistance marker-free DNA vaccines as well as bacterial vaccine vectors devoid of engineered antibiotic resistances. As a proof of concept, we applied the d-alanine racemase complementation system to our Listeria cancer vaccine platform. With a transplantable tumor model, we compared the efficacy of the new Listeria vector to that of an established vector containing a conventional plasmid carrying a tumor-specific antigen. Both vaccine vector systems resulted in long-term regression of established tumors, with no significant difference between them. Thus, the Listeria vaccine vector presented here potentially complies with Food and Drug Administration regulations and could be developed further for clinical use.
doi:10.1128/IAI.72.11.6418-6425.2004
PMCID: PMC523039  PMID: 15501772
6.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
7.  Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria 
BMC Biotechnology  2005;5:3.
Background
In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria.
Results
The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion.
Conclusion
We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome.
doi:10.1186/1472-6750-5-3
PMCID: PMC548306  PMID: 15651989
8.  Efficacy of a Lactococcus lactis ΔpyrG vaccine delivery platform expressing chromosomally integrated hly from Listeria monocytogenes 
Bioengineered Bugs  2010;1(1):66-74.
Listeria monocytogenes is a significant food-borne pathogen and the causative agent of listeriosis, a disease which manifests as meningitis in immunocompromised adults or infection of the fetus and miscarriage in pregnant women. We have previously used Lactococcus lactis, a GRAS (Generally Regarded As Safe) organism, as a vaccine vector against listeriosis by engineering plasmid-mediated expression of the immunodominant antigen from L. monocytogenes, listeriolysin O (LLO). However, the environmental release of an engineered vaccine vector carrying a replicating plasmid during clinical usage may raise safety concerns. Here we describe the integration of the LLO gene (hly) into the L. lactis chromosome through homologous double crossover to allow stable expression, in order to avoid the use of antibiotic selection markers and to eliminate the requirement for a plasmid-based system. The approach was designed to simultaneously eliminate the pyrG gene encoding the CTP synthase which is responsible for converting UTP to CTP in a unique step in the de novo pyrimidine synthesis in L. lactis. This gene was targeted in order to restrict bacterial replication outside of the host (biological containment). The resulting cytidine auxotroph was able to secrete LLO constitutively and could elicit LLO91–99-specific CD8+ T lymphocytes in the murine infection model. Moreover, protection against lethal challenge with L. monocytogenes was accomplished after intraperitoneal (IP) vaccination with the constructed strain. The implications for the use of cytidine auxotropy in biological containment are discussed.
doi:10.4161/bbug.1.1.10284
PMCID: PMC3035148  PMID: 21327128
Lactococcus lactis; biological containment; listeriolysin O; pyrG; hly; vaccine
9.  A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection 
Infection and Immunity  2014;83(1):161-172.
Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity.
doi:10.1128/IAI.02443-14
PMCID: PMC4288866  PMID: 25332120
10.  Antibiotic-Free Plasmid Stabilization by Operator-Repressor Titration for Vaccine Delivery by Using Live Salmonella enterica Serovar Typhimurium  
Infection and Immunity  2005;73(4):2005-2011.
Live, attenuated bacteria are effective vectors for heterologous antigen delivery. However, loss of heterologous gene-bearing plasmids is problematic, and antibiotics and their resistance genes are not desirable for in vivo DNA vaccine delivery due to biosafety and regulatory concerns. To solve this problem, we engineered the first vaccine delivery strain that has no requirement for antibiotics or other selectable marker genes to maintain the recombinant plasmid. This model strain of Salmonella enterica serovar Typhimurium, SLDAPD, uses operator-repressor titration (ORT) technology, which requires only the short, nonexpressed lacO sequence for selection and maintenance. SLDAPD, recovered from the spleens and Peyer's patches of mice following oral inoculation, was shown to maintain a plasmid that, in contrast, was lost from parental strain SL3261. We also demonstrated successful application of this technology to vaccine development, since SLDAPD carrying a plasmid without an antibiotic resistance gene that expressed the Yersinia pestis F1 antigen was as efficacious in protecting vaccinated mice against plague as the parental SL3261 strain carrying an antibiotic-selected version of this plasmid. Protection of mice against plague by immunization with Salmonella expressing F1 has previously required two or more doses; here we demonstrated for the first time protective immunity after a single oral immunization. This technology can easily be used to convert any suitable attenuated strain to an antibiotic-free ORT strain for recombinant protein vaccine delivery in humans.
doi:10.1128/IAI.73.4.2005-2011.2005
PMCID: PMC1087430  PMID: 15784541
11.  Perceptions and recommendations by scientists for a potential release of genetically modified mosquitoes in Nigeria 
Malaria Journal  2014;13:154.
Background
The use of genetically modified mosquitoes (GMMs) for the control of malaria and other mosquito-borne diseases has been proposed in malaria-endemic countries, such as Nigeria, which has the largest burden in Africa. Scientists are major stakeholders whose opinions and perceptions can adversely affect the success of the trials of GMMs if they are not involved early. Unfortunately, information on the awareness of Nigerians scientists and their overall perception of the GMMs is practically non-existent in the literature. Therefore, this study aimed at understanding how receptive Nigerian scientists are to a potential release of GMMs for the control of malaria.
Methods
The sample consisted of 164 scientists selected from academic and research institutions in Nigeria. Data were collected from participants using a semi-structured, self-administered questionnaire. Questions were asked about the cause and prevention of malaria, genetic modification and biotechnology. Specific questions on perception and acceptable conditions for the potential release of GM mosquitoes in Nigeria were also covered.
Results
All participants cited mosquitoes as one of several causes of malaria and used various methods for household control of mosquitoes. The main concerns expressed by the scientists were that GMMs can spread in an uncontrolled way beyond their release sites (89%) and will mate with other mosquito species to produce hybrids with unknown consequences (94.5%). Most participants (92.7%) agreed that it was important that before approving the release of GMMs in Nigeria, there had to be evidence of contingency measures available to remove the GMMs should a hazard become evident during the course of the release. In general, a majority (83.5%) of scientists who participated in this study were sceptical about a potential release in Nigeria, while 16.5% of the participants were in support.
Conclusions
Although a majority of the participants are sceptical about GMMs generally, most encourage the use of genetic modification techniques to make mosquitoes incapable of spreading diseases provided that there are contingency measures to remove GMMs if a hazard becomes evident during the course of the release.
doi:10.1186/1475-2875-13-154
PMCID: PMC4021343  PMID: 24758165
Genetically modified mosquitoes; Malaria; Nigeria; Scientists; Perception of GMM; Biotechnology
12.  Cell-Associated Flagella Enhance the Protection Conferred by Mucosally-Administered Attenuated Salmonella Paratyphi A Vaccines 
Background
Antibiotic-resistant Salmonella enterica serovar Paratyphi A, the agent of paratyphoid A fever, poses an emerging public health dilemma in endemic areas of Asia and among travelers, as there is no licensed vaccine. Integral to our efforts to develop a S. Paratyphi A vaccine, we addressed the role of flagella as a potential protective antigen by comparing cell-associated flagella with exported flagellin subunits expressed by attenuated strains.
Methodology
S. Paratyphi A strain ATCC 9150 was first deleted for the chromosomal guaBA locus, creating CVD 1901. Further chromosomal deletions in fliD (CVD 1901D) or flgK (CVD 1901K) were then engineered, resulting in the export of unpolymerized FliC, without impairing its overall expression. The virulence of the resulting isogenic strains was examined using a novel mouse LD50 model to accommodate the human-host restricted S. Paratyphi A. The immunogenicity of the attenuated strains was then tested using a mouse intranasal model, followed by intraperitoneal challenge with wildtype ATCC 9150.
Results
Mucosal (intranasal) immunization of mice with strain CVD 1901 expressing cell-associated flagella conferred superior protection (vaccine efficacy [VE], 90%) against a lethal intraperitoneal challenge, compared with the flagellin monomer-exporting mutants CVD 1901K (30% VE) or CVD 1901D (47% VE). The superior protection induced by CVD 1901 with its cell-attached flagella was associated with an increased IgG2a∶IgG1 ratio of FliC-specific antibodies with enhanced opsonophagocytic capacity.
Conclusions
Our results clearly suggest that enhanced anti-FliC antibody-mediated clearance of S. Paratyphi A by phagocytic cells, induced by vaccines expressing cell-associated rather than exported FliC, might be contributing to the vaccine-induced protection from S. Paratyphi A challenge in vivo. We speculate that an excess of IgG1 anti-FliC antibodies induced by the exported FliC may compete with the IgG2a subtype and block binding to specific phagocyte Fc receptors that are critical for clearing an S. Paratyphi A infection.
Author Summary
Salmonella enterica serovar Paratyphi A is a pathogen that causes a systemic disease that is marked by serious complications and, if untreated, high mortality. The study of S. Paratyphi A pathogenesis and vaccine development has been extremely challenging since S. Paratyphi A is human host-restricted and no appropriate animal model exists. Since there is currently no licensed vaccine to prevent paratyphoid fever caused by this organism, our study represents a pioneering attempt to develop and refine a vaccine against S. Paratyphi A. We employed live attenuated strains which allow in vivo presentation of bacterial antigens via the natural route of infection, without the complications associated with antigen production and purification for subunit vaccines. For determining protective immunity against infection, we developed a mouse model that allowed evaluation of vaccine efficacy. We used our system to examine the protective capacity of a major Salmonella antigen, the flagellum. Due to its unique immunogenic properties, the flagellum is considered a major immune mediator, but its role in protection is controversial. We clearly show that cell-associated flagellar protein, presented by mucosally administered attenuated bacterial live vaccines, provides superior protection when compared to strains exporting FliC monomers, and we discuss possible mechanisms of immunity.
doi:10.1371/journal.pntd.0001373
PMCID: PMC3206010  PMID: 22069504
13.  Frequency of Adverse Events after Vaccination with Different Vaccinia Strains 
PLoS Medicine  2006;3(8):e272.
Background
Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH) strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus.
Methods and Findings
We analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect that showed decreasing incidences of adverse events over several decades. To estimate death rates, we then restricted our analysis to more-recent studies. We estimated that vaccination with the NYCBH strain leads to an average of 1.4 deaths per million vaccinations (95% credible interval, 0–6) and that vaccination with Lister vaccine leads to an average of 8.4 deaths per million vaccinations (95% credible interval, 0–31). We combined age-dependent estimates of the frequency of death after vaccination and revaccination with demographic data to obtain estimates of the expected number of deaths in present societies due to vaccination with the NYCBH and Lister vaccinia strains.
Conclusions
Previous analyses of smallpox vaccination policies, which rely on the commonly assumed value of one death per million vaccinations, may give serious underestimates of the number of deaths resulting from vaccination. Moreover, because there are large, strain-dependent differences in the frequency of adverse events due to smallpox vaccination, it is difficult to extrapolate from predictions for the NYCBH-derived vaccines (stockpiled in countries such as the US) to predictions for the Lister-derived vaccines (stockpiled in countries such as Germany). In planning for an effective response to a possible smallpox outbreak, public-health decision makers should reconsider their strategies of when to opt for ring vaccination and when to opt for mass vaccination.
Analysis of historical data for adverse events suggests that the commonly assumed number of one death per million vaccinations is inaccurate. Large differences between different vaccinia strains used should be taken into account when mass vaccinations are considered.
Editors' Summary
Background.
For thousands of years, smallpox was one of the world's most-feared diseases. This contagious disease, caused by the variola virus, historically killed about 30 percent of the people it infected. Over the centuries, it probably killed more people than all other infectious diseases combined, but it was also the first disease to be prevented by vaccination. In 1796, the English physician Edward Jenner rubbed pus from the spots of a milkmaid with cowpox into scratches on a young boy's arm; according to folklore, people who caught cowpox, a related but mild disease of cows, were protected against smallpox. Six weeks later, after a mild bout of cowpox, when the boy was challenged with pus from a smallpox patient, he did not develop smallpox. This vaccination procedure was later refined so that people were inoculated with pure preparations of live vaccinia virus, which is closely related to the smallpox and cowpox viruses, and by 1979 a global vaccination campaign had totally eradicated the disease.
Why Was This Study Done?
Smallpox vaccination has some adverse effects. In particular, vaccinia virus occasionally infects the brain. This so-called post-vaccination encephalitis can cause permanent brain damage and, it has been estimated, kills one vaccinee in every million. Consequently, as smallpox became rarer, the dangers of vaccination began to outweigh its benefits. Routine smallpox vaccination stopped in the US in 1972, and in 1980 the World Health Organization recommended that all countries stop vaccination. Now, however, there are fears that smallpox may be used for bioterrorism. If this did happen, exposed individuals and their contacts, possibly even whole populations, would have to be vaccinated as quickly as possible (very few people now have strong immunity to smallpox). Many countries have stockpiles of smallpox vaccines for this eventuality, but these contain different vaccinia virus strains. In this study, the researchers examined historical data to discover whether these strains differ in their potential to cause encephalitis and death. This information should help public-health officials plan their vaccination strategies in response to a bioterrorism attack with smallpox.
What Did the Researchers Do and Find?
The researchers collected data from published studies on smallpox vaccination and adverse events from several countries from the late 1950s onwards. They then used these data to extrapolate how often the different vaccinia strains might cause encephalitis and death if they were used today in vaccination programs. They estimate that vaccinating with the New York City Board of Health (NYCBH) strain, which is stockpiled in the US, might cause 2.9 cases of post-vaccination encephalitis and 1.4 deaths per million vaccinated individuals. In contrast, the Lister strain, which is stockpiled in many European countries, might cause 26.2 cases of post-vaccination encephalitis and 2.5 deaths per million vaccinees. For both strains, vaccination of children younger than 1 year old would cause the highest death rate, and individuals being re-vaccinated would be less likely to die than those being vaccinated for the first time. Finally, the researchers use their figures to estimate that about ten people would die if mass vaccination with the NYCBH strain were used in the Netherlands (population 16 million), whereas 55 people would die if the Lister strain were used.
What Do These Findings Mean?
The data used in this study are of variable quality, so the figures calculated by the researchers are only estimates. For instance, given the scatter of the original data, mass vaccination in the Netherlands with the Lister strain might cause anywhere between seven and nearly 200 deaths. However, the study clearly suggests that more serious adverse events would occur after vaccination with the Lister strain than after vaccination with the NYCBH strain. It also indicates that even in the US, where the NYCBH vaccine strain is stockpiled, previous analyses of the effects of vaccination in response to a bioterrorist attack have probably underestimated how many people might die from post-vaccination encephalitis. Public-health decision makers should incorporate these new estimates into their planning for a smallpox outbreak. These increased estimates of adverse events after vaccination might, for example, make mass vaccination with the Lister strain of vaccinia virus less acceptable. Instead, public-health officials might decide to rely on vaccination of only the people directly exposed to released smallpox virus and their close contacts (ring vaccination) to contain a smallpox outbreak.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030272.
World Health Organization, information on smallpox and preparedness in the event of a smallpox outbreak
MedlinePlus encyclopedia entry on smallpox
US National Institute of Allergy and Infectious Diseases, patient fact sheet on smallpox
US Centers for Disease Control and Prevention, information for patients and professionals on smallpox
Wikipedia page on smallpox (note that Wikipedia is a free online encyclopedia that anyone can edit)
Wellcome Library MedHist, links to information on the history of smallpox vaccination
doi:10.1371/journal.pmed.0030272
PMCID: PMC1551910  PMID: 16933957
14.  Use of mchI Encoding Immunity to the Antimicrobial Peptide Microcin H47 as a Plasmid Selection Marker in Attenuated Bacterial Live Vectors▿  
Infection and Immunity  2008;76(10):4422-4430.
Live attenuated bacterial strains expressing heterologous antigens represent an attractive vaccine development strategy. However, the use of drug resistance genes for the selection of expression plasmids introduced into live vectors poses theoretical health risks. Therefore, we developed a novel approach for plasmid selection based on immunity to the antimicrobial peptide microcin H47 (MccH47). Two expression plasmids encoding the reporter green fluorescent protein (GFPuv) were constructed; selection markers comprised either mchI, conferring immunity to MccH47 (pGEN222I), or bla (encoding β-lactamase), conferring conventional resistance to ampicillin (pGEN222). GFPuv-specific serum immunoglobulin G (IgG) antibody responses were analyzed in mice immunized intranasally either with Salmonella enterica serovar Typhi CVD 908-htrA or Shigella flexneri 2a CVD 1208S live vector and were boosted parenterally with purified GFPuv. Similar IgG antibody responses were observed for both pGEN222 and pGEN222I when either CVD 1208S or CVD 908-htrA(pGEN222I) was used as the carrier. Interestingly, CVD 908-htrA(pGEN222I) elicited a significantly higher IgG response than CVD 908-htrA(pGEN222). We also compared the priming potential of homologous priming either with CVD 908-htrA(pGEN222I) or CVD 1208S(pGEN222I) to heterologous priming first with CVD 908-htrA(pGEN222I) and then with CVD 1208S(pGEN222I) and vice versa. Immunization with two unrelated live vectors significantly enhanced the IgG responses compared to responses engendered by homologous CVD 908-htrA(pGEN222I) but not to those of CVD 1208S(pGEN222I). MccH47 offers an alternate system for plasmid selection in bacterial live vectors that greatly improves their clinical acceptability. Furthermore, the success of the heterologous priming strategy supports the feasibility of the future development of multivalent live vector-based immunization strategies against multiple human pathogens.
doi:10.1128/IAI.00487-08
PMCID: PMC2546845  PMID: 18663003
15.  Impact of Field Release of Genetically Modified Pseudomonas fluorescens on Indigenous Microbial Populations of Wheat 
In a field release experiment, an isolate of Pseudomonas fluorescens, which was chromosomally modified with two reporter gene cassettes (lacZY and Kan(supr)-xylE), was applied to spring wheat as a seed coating and subsequently as a foliar spray. The wild-type strain was isolated from the phylloplane of sugar beet but was found to be a common colonizer of both the rizosphere and phylloplane of wheat as well. The impact on the indigenous microbial populations resulting from release of this genetically modified microorganism (GMM) was compared with the impact of the unmodified, wild-type strain and a nontreated control until 1 month after harvest of the crop. The release of the P. fluorescens GMM and the unmodified, wild-type strain resulted in significant but transient perturbations of some of the culturable components of the indigenous microbial communities that inhabited the rhizosphere and phylloplane of wheat, but no significant perturbations of the indigenous culturable microbial populations in nonrhizosphere soil were found. Fast-growing organisms that did not produce resting structures (for example, fluorescent pseudomonads and yeasts) seemed to be most sensitive to perturbation. In terms of hazard and risk to the environment, the observed microbial perturbations that resulted from this GMM release may be considered minor for several reasons. First, the recombinant P. fluorescens strain caused changes that were, in general, not significantly different from those caused by the unmodified wild-type strain; second, perturbations resulting from bacterial inoculations were mainly small; and third, the release of bacteria had no obvious effects on plant growth and plant health.
PMCID: PMC1388583  PMID: 16535129
16.  Trypanosome Infection Establishment in the Tsetse Fly Gut Is Influenced by Microbiome-Regulated Host Immune Barriers 
PLoS Pathogens  2013;9(4):e1003318.
Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (GmmApo) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. GmmApo adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in GmmApo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a novel finding, which is the existence of a positive correlation between tsetse's larval microbiome and the integrity of the emerging adult PM gut immune barrier.
Author Summary
Tsetse flies serve as a host to many micro-organisms. Specifically, this fly houses beneficial endosymbiotic bacteria, and can also serve as a vector of pathogenic trypanosomes across much of sub-Saharan Africa. Although flies feed on parasite-infected reservoir hosts, only a small proportion (1–5%) of individuals that acquire an infectious meal become infected and subsequently transmit disease to a naïve host. Several physiological factors, including tsetse's age, nutritional status and innate immune mechanisms, contribute to trypanosome infection outcomes in the fly. We demonstrate that tsetse's endogenous microbiome also impacts the fly's resistance to parasites. Specifically, we show that tsetse must harbor it's symbiotic bacteria during larval development in order to present a trypanosome-refractory phenotype during adulthood. These microbes appear to indirectly regulate the fly's ability to immunologically detect and respond to the presence of trypanosomes. One of the mechanisms by which these microbes regulate parasite transmission involves modulating the formation of a physical barrier (called the ‘peritrophic matrix’) in their host's gut. Our findings are indicative of the complex functional association that exists between tsetse's symbiotic microbes and host immune mechanisms that regulate trypanosome infection outcomes.
doi:10.1371/journal.ppat.1003318
PMCID: PMC3630092  PMID: 23637607
17.  Repeated Introduction of Genetically Modified Pseudomonas putida WCS358r without Intensified Effects on the Indigenous Microflora of Field-Grown Wheat 
To investigate the impact of genetically modified, antibiotic-producing rhizobacteria on the indigenous microbial community, Pseudomonas putida WCS358r and two transgenic derivatives were introduced as a seed coating into the rhizosphere of wheat in two consecutive years (1999 and 2000) in the same field plots. The two genetically modified microorganisms (GMMs), WCS358r::phz and WCS358r::phl, constitutively produced phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (DAPG), respectively. The level of introduced bacteria in all treatments decreased from 107 CFU per g of roots soon after sowing to less than 102 CFU per g after harvest 132 days after sowing. The phz and phl genes remained stable in the chromosome of WCS358r. The amount of PCA produced in the wheat rhizosphere by WCS358r::phz was about 40 ng/g of roots after the first application in 1999. The DAPG-producing GMMs caused a transient shift in the indigenous bacterial and fungal microflora in 1999, as determined by amplified ribosomal DNA restriction analysis. However, after the second application of the GMMs in 2000, no shifts in the bacterial or fungal microflora were detected. To evaluate the importance of the effects induced by the GMMs, these effects were compared with those induced by crop rotation by planting wheat in 1999 followed by potatoes in 2000. No effect of rotation on the microbial community structure was detected. In 2000 all bacteria had a positive effect on plant growth, supposedly due to suppression of deleterious microorganisms. Our research suggests that the natural variability of microbial communities can surpass the effects of GMMs.
doi:10.1128/AEM.69.6.3110-3118.2003
PMCID: PMC161518  PMID: 12788705
18.  Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event 
BMC Microbiology  2006;6:39.
Background
Inserting transgenes into bacterial chromosomes is generally quite involved, requiring a selection for cells carrying the insertion, usually for drug-resistance, or multiple cumbersome manipulations, or both. Several approaches use phage λ red recombination, which allows for the possibility of mutagenesis of the transgene during a PCR step.
Results
We present a simple, rapid and highly efficient method for transgene insertion into the chromosome of Escherichia coli, Salmonella or Shigella at a benign chromosomal site using the site-specific recombination machinery of the transposon Tn7. This method requires very few manipulations. The transgene is cloned into a temperature-sensitive delivery plasmid and transformed into bacterial cells. Growth at the permissive temperature with induction of the recombination machinery leads to transgene insertion, and subsequent growth at the nonpermissive temperature cures the delivery plasmid. Transgene insertion is highly site-specific, generating insertions solely at the Tn7 attachment site and so efficient that it is not necessary to select for the insertion.
Conclusion
This method is more efficient and straightforward than other techniques for transgene insertion available for E. coli and related bacteria, making moving transgenes from plasmids to a chromosomal location a simple matter. The non-requirement for selection is particularly well suited for use in development of unmarked strains for environmental release, such as live-vector vaccine strains, and also for promoter-fusion studies, and experiments in which every bacterial cell must express a transgene construct.
doi:10.1186/1471-2180-6-39
PMCID: PMC1475584  PMID: 16646962
19.  Fine-Tuning Synthesis of Yersinia pestis LcrV from Runaway-Like Replication Balanced-Lethal Plasmid in a Salmonella enterica Serovar Typhimurium Vaccine Induces Protection against a Lethal Y. pestis Challenge in Mice▿  
Infection and Immunity  2010;78(6):2529-2543.
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.
doi:10.1128/IAI.00005-10
PMCID: PMC2876574  PMID: 20308296
20.  Wolbachia Symbiont Infections Induce Strong Cytoplasmic Incompatibility in the Tsetse Fly Glossina morsitans 
PLoS Pathogens  2011;7(12):e1002415.
Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (GmmApo) females when mated with Wolbachia-infected (GmmWt) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used successfully as a gene driver. This lays the foundation for new disease control methods including a population replacement approach with parasite resistant flies. Alternatively, the availability of males that are reproductively incompatible with natural populations can enhance the efficacy of the ongoing sterile insect technique (SIT) applications by eliminating the need for chemical irradiation.
Author Summary
Infections with the parasitic bacterium Wolbachia are widespread in insects and cause a number of reproductive modifications, including cytoplasmic incompatibility (CI). There is growing interest in Wolbachia, as CI may be able to drive desired phenotypes such as disease resistance traits, into natural populations. Although Wolbachia infections had been reported in the medically and agriculturally important tsetse, their functional role was unknown. This is because attempts to cure tsetse of Wolbachia by antibiotic treatment damages the obligate mutualist Wigglesworthia, without which the flies are sterile. Here we have succeeded in the development of Wolbachia free and still fertile tsetse lines. Mating experiments for the first time provides evidence of strong CI in tsetse. We have incorporated our empirical data in a mathematical model and show that Wolbachia infections can be harnessed in tsetse to drive desirable phenotypes into natural populations in few generations. This finding provides additional support for the application of genetic approaches, which aim to spread parasite resistance traits in natural populations as a novel disease control method. Alternatively, releasing Wolbachia infected males can enhance Sterile Insect applications, as this will reduce the fecundity of natural females either uninfected or carrying a different strain of Wolbachia.
doi:10.1371/journal.ppat.1002415
PMCID: PMC3234226  PMID: 22174680
21.  Retrotransfer in Escherichia coli conjugation: bidirectional exchange or de novo mating? 
Journal of Bacteriology  1993;175(3):583-588.
DNA can be transferred among eubacteria and to plants and fungi by related, plasmid-mediated processes collectively referred to as bacterial conjugation. Conjugation occurs between cells in contact with one another and results in the unidirectional delivery of DNA from a bacterial donor to a recipient. Recent experiments that have reexamined the directionality of DNA flow during conjugation have come to different conclusions, some suggesting that genetic material also flows from recipient cells into the donor and that this process, termed retrotransfer, is likewise directed by donor-encoded functions. Given that bacteria are perhaps united with all living creatures by conjugation, the possibility of gene flow into donor bacteria during conjugation raises interesting evolutionary and biocontainment issues. Here we report that plasmid transmission from bacterial recipients to donors is not a donor-mediated event. Movement of genetic material from recipients to donors was inhibited by streptomycin, which does not inhibit the conjugative donor, indicating that retrotransfer requires gene expression in recipients. Furthermore, retrotransfer was reduced in matings mediated by plasmids that encode strong entry exclusion, to a similar degree as matings between two donors. Therefore we suggest that retrotransfer is in fact newly initiated conjugation between transconjugants and donors.
PMCID: PMC196192  PMID: 8423133
22.  Use of Staby® technology for development and production of DNA vaccines free of antibiotic resistance gene 
Human Vaccines & Immunotherapeutics  2013;9(10):2203-2210.
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby® technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby® technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).
doi:10.4161/hv.25086
PMCID: PMC3906405  PMID: 24051431
Aujeszky’s disease; DNA vaccine; Staby; antibiotic-free; ccdA; ccdB; electrotransfer
23.  An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes 
BMC Biotechnology  2007;7:10.
Background
Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype.
Results
This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4.
Conclusion
Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective tetravalent dengue vaccines.
doi:10.1186/1472-6750-7-10
PMCID: PMC1805746  PMID: 17302980
24.  Antibacterial gene transfer across the tree of life 
eLife  2014;3:e04266.
Though horizontal gene transfer (HGT) is widespread, genes and taxa experience biased rates of transferability. Curiously, independent transmission of homologous DNA to archaea, bacteria, eukaryotes, and viruses is extremely rare and often defies ecological and functional explanations. Here, we demonstrate that a bacterial lysozyme family integrated independently in all domains of life across diverse environments, generating the only glycosyl hydrolase 25 muramidases in plants and archaea. During coculture of a hydrothermal vent archaeon with a bacterial competitor, muramidase transcription is upregulated. Moreover, recombinant lysozyme exhibits broad-spectrum antibacterial action in a dose-dependent manner. Similar to bacterial transfer of antibiotic resistance genes, transfer of a potent antibacterial gene across the universal tree seemingly bestows a niche-transcending adaptation that trumps the barriers against parallel HGT to all domains. The discoveries also comprise the first characterization of an antibacterial gene in archaea and support the pursuit of antibiotics in this underexplored group.
DOI: http://dx.doi.org/10.7554/eLife.04266.001
eLife digest
Living things inherit most of their genetic material from their parents, so genes tend to be passed on from one generation to the next—from ancestors to descendants. Sometimes, however, DNA is transferred from one organism to another by other means. These events, collectively called horizontal gene transfer, are fairly common in nature; genes have been passed between different species as well as between different groups of organisms. For example, genes that confer resistance to antibacterial drugs have transferred from one species of bacteria to another, and other genes have also ‘jumped’ from bacteria to plants or animals.
Now Metcalf et al. have studied a gene that first arose in bacteria and that encodes an enzyme called a lysozyme. This enzyme breaks down the outer casing of a bacterial cell: a step that is required for a bacterium to reproduce and divide in two. When Metcalf et al. searched for relatives of the lysozyme gene, they found copies in many other species of bacteria and revealed that this gene has been repeatedly transferred between different bacteria. Members of the lysozyme gene family have also ‘jumped out’ of bacteria and into other organisms at least four times. Metcalf et al. found related lysozyme genes in a plant, an insect, many species of fungi, and a single-celled microbe (called an archaeon) that lives at hot, deep-sea vents.
A gene family being spread this widely across the tree of life has not been seen before. Nevertheless, as DNA is a common biological language to all living things, it is likely that all the different species that have received a lysozyme gene might use it for similar purposes.
Metcalf et al. reveal that the lysozyme could be being used as an antibacterial molecule. The archaeon lysozyme can kill a broad range of bacteria; and when the gene was transferred into Escherichia coli bacteria, only the bacteria that mutated the lysozyme gene to render it useless were able to survive. Metcalf et al. also revealed that the archaeon microbe produces more of the enzyme if bacteria are present, which allows it to outcompete these bacteria.
These findings suggest that there may be a number of horizontally transferred genes that have antibacterial activity against a wide range of bacteria. Searching for these genes—particularly in the largely underexplored group of archaea—might reveal new sources for antibiotic drugs to treat bacterial infections.
DOI: http://dx.doi.org/10.7554/eLife.04266.002
doi:10.7554/eLife.04266
PMCID: PMC4241558  PMID: 25422936
horizontal gene transfer; antibiotic; lysin; archaea; other
25.  Construction of a tetR-Integrated Salmonella enterica Serovar Typhi CVD908 Strain That Tightly Controls Expression of the Major Merozoite Surface Protein of Plasmodium falciparum for Applications in Human Vaccine Production  
Infection and Immunity  2002;70(4):2029-2038.
Attenuated Salmonella strains are an attractive live vector for delivery of a foreign antigen to the human immune system. However, the problem with this vector lies with plasmid segregation and the low level of expression of the foreign gene in vivo when constitutive expression is employed, leading to a diminished immune response. We have established inducible expressions of foreign genes in the Salmonella enterica serovar Typhi CVD908 vaccine strain using the tetracycline response regulatory promoter. To set up this system, a tetracycline repressor (tetR) was integrated into a defined ΔaroC locus of the chromosome via suicide plasmid pJG12/tetR-neo. To remove the neo gene conferring kanamycin resistance from the locus, a cre expression vector under the control of the tetracycline response promoter was transformed into the clone; expression of the Cre recombinase excised the neo gene and generated the end strain CVD908-tetR. Expression of the luciferase reporter gene in this strain is dependent on the presence of tetracycline in the medium and can be regulated up to 4,773-fold. Moreover, the tightly controlled expression of major merozoite surface protein 1 (MSP1) and parts of Plasmodium falciparum was achieved, and the product yield was increased when the inducible expression system was employed. Inoculation of bacteria harboring plasmid pZE11/MSP142 in mice produced the protein in liver and spleen controlled by the inducer. The persistence of the plasmid-carrying bacteria in mice was determined. Peak colonization of both liver and spleen was detected on the third day postinoculation and was followed by a decline in growth curves. After 14 days postinfection, the majority of the bacteria (>90%) recovered from the liver and spleen of the mice retained the plasmid when expression was induced; this clearly indicated that stability of the expression vector in vivo was improved by inducible expression. Establishment of the regulatory system in the vaccine strain may broaden the range of its use by enhancing plasmid stability and expression levels in vivo. Moreover, the availability of the vaccine strain inducibly expressing the entire MSP1 provides possibilities for examining its immunogenicity, particularly the cellular response in animal models.
doi:10.1128/IAI.70.4.2029-2038.2002
PMCID: PMC127878  PMID: 11895968

Results 1-25 (924678)