PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1035699)

Clipboard (0)
None

Related Articles

1.  Theoretical Analysis of Competing Conformational Transitions in Superhelical DNA 
PLoS Computational Biology  2012;8(4):e1002484.
We develop a statistical mechanical model to analyze the competitive behavior of transitions to multiple alternate conformations in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. Since DNA superhelicity topologically couples together the transition behaviors of all base pairs, a unified model is required to analyze all the transitions to which the DNA sequence is susceptible. Here we present a first model of this type. Our numerical approach generalizes the strategy of previously developed algorithms, which studied superhelical transitions to a single alternate conformation. We apply our multi-state model to study the competition between strand separation and B-Z transitions in superhelical DNA. We show this competition to be highly sensitive to temperature and to the imposed level of supercoiling. Comparison of our results with experimental data shows that, when the energetics appropriate to the experimental conditions are used, the competition between these two transitions is accurately captured by our algorithm. We analyze the superhelical competition between B-Z transitions and denaturation around the c-myc oncogene, where both transitions are known to occur when this gene is transcribing. We apply our model to explore the correlation between stress-induced transitions and transcriptional activity in various organisms. In higher eukaryotes we find a strong enhancement of Z-forming regions immediately 5′ to their transcription start sites (TSS), and a depletion of strand separating sites in a broad region around the TSS. The opposite patterns occur around transcript end locations. We also show that susceptibility to each type of transition is different in eukaryotes and prokaryotes. By analyzing a set of untranscribed pseudogenes we show that the Z-susceptibility just downstream of the TSS is not preserved, suggesting it may be under selection pressure.
Author Summary
The stresses imposed on DNA within organisms can drive the molecule from its standard B-form double-helical structure into other conformations at susceptible sites within the sequence. We present a theoretical method to calculate this transition behavior due to stresses induced by supercoiling. We also develop a numerical algorithm that calculates the transformation probability of each base pair in a user-specified DNA sequence under stress. We apply this method to analyze the competition between transitions to strand separated and left-handed Z-form structures. We find that these two conformations are both competitive under physiological environmental conditions, and that this competition is especially sensitive to temperature. By comparing its results to experimental data we also show that the algorithm properly describes the competition between melting and Z-DNA formation. Analysis of large gene sets from various organisms shows a correlation between sites of stress-induced transitions and locations that are involved in regulating gene expression.
doi:10.1371/journal.pcbi.1002484
PMCID: PMC3343103  PMID: 22570598
2.  Susceptibility to Superhelically Driven DNA Duplex Destabilization: A Highly Conserved Property of Yeast Replication Origins 
Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD) in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements), which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 × 10−10. This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes.
Synopsis
Several DNA functions require the two strands of the DNA duplex to transiently separate. Examples include the initiation of gene expression and of DNA replication. Here the authors examine the strand separation properties of the DNA duplex at autonomously replicating sequences (ARS elements), which are the potential replication origins in yeast.
In vivo, susceptibility to strand separation does not depend only on local DNA properties such as adenine plus thymine content or thermodynamic stability. Rather, stresses imposed on the DNA in vivo couple together the strand-opening behaviors of all base pairs that experience them. The authors use computational methods for analyzing stress-driven strand separation to examine the susceptibility to opening of 39 experimentally well-characterized ARS elements. They show that these ARS elements have strikingly increased susceptibilities to stress-induced separation relative to the surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do surrounding sequences, making them more than 2,000 times easier to open. This enhanced susceptibility to stress-driven strand separation has obvious implications for the mechanisms that begin the process of replication. This property is also shared by bacterial and viral replication start points, suggesting that it may be a general attribute of replication origins.
doi:10.1371/journal.pcbi.0010007
PMCID: PMC1183513  PMID: 16103908
3.  Superhelical Destabilization in Regulatory Regions of Stress Response Genes  
PLoS Computational Biology  2008;4(1):e17.
Stress-induced DNA duplex destabilization (SIDD) analysis exploits the known structural and energetic properties of DNA to predict sites that are susceptible to strand separation under negative superhelical stress. When this approach was used to calculate the SIDD profile of the entire Escherichia coli K12 genome, it was found that strongly destabilized sites occur preferentially in intergenic regions that are either known or inferred to contain promoters, but rarely occur in coding regions. Here, we investigate whether the genes grouped in different functional categories have characteristic SIDD properties in their upstream flanks. We report that strong SIDD sites in the E. coli K12 genome are statistically significantly overrepresented in the upstream regions of genes encoding transcriptional regulators. In particular, the upstream regions of genes that directly respond to physiological and environmental stimuli are more destabilized than are those regions of genes that are not involved in these responses. Moreover, if a pathway is controlled by a transcriptional regulator whose gene has a destabilized 5′ flank, then the genes (operons) in that pathway also usually contain strongly destabilized SIDD sites in their 5′ flanks. We observe this statistically significant association of SIDD sites with upstream regions of genes functioning in transcription in 38 of 43 genomes of free-living bacteria, but in only four of 18 genomes of endosymbionts or obligate parasitic bacteria. These results suggest that strong SIDD sites 5′ to participating genes may be involved in transcriptional responses to environmental changes, which are known to transiently alter superhelicity. We propose that these SIDD sites are active and necessary participants in superhelically mediated regulatory mechanisms governing changes in the global pattern of gene expression in prokaryotes in response to physiological or environmental changes.
Author Summary
DNA in vivo experiences regulated amounts of untwisting stress. If sufficiently large, these stresses can destabilize the double helix at specific locations. These sites then become favored locations for strand separations. Gene expression and DNA replication, the two major jobs of DNA, both require the strands of the duplex to be separated. Thus, events that affect the ease of strand separation can regulate the initiation of these processes. Stress-induced DNA duplex destabilization (SIDD) has been implicated in mechanisms regulating several biological processes, including the initiation of gene expression and replication. We have developed computational methods that accurately predict the locations and extents of destabilization within genomic DNA sequences that occur in response to specified stress levels. Here, we report that the easily destabilized sites we find in the Escherichia coli K12 genome are statistically significantly overrepresented in the upstream regions of genes encoding proteins that regulate transcription. In particular, the regions upstream of genes that directly respond to physiological and environmental stimuli are more destabilized than are those regions of genes that are not involved in these responses. These results suggest that strong SIDD sites upstream of participating genes may be involved in transcriptional responses to environmental changes.
doi:10.1371/journal.pcbi.0040017
PMCID: PMC2211533  PMID: 18208321
4.  Z-DNA formation in the rat growth hormone gene promoter region. 
Molecular and Cellular Biology  1990;10(10):5378-5387.
The complete DNA sequence of the 1.7 kilobase pairs (kbp) 5' of the rat growth hormone gene (rGH) has been determined and analyzed for Z-DNA-forming potential. Regions of alternating purine-pyrimidine (APP) sequences located between -1047 and -986 [(GT)31], between -445 and -433 bp, and between -426 and -403 bp relative to the rGH RNA transcription initiation site were identified and shown to form Z-DNA in negatively supercoiled plasmids by two-dimensional gel electrophoresis. Free-energy calculations indicated that Z-DNA forms most readily in the proximal Z-DNA regions. Diethyl pyrocarbonate footprinting of physiologically supercoiled plasmid DNA confirmed the presence of Z-DNA from -444 to -404 bp spanning the two most proximal APP sequences and a short non-APP sequence in between. DNA sequence analysis also predicted a region of DNA curvature near this proximal Z-DNA region. Formation of Z-DNA in the distal Z-DNA region consisting of a (GT)31 repeat was constrained at physiological plasmid superhelical densities. This may be related to the presence of DNA sequences (-1584 to -1559) 512 bp upstream of (GT)31 that undergo cruciform formation and thereby utilize the available free energy. Removal of 580 bp containing the cruciform region resulted in Z-DNA formation within (GT)31, thus demonstrating that deletion mutations can exert topological changes at a distance within the rGH 5'-flanking region. Methylation of two specific cytosines in the rGH 5'-flanking DNA that have been associated with inhibition of rGH promoter activity had no effect on Z-DNA formation. No evidence for DNA secondary structure formation within the rGH second exon-intron or 3'-flanking region was observed. We conclude that the rGH 5'-flanking region undergoes secondary-structure formation at physiological superhelical densities, thus providing a potential mechanism(s) for modulating rGH activity.
Images
PMCID: PMC361237  PMID: 2398895
5.  Competitive superhelical transitions involving cruciform extrusion 
Nucleic Acids Research  2013;41(21):9610-9621.
A DNA molecule under negative superhelical stress becomes susceptible to transitions to alternate structures. The accessible alternate conformations depend on base sequence and compete for occupancy. We have developed a method to calculate equilibrium distributions among the states available to such systems, as well as their average thermodynamic properties. Here we extend this approach to include superhelical cruciform extrusion at both perfect and imperfect inverted repeat (IR) sequences. We find that short IRs do not extrude cruciforms, even in the absence of competition. But as the length of an IR increases, its extrusion can come to dominate both strand separation and B-Z transitions. Although many IRs are present in human genomic DNA, we find that extrusion-susceptible ones occur infrequently. Moreover, their avoidance of transcription start sites in eukaryotes suggests that cruciform formation is rarely involved in mechanisms of gene regulation. We examine a set of clinically important chromosomal translocation breakpoints that occur at long IRs, whose rearrangement has been proposed to be driven by cruciform extrusion. Our results show that the susceptibilities of these IRs to cruciform formation correspond closely with their observed translocation frequencies.
doi:10.1093/nar/gkt733
PMCID: PMC3834812  PMID: 23969416
6.  SIDDBASE: a database containing the stress-induced DNA duplex destabilization (SIDD) profiles of complete microbial genomes 
Nucleic Acids Research  2005;34(Database issue):D373-D378.
Prokaryotic genomic DNA is generally negatively supercoiled in vivo. Many regulatory processes, including the initiation of transcription, are known to depend on the superhelical state of the DNA substrate. The stresses induced within DNA by negative superhelicity can destabilize the DNA duplex at specific sites. Various experiments have either shown or suggested that stress-induced DNA duplex destabilization (SIDD) is involved in specific regulatory mechanisms governing a variety of biological processes. We have developed methods to evaluate the SIDD properties of DNA sequences, including complete chromosomes. This analysis predicts the locations where the duplex becomes destabilized under superhelical stress. Previous studies have shown that the SIDD-susceptible sites predicted in this way occur at rates much higher than expected at random in transcriptional regulatory regions, and much lower than expected in coding regions. Analysis of the SIDD profiles of 42 bacterial genomes chosen for their diversity confirms this pattern. Predictions of SIDD sites have been used to identify potential genomic regulatory regions, and suggest both possible regulatory mechanisms involving stress-induced destabilization and experimental tests of these mechanisms. Here we describe the SIDDBASE database which enables users to retrieve and visualize the results of SIDD analyses of completely sequenced prokaryotic and archaeal genomes, together with their annotations. SIDDBASE is available at .
doi:10.1093/nar/gkj007
PMCID: PMC1347370  PMID: 16381890
7.  Formation of intramolecular triplex in homopurine-homopyrimidine mirror repeats with point substitutions. 
Nucleic Acids Research  1990;18(22):6621-6624.
We have used two-dimensional gel electrophoresis to study the structural transition to the triplex H form of sequences 5'-AAGGGAGAAXGGGGTATAGGGGYAAGAGGGAA-3' where X and Y are any DNA bases. The transition was observed at acid pH under superhelical stress. For X = Y = A or X = Y = G the sequences corresponded to homopurine-homopyrimidine mirror repeats (H-palindrome) which are known to adopt the H form under acid pH and superhelical stress. We have shown that the H form is actually formed for all X and Y, though in cases other than X = Y = A and X = Y = G the transition requires larger negative superhelical stress. Different substitutions require different superhelicity levels for the transition to occur. Theoretical analysis of the data obtained made it possible to estimate the energy cost of triplex formation due to all possible mismatched base triads.
Images
PMCID: PMC332619  PMID: 2251122
8.  Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress 
BMC Bioinformatics  2006;7:248.
Background
In our previous studies, we found that the sites in prokaryotic genomes which are most susceptible to duplex destabilization under the negative superhelical stresses that occur in vivo are statistically highly significantly associated with intergenic regions that are known or inferred to contain promoters. In this report we investigate how this structural property, either alone or together with other structural and sequence attributes, may be used to search prokaryotic genomes for promoters.
Results
We show that the propensity for stress-induced DNA duplex destabilization (SIDD) is closely associated with specific promoter regions. The extent of destabilization in promoter-containing regions is found to be bimodally distributed. When compared with DNA curvature, deformability, thermostability or sequence motif scores within the -10 region, SIDD is found to be the most informative DNA property regarding promoter locations in the E. coli K12 genome. SIDD properties alone perform better at detecting promoter regions than other programs trained on this genome. Because this approach has a very low false positive rate, it can be used to predict with high confidence the subset of promoters that are strongly destabilized. When SIDD properties are combined with -10 motif scores in a linear classification function, they predict promoter regions with better than 80% accuracy. When these methods were tested with promoter and non-promoter sequences from Bacillus subtilis, they achieved similar or higher accuracies. We also present a strictly SIDD-based predictor for annotating promoter sequences in complete microbial genomes.
Conclusion
In this report we show that the propensity to undergo stress-induced duplex destabilization (SIDD) is a distinctive structural attribute of many prokaryotic promoter sequences. We have developed methods to identify promoter sequences in prokaryotic genomes that use SIDD either as a sole predictor or in combination with other DNA structural and sequence properties. Although these methods cannot predict all the promoter-containing regions in a genome, they do find large sets of potential regions that have high probabilities of being true positives. This approach could be especially valuable for annotating those genomes about which there is limited experimental data.
doi:10.1186/1471-2105-7-248
PMCID: PMC1468432  PMID: 16677393
9.  Fluctuations in superhelical DNA. 
Nucleic Acids Research  1979;6(3):967-982.
The effect of superhelicity on the base-pair opening probability and on the probability of occurrence of cruciform states in palindromic regions is theoretically treated. The calculations show that below the superhelix density value of -sigma=0.05 superhelicity does not appreciably affect the characteristics of DNA secondary structure fluctuations. In the range of physiological superhelix densities sigma (-sigma=0.05-0.09) the base-pair opening probability markedly increases. However, within this range of sigma the base-pairs are opened only transiently and permanently open regions are not formed. Permanently opened regions appear at higher negative superhelix densities (-sigma greater than 0.10). At the values of -sigma higher than 0.06 a cruciform structure in the palindromic region centred in position 3965 proves to be the most probable fluctuational disturbance in the 0x174 duplex DNA. Different experimental approaches used for probing the fluctuations in superhelical DNA have been analysed. The results suggest that most direct quantitative information can be derived from data on the nicking of closed DNA by single strand-specific endonucleases. Such data (Wang, 1974) accord with the results of theoretical calculations. Calculations show that, due to base-pair opening, the total free energy of superhelical DNA should depend parabolically on sigma only up to some critical value of sigma=sigmac. If negative superhelicity exceeds this critical value, which under physiological conditions proves to be -sigma=0.085, the free energy should increase linearly with -sigma. The biological role of supercoiling is discussed in the light of obtained results.
PMCID: PMC327745  PMID: 155809
10.  Large-scale opening of A + T rich regions within supercoiled DNA molecules is suppressed by salt. 
Nucleic Acids Research  1994;22(11):2042-2050.
Large-scale cooperative helix opening has been previously observed in A + T rich sequences contained in supercoiled DNA molecules at elevated temperatures. Since it is well known that helix melting of linear DNA is suppressed by addition of salt, we have investigated the effects of added salts on opening transitions in negatively supercoiled DNA circles. We have found that localised large-scale stable melting in supercoiled DNA is strongly suppressed by modest elevation of salt concentration, in the range 10 to 30 mM sodium. This has been shown in a number of independent ways: 1. The temperature required to promote cruciform extrusion by the pathway that proceeds via the coordinate large-scale opening of an A + T rich region surrounding the inverted repeat (the C-type pathway, first observed in the extrusion of the ColE1 inverted repeat) is elevated by addition of salt. The temperature required for extrusion was increased by about 4 deg for an addition of 10 mM NaCl. 2. A + T rich regions in supercoiled DNA exhibit hyperreactivity towards osmium tetroxide as the temperature is raised; this reactivity is strongly suppressed by the addition of salt. At low salt concentrations of added NaCl (10 mM) we observe that there is an approximate equivalence between reducing the salt concentration, and the elevation of temperature. Above 30 mM NaCl the reactivity of the ColE1 sequences is completely supressed at normal temperatures. 3. Stable helix opening transitions in A + T rich sequences may be observed with elevated temperature, using two-dimensional gel electrophoresis; these transitions become progressively harder to demonstrate with the addition of salt. With the addition of low concentrations of salt, the onset of opening transitions shifts to higher superhelix density, and by 30 mM NaCl or more, no transitions are visible up to a temperature of 50 degrees C. Statistical mechanical simulation of the data indicate that the cooperativity free energy for the transition is unaltered by addition of salt, but that the free energy cost for opening each basepair is increased. These results demonstrate that addition of even relatively low concentrations of salt strongly suppress the large-scale helix opening of A + T rich regions, even at high levels of negative supercoiling. While the opening at low salt concentrations may reveal a propensity for such transitions, spontaneous opening is very unlikely under physiological conditions of salt, temperature and superhelicity, and we conclude that proteins will therefore be required to facilitate opening transitions in cellular DNA.
Images
PMCID: PMC308119  PMID: 8029010
11.  The influence of tertiary structural restraints on conformational transitions in superhelical DNA. 
Nucleic Acids Research  1987;15(23):9985-9995.
This paper examines theoretically the effects that restraints on the tertiary structure of a superhelical DNA domain exert on the energetics of linking and the onset of conformational transitions. The most important tertiary constraint arises from the nucleosomal winding of genomic DNA in vivo. Conformational transitions are shown to occur at equilibrium at less extreme superhelicities in DNA whose tertiary structure is restrained than in unrestrained molecules where the residual linking difference alpha res (that part of the superhelical deformation which is not absorbed by transitions) may be freely partitioned between twisting and bending. In the extreme case of a rigidly held tertiary structure, this analysis predicts that the B-Z transition will occur at roughly half the superhelix density needed to drive the same transition in solution, other factors remaining fixed. This suggests that superhelical transitions may occur at more moderate superhelical deformations in vivo than in solution. The influence on transition behavior of the tertiary structural restraints imposed by gel conditions also are discussed.
PMCID: PMC306545  PMID: 3320960
12.  The Effect of DNA Supercoiling on Geometry of Holliday Junctions† 
Biochemistry  2006;45(43):12998-13006.
Unusual DNA conformations including cruciforms play an important role in gene regulation and various DNA transactions. Cruciforms are also the models for Holliday junctions, the transient DNA conformations critically involved in DNA homologous and site-specific recombination, repair and replication. Although the conformations of immobile Holliday junctions in linear DNA molecules have been analyzed with use of various techniques, the role of DNA supercoiling has not been studied systematically. We utilized Atomic Force Microscopy (AFM) to visualize cruciform geometry in plasmid DNA with different superhelical densities at various ionic conditions. Both folded and unfolded conformations of the cruciform were identified, and the data showed that DNA supercoiling shifts the equilibrium between folded and unfolded conformations of the cruciform towards the folded one. In topoisomers with low superhelical density the population of folded conformation is 50 to 80 %, depending on ionic strength of the buffer and a type of cation added, whereas in the sample with high superhelical density, this population is as high as 98-100%. The time-lapse studies in aqueous solutions allowed us to observe the conformational transition of the cruciform directly. The time-dependent dynamics of the cruciform correlates with the structural changes revealed by the ensemble-averaged analysis of dry samples. Altogether, the data obtained show directly that DNA supercoiling is the major factor determining the Holliday junction conformation.
doi:10.1021/bi061002k
PMCID: PMC1646289  PMID: 17059216
13.  DNA structural transitions within the PKD1 gene. 
Nucleic Acids Research  1999;27(13):2610-2617.
Autosomal dominant polycystic kidney disease (ADPKD) affects over 500 000 Americans. Eighty-five percent of these patients have mutations in the PKD1 gene. The focal nature of cyst formation has recently been attributed to innate instability in the PKD1 gene. Intron 21 of this gene contains the largest polypurine. polypyrimidine tract (2.5 kb) identified to date in the human genome. Polypurine.polypyrimidine mirror repeats form intramolecular triplexes, which may predispose the gene to mutagenesis. A recombinant plasmid containing the entire PKD1 intron 21 was analyzed by two-dimensional gel electrophoresis and it exhibited sharp structural transitions under conditions of negative supercoiling and acidic pH. The superhelical density at which the transition occurred was linearly related to pH, consistent with formation of protonated DNA structures. P1 nuclease mapping studies of a plasmid containing the entire intron 21 identified four single-stranded regions where structural transitions occurred at low superhelical densities. Two-dimensional gel electrophoresis and chemical modification studies of the plasmid containing a 46 bp mirror repeat from one of the four regions demonstrated the formation of an H-y3 triplex structure. In summary, these experiments demonstrate that a 2500 bp polypurine.polypyrimidine tract within the PKD1 gene is capable of forming multiple non-B-DNA structures.
PMCID: PMC148468  PMID: 10373576
14.  Sequence-dependent Kink-and-Slide Deformations of Nucleosomal DNA Facilitated by Histone Arginines Bound in the Minor Groove 
In addition to bending and twisting deformabilities, the lateral displacements of the DNA axis (Kink-and-Slide) play an important role in DNA wrapping around the histone core (M. Y. Tolstorukov, A. V. Colasanti, D. M. McCandlish, W. K. Olson, V. B. Zhurkin, J. Mol. Biol. 371, 725-738 (2007)). Here, we show that these Kink-and-Slide deformations are likely to be stabilized by the arginine residues of histones interacting with the minor groove of DNA. The arginines are positioned asymmetrically in the minor groove, being closer to one strand. The asymmetric arginine-DNA interactions facilitate lateral displacement of base pairs across the DNA grooves, thus leading to a stepwise accumulation of the superhelical pitch of nucleosomal DNA.
To understand the sequence dependence of such Kink-and-Slide deformations, we performed all-atom calculations of DNA hexamers with the YR and RY steps in the center. We found that when the unrestrained DNA deformations are allowed, the YR steps tend to bend into the major groove, and RY steps bend into the minor groove. However, when the nucleosomal Kink-and-Slide deformation is considered, the YR steps prove to be more favorable for bending into the minor groove. Overall, the Kink-and-Slide deformation energy of DNA increases in the order TA < CA < CG < GC < AC < AT. We propose a simple stereochemical model accounting for this sequence dependence. Our results agree with experimental data indicating that the TA step most frequently occurs in the minor-groove kink positions in the most stable nucleosomes.
Our computations demonstrate that the Kink-and-Slide distortion is accompanied by the BI to BII transition. This fact, together with irregularities in the two-dimensional (Roll, Slide) energy contour maps, suggest that the Kink-and-Slide deformations represent a nonharmonic behavior of the duplex. This explains the difference between the two estimates of the DNA deformation energy in nucleosome – the earlier one made using knowledge-based elastic energy functions, and the current one based on all-atom calculations.
Our findings are useful for refining the score functions for the prediction of nucleosome positioning. In addition, the reverse bending behavior of the YR and RY steps revealed under the Kink-and-Slide constraint is important for understanding the molecular mechanisms of binding transcription factors (such as p53) to DNA exposed on the surface of nucleosome.
PMCID: PMC2987563  PMID: 20232937
nucleosome; nucleosome positioning; DNA bending; DNA sequence patterns; DNA kinks
15.  The B-A transition in superhelical DNA. 
Nucleic Acids Research  1990;18(4):759-761.
Relaxation of a DNA superhelical stress due to the B to A transition induced by trifluoroethanol has been studied by assessing the change of DNA orientation in a flow gradient. Using DNAs of different superhelical densities, a decrease in the winding angle during the B----A shift of DNA was found to be 1.5 degrees per base pair in solution. Accepting the winding angle for B-DNA in solution to be 34.1 degrees, that for A-DNA must have a value of 32.6 degrees which agrees with the X-ray data for A-DNA in the condensed state. The date obtained within the B-A transition interval make it possible to conclude that there is an increase in winding at each B/A junction, which is about 5 degrees per one junction.
PMCID: PMC330324  PMID: 2156228
16.  Location of B- and Z-DNA in the chromosomes of a primitive eukaryote dinoflagellate 
The Journal of Cell Biology  1990;111(2):293-304.
The usual conformation of DNA is a right-handed double helix (B-DNA). DNA with stretches of alternating purine-pyrimidine (G-C or A-T) can form a left-handed helix (Z-DNA). The transition B----Z, facilitated by the presence of divalent cations, cytosine methylation, or constraints on DNA such as superhelicity may play a role in the regulation of gene expression and/or in DNA compaction (Zarling, D. A., D. J. Arndt-Jovin, M. Robert-Nicoud, L. P. McIntosh, R. Tomae, and T. M. Jovin. 1984. J. Mol. Biol. 176:369-415). Divalent cations are also important in the structure of the quasi-permanently condensed chromosomes of dinoflagellate protists (Herzog, M., and M.-O. Soyer. 1983. Eur. J. Cell Biol. 30:33-41) which also have superhelicity in their DNA. The absence of histones in dinoflagellate chromosomes suggest that the search for Z-DNA sequences might be fruitful and could provide one indication of the physiological role of this particular DNA conformation. We report a complete immunofluorescent and immunogold analysis of the nuclei of the dinoflagellate Prorocentrum micans E. using monoclonal and polyclonal anti-B and anti-Z-DNA antibodies. Positive labeling was obtained with immunofluorescence using squash preparations and cryosections, both of which showed the intranuclear presence of the two DNA conformations. In ultrathin sections of aldehyde-prefixed, osmium-fixed, and epoxy-embedded cells, we have localized B-DNA and Z-DNA either with single or double immunolabeling using IgG labeled with 5- and 7-nm gold particles, respectively. Chromosomal nucleofilaments of dividing or nondividing chromosomes, as seen in ultrathin sections in their arch-shaped configuration, are abundantly labeled with anti-B-DNA antibody. Extrachromosomal anti-B- DNA labeling is also detected on the nucleoplasm that corresponds to DNA loops; we confirm the presence of these loops previously described external to the chromosomes (Soyer, M.-O., and O. K. Haapala. 1974. Chromosoma (Berl.). 47:179-192). B labeling is also visible in the nucleolus organizer region (NOR) and in the fibrillo-granular area (containing transcribing rDNA) of the nucleolus. Z-DNA was localized in limited areas inside the chromosomes, often at the periphery and near the segregation fork of dividing chromosomes. In the nucleolus, Z-DNA is observed only in the NOR area and never in the fibrillo-granular area. For both types of antibody experiments, controls using gold- labeled IgG without primary antibody were negative. A quantitative evaluation of the distribution of the gold-labeled IgG and a parametric test support the validity of these experiments.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC2116181  PMID: 2380241
17.  d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. 
Nucleic Acids Research  1990;18(6):1595-1601.
Two alternating purine-pyrimidine sequences of the d(TG)n.d(CA)n-type (170bp and 60 bp in length) lie upstream of the rat prolactin (rPRL) gene. Conformational studies of plasmids containing these sequences indicate that both form left-handed (Z) DNA, with transitions initiating at superhelical densities of -0.041 and -0.044 respectively. These alternating purine-pyrimidine (APP) sequences are hypersensitive to cleavage with S1 nuclease both at the boundaries and within these APP repeats, where there is a loss in APP alternation. We have investigated the function of one of these Z-DNA sequences in the regulation of rPRL transcription, by linking regions of the 5' flanking sequence of the rPRL gene to a reporter gene encoding chloramphenicol acetyltransferase (CAT), and transferring these plasmids into GH3 pituitary tumour cell lines. The major conclusion from these studies is that the 170bp repeat exerts a negative effect on the transcription of the rPRL gene, and also down-regulates the expression of the fusion gene pRSVcat when cloned 50bp upstream of the Rous sarcoma virus promoter. However, despite its proximity to an estrogen response element in prolactin, this sequence does not affect the responsiveness of the rPRL gene to estrogen.
Images
PMCID: PMC330531  PMID: 2158081
18.  Locating Interrupted Hydrogen Bonding in the Secondary Structure of PM2 Circular DNA by Comparative Denaturation Mapping 
Journal of Virology  1974;13(6):1176-1185.
Previous studies with HCHO have revealed a reaction with superhelical DNA that strongly suggests that this DNA consists of small regions of interrupted secondary structure. To map these sites in PM2 DNA, the following set of experiments was performed using electron microscopy. (i) A denaturation map of nicked form II was obtained using Inman's alkaline-HCHO conditions. (ii) The superhelical form I was reacted with HCHO at 30 C until equilibrium was achieved at the interrupted sites (3.6% reactivity). The excess HCHO was removed rapidly and X-ray treatment was employed to nick these prereacted molecules. These form II molecules containing HCHO (form II HCHO) were also subjected to denaturation mapping. It would be expected that the HCHO-unpaired regions would serve as induction sites for the propagation of melting. Hence, depending on the location of the induction sites; we would anticipate either the creation of new regions of melting or a normal denaturation map shifted to lower pH values. Comparison of the development of progressive denaturation of form II and form II HCHO reveals that the latter is the case. The denaturation maps of form II are highly organized patterns of adenine-thymine (AT)-rich regions, with a total of five regions at extreme pH conditions. There are six highly organized regions for form II HCHO, i.e., smaller adjacent loops, at low denaturation conditions where no denaturation is seen for form II. These coalesce into the pattern for form II containing four of five A-T-rich regions observed for form II. Hence we conclude that the regions of altered hydrogen bonding in superhelical PM2 DNA are four to six in number and they map in the A-T-rich regions of the DNA.
Images
PMCID: PMC355436  PMID: 4833606
19.  Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx) distance metrics 
Background
The exchange of nucleotides at synonymous sites in a gene encoding a protein is believed to have little impact on the fitness of a host organism. This should be especially true for synonymous transitions, where a pyrimidine nucleotide is replaced by another pyrimidine, or a purine is replaced by another purine. This suggests that transition redundant exchange (TREx) processes at the third position of conserved two-fold codon systems might offer the best approximation for a neutral molecular clock, serving to examine, within coding regions, theories that require neutrality, determine whether transition rate constants differ within genes in a single lineage, and correlate dates of events recorded in genomes with dates in the geological and paleontological records. To date, TREx analysis of the yeast genome has recognized correlated duplications that established a new metabolic strategies in fungi, and supported analyses of functional change in aromatases in pigs. TREx dating has limitations, however. Multiple transitions at synonymous sites may cause equilibration and loss of information. Further, to be useful to correlate events in the genomic record, different genes within a genome must suffer transitions at similar rates.
Results
A formalism to analyze divergence at two fold redundant codon systems is presented. This formalism exploits two-state approach-to-equilibrium kinetics from chemistry. This formalism captures, in a single equation, the possibility of multiple substitutions at individual sites, avoiding any need to "correct" for these. The formalism also connects specific rate constants for transitions to specific approximations in an underlying evolutionary model, including assumptions that transition rate constants are invariant at different sites, in different genes, in different lineages, and at different times. Therefore, the formalism supports analyses that evaluate these approximations.
Transitions at synonymous sites within two-fold redundant coding systems were examined in the mouse, rat, and human genomes. The key metric (f2), the fraction of those sites that holds the same nucleotide, was measured for putative ortholog pairs. A transition redundant exchange (TREx) distance was calculated from f2 for these pairs. Pyrimidine-pyrimidine transitions at these sites occur approximately 14% faster than purine-purine transitions in various lineages. Transition rate constants were similar in different genes within the same lineages; within a set of orthologs, the f2 distribution is only modest overdispersed. No correlation between disparity and overdispersion is observed. In rodents, evidence was found for greater conservation of TREx sites in genes on the X chromosome, accounting for a small part of the overdispersion, however.
Conclusion
The TREx metric is useful to analyze the history of transition rate constants within these mammals over the past 100 million years. The TREx metric estimates the extent to which silent nucleotide substitutions accumulate in different genes, on different chromosomes, with different compositions, in different lineages, and at different times.
doi:10.1186/1471-2148-6-25
PMCID: PMC1435776  PMID: 16545144
20.  Free-energy Landscapes of Ion-channel Gating Are Malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels† 
Biochemistry  2003;42(50):14977-14987.
Acetylcholine-receptor channels (AChRs) are allosteric membrane proteins that mediate synaptic transmission by alternatively opening and closing (‘gating’) a cation-selective transmembrane pore. Although ligand binding is not required for the channel to open, the binding of agonists (for example, acetylcholine) increases the closed ⇌ open equilibrium constant because the ion-impermeable → ion-permeable transition of the ion pathway is accompanied by a low → high affinity change at the agonist-binding sites. The fact that the gating conformational change of muscle AChRs can be kinetically modeled as a two-state reaction has paved the way to the experimental characterization of the corresponding transition state, which represents a snapshot of the continuous sequence of molecular events separating the closed and open states. Previous studies of fully (di-) liganded AChRs, combining single-channel kinetic measurements, site-directed mutagenesis, and data analysis in the framework of the linear free-energy relationships of physical organic chemistry, have suggested a transition-state structure that is consistent with channel opening being an asynchronous conformational change that starts at the extracellular agonist-binding sites and propagates towards the intracellular end of the pore. In this paper, I characterize the gating transition state of unliganded AChRs, and report a remarkable difference: unlike that of diliganded gating, the unliganded transition state is not a hybrid of the closed- and open-state structures but, rather, is almost indistinguishable from the open state itself. This displacement of the transition state along the reaction coordinate obscures the mechanism underlying the unliganded closed ⇌ open reaction but brings to light the malleable nature of free-energy landscapes of ion-channel gating.
The muscle acetylcholine receptor channel (AChR)1 is the neurotransmitter-gated ion channel that mediates neuromuscular synaptic transmission in vertebrates (1). Although the structure of this large pentameric transmembrane protein (∼470 residues per subunit) is not known with atomic resolution, a wealth of structural information exists, mainly from mutational studies, affinity labeling, chemical modification of specific residues, electron microscopy, and crystallography (reviewed in ref. 2). As is the case of any other allosteric protein, the dynamic behavior of this receptor-channel can be understood in the framework of thermodynamic cycles, with conformational changes and ligand-binding events as the elementary steps (3-5). Thus, the AChR can adopt a variety of different conformations that can interconvert (closed, open, and desensitized ‘states’), and each conformation has a distinct ligand-binding affinity (low affinity in the closed state and high affinity in the open and desensitized states) and a particular ‘catalytic efficiency’ (ion-impermeable in the closed and desensitized states, and ion-permeable in the open state). To meet the physiological requirement of a small closed ⇌ open (‘gating’) equilibrium constant for the unliganded receptor, and a large gating equilibrium constant for the ACh-diliganded receptor, the affinity of the AChR for ACh must be higher in the open than in the closed conformation (4-6). This follows from the notion that the equilibrium constants governing the different reaction steps (ligand binding and gating) of these cyclic reaction schemes are constrained by the principle of detailed balance.
Hence, irrespective of whether the receptor is diliganded, monoliganded or unliganded, two changes must take place in going from the closed state (low ligand affinity and ion-impermeable) to the open state (high ligand affinity and ion-permeable): a) the pore becomes permeable to ions, and b) the transmitter-binding sites, some 50 Å away from the pore domain (7), increase their affinity for the ligand (with the reverse changes taking place during closing). The apparent lack of stable intermediates between the closed and open conformations, inferred from kinetic modeling of the diliganded-gating reaction (8), suggests that these two changes occur as a result of a one-step, global conformational change. The question, then, arises as to whether this concerted conformational change proceeds synchronously (i.e., every residue of the protein moves ‘in unison’) or asynchronously (i.e., following a sequence of events; ref. 9) and, if the latter were the case, whether multiple, few, or just one sequence of events is actually traversed by the channel to ‘connect’ the end states.
Analysis of the correlation between rate and equilibrium constants of gating in diliganded AChRs has allowed us to address some of these issues by probing the structure of the transition state (8, 10-12), that is, the intermediate species between the end states of a one-step reaction that can be most easily studied. Interpretation of these results in the framework of the classical rate-equilibrium free-energy relationships of physical organic chemistry (13, 14), revealed that AChR diliganded gating is a highly asynchronous reaction, and suggested that the transition-state ensemble is quite homogeneous, as if the crossing of the energy barrier were confined to a narrow pass at the top of the energy landscape. In the opening direction, the conformational rearrangement that leads to the low-to-high affinity change at the extracellular binding sites precedes the conformational rearrangement of the pore that renders the channel ion-permeable. This propagated global conformational change, which we have referred to as a ‘conformational wave’ (11), must reverse during channel closing so that closing starts at the pore and propagates all the way to the binding sites.
It is not at all obvious why the diliganded-gating conformational change starts at the binding sites when the channel opens, nor even why the conformational change propagates at all through the receptor, instead of taking place synchronously throughout the protein. Is there any correlation between the location of the domain that binds agonist and the location of the initiation site for the opening conformational change? Could the latter have started from the intracellular end of the pore, for example, and have propagated to the (extracellular) transmitter-binding sites? What difference does it make to be liganded or unliganded as far as the mechanism of the gating conformational change is concerned? To address these issues, I set out to explore the mechanism of gating in unliganded AChRs by probing the structure of the corresponding transition state using kinetic measurements, site-directed mutagenesis, and the concepts of rate-equilibrium free-energy relationships and Φ-value analysis.
Briefly, a Φ-value can be assigned to any position in the protein by estimating the slope of a ‘Brönsted plot’2 [log (gating rate constant) versus log (gating equilibrium constant)] where each point corresponds to a different amino-acid substitution at that given position. More coarsegrained Φ-values can also be obtained by using different agonists or different transmembrane potentials, for example, as a means of altering the rate and equilibrium constants of gating. Very often, rate-equilibrium plots are linear, and 0 < Φ < 1. A value of Φ = 0 suggests that the position in question (in the case of a mutation series) experiences a closed-state-like environment at the transition state whereas a value of Φ = 1 suggests an open-state-like environment. A fractional Φ-value suggests an environment that is intermediate between those experienced in the closed and open states (16).
Earlier results indicated that the Φ-values obtained by varying the transmembrane potential are different in diliganded and unliganded AChRs. These Φ-values, which are a measure of the closed-state-like versus open-state-like character of the channel’s voltage-sensing elements at the transition state, are 0.070 ± 0.060 in diliganded receptors (17), and 1.025 ± 0.053 in unliganded AChRs (11, 18). The present study reveals that residues at the transmitter-binding sites (Figure 1), the extracellular loop that links the second (M2) and third (M3) transmembrane segments (M2-M3 linker), and the upper and lower half of M2, which during diliganded gating have Φ-values of ∼1 (ref. 11), ∼0.7 (ref. 10), ∼0.35 (refs 8, 11, 12), and ∼0 (ref. 12), respectively, have also Φ-values very close to 1 during unliganded gating. This generalized shift in Φ-values suggests that the diliganded → unliganded perturbation deforms the energy landscape of gating in such a way that the ‘new’ transition state occurs very close to the open state, to such an extent that all tested positions experience an open-state-like environment at the transition state of unliganded gating. Thus, the transition state occurs so ‘late’ (i.e., so close to the open state) that its inferred structure does not provide any clues as to the intermediate stages of this reaction.
Hence, the mechanism of unliganded gating remains obscure. The change in the position of the transition state along a reaction coordinate, as a result of perturbations to the energy landscape, is a very well known phenomenon in organic chemistry (e.g., refs 20-26), and protein folding (e.g., refs 27-34). In this paper, I show that this phenomenon can also take place in the case of allosteric transitions and, therefore, that the structure of the transition state of a global conformational change need not be fixed; rather, it can change depending on the experimental conditions.
doi:10.1021/bi0354334
PMCID: PMC1463891  PMID: 14674774
21.  An S1 nuclease-sensitive region in the first intron of human platelet-derived growth factor A-chain gene contains a negatively acting cell type-specific regulatory element. 
Nucleic Acids Research  1994;22(3):457-464.
The platelet-derived growth factor (PDGF) A-chain gene is expressed in a tissue- and developmental stage-specific manner. Here we identify an S1 nuclease sensitive region within the first intron that functions as a negative regulatory element in HeLa but not in human glioblastoma (A172) cells in transient transfection assays. A 147 bp DNA fragment that contains this element functions in a position and orientation independent manner to negatively regulate both the PDGF A-chain promoter and the heterologous herpes simplex virus thymidine kinase (TK) promoter. The cell-type specific effect of this 147 bp DNA fragment is seen when it is located downstream but not upstream of the reporter gene driven by either the PDGF A-chain or TK promoters. The negative regulatory element has been localized to a 24 bp DNA sequence within the S1 sensitive site that retains negative regulatory activity and recognizes a nuclear protein in HeLa but not in A172 cells. Furthermore, the 24 bp element functions as a cell type-specific negative element independent of its position. These results suggest that a functional silencer within the first intron exhibits a non-B-form DNA structure under superhelical stress in vitro and may contribute to the cell type-specific transcriptional regulation of PDGF A-chain gene in vivo.
Images
PMCID: PMC523604  PMID: 8127685
22.  Conformational DNA transition in the in vitro torsionally strained chicken beta-globin 5' region. 
Nucleic Acids Research  1986;14(18):7143-7158.
A sequence of 86 bp within the 5' region of the adult chicken beta-globin gene was found to undergo a DNA conformational transition at elevated levels of negative superhelical stress (- sigma = 0.068). In vitro chemical DNA modification studies which detect purine hyperreactivity (HR) to the alkylating agent diethyl pyrocarbonate (DEP) have identified this 86 bp long DEP-HR element. The DEP-HR element is composed of small, tandem segments with imperfect purine-pyrimidine alternations. Methylation of cytosines within GCGC sequences of the DEP-HR element facilitates this structural change. The binding of a monoclonal anti-Z-DNA antibody to the element has been revealed by chemical footprinting with DEP. These data suggest that the DEP-HR sequence can undergo a conformational transition to Z-DNA. It is unknown whether the conformational flexibility observed here occurs in vivo.
Images
PMCID: PMC311742  PMID: 3763402
23.  Superhelical Duplex Destabilization and the Recombination Position Effect 
PLoS ONE  2011;6(6):e20798.
The susceptibility to recombination of a plasmid inserted into a chromosome varies with its genomic position. This recombination position effect is known to correlate with the average G+C content of the flanking sequences. Here we propose that this effect could be mediated by changes in the susceptibility to superhelical duplex destabilization that would occur. We use standard nonparametric statistical tests, regression analysis and principal component analysis to identify statistically significant differences in the destabilization profiles calculated for the plasmid in different contexts, and correlate the results with their measured recombination rates. We show that the flanking sequences significantly affect the free energy of denaturation at specific sites interior to the plasmid. These changes correlate well with experimentally measured variations of the recombination rates within the plasmid. This correlation of recombination rate with superhelical destabilization properties of the inserted plasmid DNA is stronger than that with average G+C content of the flanking sequences. This model suggests a possible mechanism by which flanking sequence base composition, which is not itself a context-dependent attribute, can affect recombination rates at positions within the plasmid.
doi:10.1371/journal.pone.0020798
PMCID: PMC3111454  PMID: 21695263
24.  Hyper-negative template DNA supercoiling during transcription of the tetracycline-resistance gene in topA mutants is largely constrained in vivo. 
Nucleic Acids Research  1996;24(15):3093-3099.
The excess linking deficit of plasmid DNA from topoisomerase I-defective bacteria (topA mutants) results mainly from transcription and is commonly ascribed to unbalanced relaxation of transcription-induced twin-supercoiled domains. This defect is aggravated in genes for membrane-binding proteins (such as the tet gene) where anchoring of the transcription complex to the bacterial membrane is thought to enhance twin-domain partitioning. Thus, it is often assumed that the 'hyper-negative' linking difference of plasmid DNA from topA mutants reflects unconstrained, hyper-negative DNA supercoiling inside the cell. We tested the validity of this assumption in the present study. A DNA sequence that undergoes a gradual B to Z transition under increasing negative superhelical tension was used as a sensor of unconstrained negative supercoiling. Z-DNA formation was probed at a site upstream from the inducible pTac promoter fused either to the tet gene or to the gene for cytosolic chloramphenicol acetyl transferase (cat). Although plasmid DNA linking deficit increased more extensively in topA mutants following tet activation than following cat activation, no significant differences were observed in the extents to which the B to Z DNA transition is stimulated in the two cases. We infer that the excess linking deficit of the tet-containing plasmid DNA reflects constrained negative DNA supercoiling inside the cell.
PMCID: PMC146055  PMID: 8760899
25.  Exploration of transitional life events in individuals with Friedreich ataxia: Implications for genetic counseling 
Abstract
Background
Human development is a process of change, adaptation and growth. Throughout this process, transitional events mark important points in time when one's life course is significantly altered. This study captures transitional life events brought about or altered by Friedreich ataxia, a progressive chronic illness leading to disability, and the impact of these events on an affected individual's life course.
Methods
Forty-two adults with Friedreich ataxia (18-65y) were interviewed regarding their perceptions of transitional life events. Data from the interviews were coded and analyzed thematically using an iterative process.
Results
Identified transitions were either a direct outcome of Friedreich ataxia, or a developmental event altered by having the condition. Specifically, an awareness of symptoms, fear of falling and changes in mobility status were the most salient themes from the experience of living with Friedreich ataxia. Developmental events primarily influenced by the condition were one's relationships and life's work.
Conclusions
Friedreich ataxia increased the complexity and magnitude of transitional events for study participants. Transitional events commonly represented significant loss and presented challenges to self-esteem and identity. Findings from this study help alert professionals of potentially challenging times in patients' lives, which are influenced by chronic illness or disability. Implications for developmental counseling approaches are suggested for genetic counseling.
Background
Human development can be described in terms of key transitional events, or significant times of change. Transitional events initiate shifts in the meaning or direction of life and require the individual to develop skills or utilize coping strategies to adapt to a novel situation [1,2]. A successful transition has been defined as the development of a sense of mastery over the changed event [3].
Transitions can be influenced by a variety of factors including one's stage of development, such as graduation from high school, historical events, including war, and idiosyncratic factors, such as health status [4,5]. Of particular interest in the present study are transitional life events, brought about or altered by progressive chronic illness and disability, and the impact of these events on the lives of affected individuals.
It has been recognized that the clinical characteristics of a chronic illness or disability may alter the course and timing of many developmentally-related transitional events [6]. For example, conditions associated with a shortened lifespan may cause an individual to pursue a career with a shorter course of training [6]. Specific medical manifestations may also promote a lifestyle incongruent with developmental needs [6,7]. For example, an adolescent with a disability may have difficulty achieving autonomy because of his/her physical dependence on others.
In addition to the aforementioned effects of chronic illness and disability on developmentally-related transitional events, a growing body of literature has described disease-related transitional events: those changes that are a direct result of chronic illness and disability. Diagnosis has received attention as being a key disease-related transitional event [8,9]. Studies have also noted other disease transitions related to illness trajectory [10], as the clinical features of the disease may require the individual to make specific adaptations. Disease-related events have also been described in terms of accompanying psychological processes, such as one's awareness of differences brought about by illness [11].
While disease-related events are seemingly significant, the patient's perception of the events is varied. Some events may be perceived as positive experiences for the individual. For example, a diagnosis may end years of uncertainty. Some individuals may perceive these transitional events as insignificant, as they have accommodated to the continual change brought about by a chronic disease [12,13].
The aforementioned impact of disability and chronic illness on transitional events may create psychological stress. Developed by Lazarus and Folkman, the Transitional Model of Stress and Coping describes the process of adaptation to a health condition [14]. This model purports that individuals first appraise a stressor and then utilize a variety of coping strategies in order to meet the stressor's demands [14]. Thus, in the context of chronic illness, the ability of the individual to cope successfully with the stress of a health threat contributes to the process of overall adaptation to the condition.
The process of adaptation can be more complex when the chronic illness or disability is progressive. Each transition brought about or altered by the disability may also represent additional loss, including the loss of future plans, freedom in social life and the ability to participate in hobbies [15]. These losses may be accompanied by grief, uncertainty, and a continual need for adaptation [16,17].
Friedreich ataxia (FRDA) is one example of a progressive disorder, leading to adolescent and adult onset disability. To better understand patients' perceptions of key transitional events and the factors perceived to facilitate progression through these events, individuals with FRDA were interviewed.
FRDA is a rare, progressive, neurodegenerative disorder affecting approximately one in 30,000 people in the United States [18]. It equally affects both men and women. Individuals with FRDA experience progressive muscle weakness and loss of coordination in the arms and legs. For most patients, ataxia leads to motor incapacitation and full-time use of a wheelchair, commonly by the late teens or early twenties. Other complications such as vision and hearing impairment, dysarthria, scoliosis, diabetes mellitus and hypertrophic cardiomyopathy may occur [19,20]. Cardiomyopathy and respiratory difficulties often lead to premature death at an average age of 37 years [21]. Currently, there are no treatments or cures for FRDA. Little is known about the specific psychological or psychosocial effects of the condition.
FRDA is an autosomal recessive condition. The typical molecular basis of Friedreich ataxia is the expansion of a GAA trinucleotide repeat in both copies of the FXN gene [22]. Age of onset usually occurs in late childhood or early adolescence. However, the availability of genetic testing has identified affected individuals with an adult form of the condition. This late-onset form is thought to represent approximately 10-15% of the total FRDA population [23].
Health care providers of individuals with progressive, neurodegenerative disorders can help facilitate their patients' progression through transitional events. Data suggest that improvements should be made in the care of these individuals. Shaw et al. [24] found that individualized care that helps to prepare patients for transition is beneficial. Beisecker et al. [25] found that patients desire not only physical care from their providers, but also emotional and psychosocial support.
Genetic counselors have an important opportunity to help patients with neuromuscular disorders progress through transitional events, as several of these conditions have a genetic etiology. Genetic counselors in pediatric and adult settings often develop long-term relationships with patients, due to follow-up care. This extended relationship is becoming increasingly common as genetic counselors move into various medical sub-specialties, such as neurology, ophthalmology, oncology and cardiology.
The role of the genetic counselor in addressing the psychosocial needs of patients has been advocated, but rarely framed in the context of developmental events [26]. Data suggest that patients may not expect a genetic counselor to address psychosocial needs [27]. In a survey of genetic counseling patients, Wertz [28] found a majority of respondents understood genetic conditions to have a moderate to serious effect on family life and finances, while almost half perceived there to be an effect on the spouse, quality of life, and the relationship between home and work. However, these topics were reportedly not discussed within genetic counseling sessions [27,28]. Overall, there is limited information about the experiences of transitional life events in FRDA, as well as a lack of recommendations for genetic counselors and other health care providers to assist patients through these events.
Our study investigated perceptions of patients with Friedreich ataxia to 1) identify key transitional events and specific needs associated with events; 2) describe perception of factors to facilitate progression through the identified events; and 3) explore the actual or potential role of the health care provider in facilitating adaptation to the identified events. Data were used to make suggestions for developmental genetic counseling approaches in the context of ongoing care of clients with hereditary, progressive, neurodegenerative conditions.
doi:10.1186/1744-9081-6-65
PMCID: PMC2987979  PMID: 20979606

Results 1-25 (1035699)