PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1075249)

Clipboard (0)
None

Related Articles

1.  Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to conduct an evidence-based assessment of home telehealth technologies for patients with chronic obstructive pulmonary disease (COPD) in order to inform recommendations regarding the access and provision of these services in Ontario. This analysis was one of several analyses undertaken to evaluate interventions for COPD. The perspective of this assessment was that of the Ontario Ministry of Health and Long-Term Care, a provincial payer of medically necessary health care services.
Clinical Need: Condition and Target Population
Canada is facing an increase in chronic respiratory diseases due in part to its aging demographic. The projected increase in COPD will put a strain on health care payers and providers. There is therefore an increasing demand for telehealth services that improve access to health care services while maintaining or improving quality and equality of care. Many telehealth technologies however are in the early stages of development or diffusion and thus require study to define their application and potential harms or benefits. The Medical Advisory Secretariat (MAS) therefore sought to evaluate telehealth technologies for COPD.
Technology
Telemedicine (or telehealth) refers to using advanced information and communication technologies and electronic medical devices to support the delivery of clinical care, professional education, and health-related administrative services.
Generally there are 4 broad functions of home telehealth interventions for COPD:
to monitor vital signs or biological health data (e.g., oxygen saturation),
to monitor symptoms, medication, or other non-biologic endpoints (e.g., exercise adherence),
to provide information (education) and/or other support services (such as reminders to exercise or positive reinforcement), and
to establish a communication link between patient and provider.
These functions often require distinct technologies, although some devices can perform a number of these diverse functions. For the purposes of this review, MAS focused on home telemonitoring and telephone only support technologies.
Telemonitoring (or remote monitoring) refers to the use of medical devices to remotely collect a patient’s vital signs and/or other biologic health data and the transmission of those data to a monitoring station for interpretation by a health care provider.
Telephone only support refers to disease/disorder management support provided by a health care provider to a patient who is at home via telephone or videoconferencing technology in the absence of transmission of patient biologic data.
Research Questions
What is the effectiveness, cost-effectiveness, and safety of home telemonitoring compared with usual care for patients with COPD?
What is the effectiveness, cost-effectiveness, and safety of telephone only support programs compared with usual care for patients with COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on November 3, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 until November 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, and then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low, or very low according to GRADE methodology.
Inclusion Criteria – Question #1
frequent transmission of a patient’s physiological data collected at home and without a health care professional physically present to health care professionals for routine monitoring through the use of a communication technology;
monitoring combined with a coordinated management and feedback system based on transmitted data;
telemonitoring as a key component of the intervention (subjective determination);
usual care as provided by the usual care provider for the control group;
randomized controlled trials (RCTs), controlled clinical trials (CCTs), systematic reviews, and/or meta-analyses;
published between January 1, 2000 and November 3, 2010.
Inclusion Criteria – Question #2
scheduled or frequent contact between patient and a health care professional via telephone or videoconferencing technology in the absence of transmission of patient physiological data;
monitoring combined with a coordinated management and feedback system based on transmitted data;
telephone support as a key component of the intervention (subjective determination);
usual care as provided by the usual care provider for the control group;
RCTs, CCTs, systematic reviews, and/or meta-analyses;
published between January 1, 2000 and November 3, 2010.
Exclusion Criteria
published in a language other than English;
intervention group (and not control) receiving some form of home visits by a medical professional, typically a nurse (i.e., telenursing) beyond initial technology set-up and education, to collect physiological data, or to somehow manage or treat the patient;
not recording patient or health system outcomes (e.g., technical reports testing accuracy, reliability or other development-related outcomes of a device, acceptability/feasibility studies, etc.);
not using an independent control group that received usual care (e.g., studies employing historical or periodic controls).
Outcomes of Interest
hospitalizations (primary outcome)
mortality
emergency department visits
length of stay
quality of life
other […]
Subgroup Analyses (a priori)
length of intervention (primary)
severity of COPD (primary)
Quality of Evidence
The quality of evidence assigned to individual studies was determined using a modified CONSORT Statement Checklist for Randomized Controlled Trials. (1) The CONSORT Statement was adapted to include 3 additional quality measures: the adequacy of control group description, significant differential loss to follow-up between groups, and greater than or equal to 30% study attrition. Individual study quality was defined based on total scores according to the CONSORT Statement checklist: very low (0 to < 40%), low (≥ 40 to < 60%), moderate (≥ 60 to < 80%), and high (≥ 80 to 100%).
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Six publications, representing 5 independent trials, met the eligibility criteria for Research Question #1. Three trials were RCTs reported across 4 publications, whereby patients were randomized to home telemonitoring or usual care, and 2 trials were CCTs, whereby patients or health care centers were nonrandomly assigned to intervention or usual care.
A total of 310 participants were studied across the 5 included trials. The mean age of study participants in the included trials ranged from 61.2 to 74.5 years for the intervention group and 61.1 to 74.5 years for the usual care group. The percentage of men ranged from 40% to 64% in the intervention group and 46% to 72% in the control group.
All 5 trials were performed in a moderate to severe COPD patient population. Three trials initiated the intervention following discharge from hospital. One trial initiated the intervention following a pulmonary rehabilitation program. The final trial initiated the intervention during management of patients at an outpatient clinic.
Four of the 5 trials included oxygen saturation (i.e., pulse oximetry) as one of the biological patient parameters being monitored. Additional parameters monitored included forced expiratory volume in one second, peak expiratory flow, and temperature.
There was considerable clinical heterogeneity between trials in study design, methods, and intervention/control. In relation to the telemonitoring intervention, 3 of the 5 included studies used an electronic health hub that performed multiple functions beyond the monitoring of biological parameters. One study used only a pulse oximeter device alone with modem capabilities. Finally, in 1 study, patients measured and then forwarded biological data to a nurse during a televideo consultation. Usual care varied considerably between studies.
Only one trial met the eligibility criteria for Research Question #2. The included trial was an RCT that randomized 60 patients to nurse telephone follow-up or usual care (no telephone follow-up). Participants were recruited from the medical department of an acute-care hospital in Hong Kong and began receiving follow-up after discharge from the hospital with a diagnosis of COPD (no severity restriction). The intervention itself consisted of only two 10-to 20-minute telephone calls, once between days 3 to 7 and once between days 14 to 20, involving a structured, individualized educational and supportive programme led by a nurse that focused on 3 components: assessment, management options, and evaluation.
Regarding Research Question #1:
Low to very low quality evidence (according to GRADE) finds non-significant effects or conflicting effects (of significant or non-significant benefit) for all outcomes examined when comparing home telemonitoring to usual care.
There is a trend towards significant increase in time free of hospitalization and use of other health care services with home telemonitoring, but these findings need to be confirmed further in randomized trials of high quality.
There is severe clinical heterogeneity between studies that limits summary conclusions.
The economic impact of home telemonitoring is uncertain and requires further study.
Home telemonitoring is largely dependent on local information technologies, infrastructure, and personnel, and thus the generalizability of external findings may be low. Jurisdictions wishing to replicate home telemonitoring interventions should likely test those interventions within their jurisdictional framework before adoption, or should focus on home-grown interventions that are subjected to appropriate evaluation and proven effective.
Regarding Research Question #2:
Low quality evidence finds significant benefit in favour of telephone-only support for self-efficacy and emergency department visits when compared to usual care, but non-significant results for hospitalizations and hospital length of stay.
There are very serious issues with the generalizability of the evidence and thus additional research is required.
PMCID: PMC3384362  PMID: 23074421
2.  The Effectiveness of Mobile-Health Technologies to Improve Health Care Service Delivery Processes: A Systematic Review and Meta-Analysis 
PLoS Medicine  2013;10(1):e1001363.
Caroline Free and colleagues systematically review controlled trials of mobile technology interventions to improve health care delivery processes and show that current interventions give only modest benefits and that high-quality trials measuring clinical outcomes are needed.
Background
Mobile health interventions could have beneficial effects on health care delivery processes. We aimed to conduct a systematic review of controlled trials of mobile technology interventions to improve health care delivery processes.
Methods and Findings
We searched for all controlled trials of mobile technology based health interventions using MEDLINE, EMBASE, PsycINFO, Global Health, Web of Science, Cochrane Library, UK NHS HTA (Jan 1990–Sept 2010). Two authors independently extracted data on allocation concealment, allocation sequence, blinding, completeness of follow-up, and measures of effect. We calculated effect estimates and we used random effects meta-analysis to give pooled estimates.
We identified 42 trials. None of the trials had low risk of bias. Seven trials of health care provider support reported 25 outcomes regarding appropriate disease management, of which 11 showed statistically significant benefits. One trial reported a statistically significant improvement in nurse/surgeon communication using mobile phones. Two trials reported statistically significant reductions in correct diagnoses using mobile technology photos compared to gold standard. The pooled effect on appointment attendance using text message (short message service or SMS) reminders versus no reminder was increased, with a relative risk (RR) of 1.06 (95% CI 1.05–1.07, I2 = 6%). The pooled effects on the number of cancelled appointments was not significantly increased RR 1.08 (95% CI 0.89–1.30). There was no difference in attendance using SMS reminders versus other reminders (RR 0.98, 95% CI 0.94–1.02, respectively). To address the limitation of the older search, we also reviewed more recent literature.
Conclusions
The results for health care provider support interventions on diagnosis and management outcomes are generally consistent with modest benefits. Trials using mobile technology-based photos reported reductions in correct diagnoses when compared to the gold standard. SMS appointment reminders have modest benefits and may be appropriate for implementation. High quality trials measuring clinical outcomes are needed.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
Over the past few decades, computing and communication technologies have changed dramatically. Bulky, slow computers have been replaced by portable devices that can complete increasingly complex tasks in less and less time. Similarly, landlines have been replaced by mobile phones and other mobile communication technologies that can connect people anytime and anywhere, and that can transmit text messages (short message service; SMS), photographs, and data at the touch of a button. These advances have led to the development of mobile-health (mHealth)—the use of mobile computing and communication technologies in health care and public health. mHealth has many applications. It can be used to facilitate data collection and to encourage health-care consumers to adopt healthy lifestyles or to self-manage chronic conditions. It can also be used to improve health-care service delivery processes by targeting health-care providers or communication between these providers and their patients. So, for example, mobile technologies can be used to provide clinical management support in settings where there are no specialist clinicians, and they can be used to send patients test results and timely reminders of appointments.
Why Was This Study Done?
Many experts believe that mHealth interventions could greatly improve health-care delivery processes, particularly in resource-poor settings. The results of several controlled trials (studies that compare the outcomes of people who do or do not receive an intervention) of mHealth interventions designed to improve health-care delivery processes have been published. However, these data have not been comprehensively reviewed, and the effectiveness of this type of mHealth intervention has not been quantified. Here, the researchers rectify this situation by undertaking a systematic review and meta-analysis of controlled trials of mobile technology-based interventions designed to improve health-care service delivery processes. A systematic review is a study that uses predefined criteria to identify all the research on a given topic; a meta-analysis is a statistical approach that is used to pool the results of several independent studies.
What Did the Researchers Do and Find?
The researchers identified 42 controlled trials that investigated mobile technology-based interventions designed to improve health-care service delivery processes. None of the trials were of high quality—many had methodological problems likely to affect the accuracy of their findings—and nearly all were undertaken in high-income countries. Thirty-two of the trials tested interventions directed at health-care providers. Of these trials, seven investigated interventions providing health-care provider education, 18 investigated interventions supporting clinical diagnosis and treatment, and seven investigated interventions to facilitate communication between health-care providers. Several of the trials reported that the tested intervention led to statistically significant improvements (improvements unlikely to have happened by chance) in outcomes related to disease management. However, two trials that used mobile phones to transmit photos to off-site clinicians for diagnosis reported significant reductions in correct diagnoses compared to diagnosis by an on-site specialist. Ten of the 42 trials investigated interventions targeting communication between health-care providers and patients. Eight of these trials investigated SMS-based appointment reminders. Meta-analyses of the results of these trials indicated that using SMS appointment reminders significantly but modestly increased patient attendance compared to no reminders. However, SMS reminders were no more effective than postal or phone call reminders, and texting reminders to patients who persistently missed appointments did not significantly change the number of cancelled appointments.
What Do These Findings Mean?
These findings indicate that some mHealth interventions designed to improve health-care service delivery processes are modestly effective, but they also highlight the need for more trials of these interventions. Specifically, these findings show that although some interventions designed to provide support for health-care providers modestly improved some aspects of clinical diagnosis and management, other interventions had deleterious effects—most notably, the use of mobile technology–based photos for diagnosis. In terms of mHealth interventions targeting communication between health-care providers and patients, the finding that SMS appointment reminders have modest benefits suggests that implementation of this intervention should be considered, at least in high-income settings. However, the researchers stress that more trials are needed to robustly establish the ability of mobile technology-based interventions to improve health-care delivery processes. These trials need to be of high quality, they should be undertaken in resource-limited settings as well as in high-income countries, and, ideally, they should consider interventions that combine mHealth and conventional approaches.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001363.
A related PLOS Medicine Research Article by Free et al. investigates the effectiveness of mHealth technology-based health behavior change and disease management interventions for health-care consumers
Wikipedia has a page on mHealth (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
mHealth: New horizons for health through mobile technologies is a global survey of mHealth prepared by the World Health Organization’s Global Observatory for eHealth (eHealth is health-care practice supported by electronic processes and communication)
The mHealth in Low-Resource Settings website, which is maintained by the Netherlands Royal Tropical Institute, provides information on the current use, potential, and limitations of mHealth in low-resource settings
The US National Institutes of Health Fogarty International Center provides links to resources and information about mHealth
doi:10.1371/journal.pmed.1001363
PMCID: PMC3566926  PMID: 23458994
3.  The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview 
PLoS Medicine  2011;8(1):e1000387.
Aziz Sheikh and colleagues report the findings of their systematic overview that assessed the impact of eHealth solutions on the quality and safety of health care.
Background
There is considerable international interest in exploiting the potential of digital solutions to enhance the quality and safety of health care. Implementations of transformative eHealth technologies are underway globally, often at very considerable cost. In order to assess the impact of eHealth solutions on the quality and safety of health care, and to inform policy decisions on eHealth deployments, we undertook a systematic review of systematic reviews assessing the effectiveness and consequences of various eHealth technologies on the quality and safety of care.
Methods and Findings
We developed novel search strategies, conceptual maps of health care quality, safety, and eHealth interventions, and then systematically identified, scrutinised, and synthesised the systematic review literature. Major biomedical databases were searched to identify systematic reviews published between 1997 and 2010. Related theoretical, methodological, and technical material was also reviewed. We identified 53 systematic reviews that focused on assessing the impact of eHealth interventions on the quality and/or safety of health care and 55 supplementary systematic reviews providing relevant supportive information. This systematic review literature was found to be generally of substandard quality with regards to methodology, reporting, and utility. We thematically categorised eHealth technologies into three main areas: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. We found that despite support from policymakers, there was relatively little empirical evidence to substantiate many of the claims made in relation to these technologies. Whether the success of those relatively few solutions identified to improve quality and safety would continue if these were deployed beyond the contexts in which they were originally developed, has yet to be established. Importantly, best practice guidelines in effective development and deployment strategies are lacking.
Conclusions
There is a large gap between the postulated and empirically demonstrated benefits of eHealth technologies. In addition, there is a lack of robust research on the risks of implementing these technologies and their cost-effectiveness has yet to be demonstrated, despite being frequently promoted by policymakers and “techno-enthusiasts” as if this was a given. In the light of the paucity of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, it is vital that future eHealth technologies are evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle. Such evaluation should be characterised by careful attention to socio-technical factors to maximise the likelihood of successful implementation and adoption.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
There is considerable international interest in exploiting the potential of digital health care solutions, often referred to as eHealth—the use of information and communication technologies—to enhance the quality and safety of health care. Often accompanied by large costs, any large-scale expenditure on eHealth—such as electronic health records, picture archiving and communication systems, ePrescribing, associated computerized provider order entry systems, and computerized decision support systems—has tended to be justified on the grounds that these are efficient and cost-effective means for improving health care. In 2005, the World Health Assembly passed an eHealth resolution (WHA 58.28) that acknowledged, “eHealth is the cost-effective and secure use of information and communications technologies in support of health and health-related fields, including health-care services, health surveillance, health literature, and health education, knowledge and research,” and urged member states to develop and implement eHealth technologies. Since then, implementing eHealth technologies has become a main priority for many countries. For example, England has invested at least £12.8 billion in a National Programme for Information Technology for the National Health Service, and the Obama administration in the United States has committed to a US$38 billion eHealth investment in health care.
Why Was This Study Done?
Despite the wide endorsement of and support for eHealth, the scientific basis of its benefits—which are repeatedly made and often uncritically accepted—remains to be firmly established. A robust evidence-based perspective on the advantages on eHealth could help to suggest priority areas that have the greatest potential for benefit to patients and also to inform international eHealth deliberations on costs. Therefore, in order to better inform the international community, the authors systematically reviewed the published systematic review literature on eHealth technologies and evaluated the impact of these technologies on the quality and safety of health care delivery.
What Did the Researchers Do and Find?
The researchers divided eHealth technologies into three main categories: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. Then, implementing methods based on those developed by the Cochrane Collaboration and the NHS Service Delivery and Organisation Programme, the researchers used detailed search strategies and maps of health care quality, safety, and eHealth interventions to identify relevant systematic reviews (and related theoretical, methodological, and technical material) published between 1997 and 2010. Using these techniques, the researchers retrieved a total of 46,349 references from which they identified 108 reviews. The 53 reviews that the researchers finally selected (and critically reviewed) provided the main evidence base for assessing the impact of eHealth technologies in the three categories selected.
In their systematic review of systematic reviews, the researchers included electronic health records and picture archiving communications systems in their evaluation of category 1, computerized provider (or physician) order entry and e-prescribing in category 2, and all clinical information systems that, when used in the context of eHealth technologies, integrate clinical and demographic patient information to support clinician decision making in category 3.
The researchers found that many of the clinical claims made about the most commonly used eHealth technologies were not substantiated by empirical evidence. The evidence base in support of eHealth technologies was weak and inconsistent and importantly, there was insubstantial evidence to support the cost-effectiveness of these technologies. For example, the researchers only found limited evidence that some of the many presumed benefits could be realized; importantly, they also found some evidence that introducing these new technologies may on occasions also generate new risks such as prescribers becoming over-reliant on clinical decision support for e-prescribing, or overestimate its functionality, resulting in decreased practitioner performance.
What Do These Findings Mean?
The researchers found that despite the wide support for eHealth technologies and the frequently made claims by policy makers when constructing business cases to raise funds for large-scale eHealth projects, there is as yet relatively little empirical evidence to substantiate many of the claims made about eHealth technologies. In addition, even for the eHealth technology tools that have proven to be successful, there is little evidence to show that such tools would continue to be successful beyond the contexts in which they were originally developed. Therefore, in light of the lack of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, the authors say that future eHealth technologies should be evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle, and include socio-technical factors to maximize the likelihood of successful implementation and adoption in a given context. Furthermore, it is equally important that eHealth projects that have already been commissioned are subject to rigorous, multidisciplinary, and independent evaluation.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000387.
The authors' broader study is: Car J, Black A, Anandan C, Cresswell K, Pagliari C, McKinstry B, et al. (2008) The Impact of eHealth on the Quality and Safety of Healthcare. Available at: http://www.haps.bham.ac.uk/publichealth/cfhep/001.shtml
More information is available on the World Health Assembly eHealth resolution
The World Health Organization provides information at the Global Observatory on eHealth, as well as a global insight into eHealth developments
The European Commission provides Information on eHealth in Europe and some examples of good eHealth practice
More information is provided on NHS Connecting for Health
doi:10.1371/journal.pmed.1000387
PMCID: PMC3022523  PMID: 21267058
4.  Experiences of Living and Dying With COPD 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective of Analysis
The objective of this analysis was to review empirical qualitative research on the experiences of patients with chronic obstructive pulmonary disease (COPD), informal caregivers (“carers”), and health care providers—from the point of diagnosis, through daily living and exacerbation episodes, to the end of life.
Clinical Need and Target Population
Qualitative empirical studies (from social sciences, clinical, and related fields) can offer important information about how patients experience their condition. This exploration of the qualitative literature offers insights into patients’ perspectives on COPD, their needs, and how interventions might affect their experiences. The experiences of caregivers are also explored.
Research Question
What do patients with COPD, their informal caregivers (“carers”), and health care providers experience over the course of COPD?
Research Methods
Literature Search
Search Strategy
Literature searches for studies published from January 1, 2000, to November 2010 were performed on November 29, 2010, using OVID MEDLINE; on November 26, 2010, using ISI Web of Science; and on November 28, 2010, using EBSCO Cumulative Index to Nursing and Allied Health Literature (CINAHL). Titles and abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. One additional report, highly relevant to the synthesis, appeared in early 2011 during the drafting of this analysis and was included post hoc.
Inclusion Criteria
English-language full reports
studies published between January 1, 2000, and November 2010
primary qualitative empirical research (using any descriptive or interpretive qualitative methodology, including the qualitative component of mixed-methods studies) and secondary syntheses of primary qualitative empirical research
studies addressing any aspect of the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers; studies addressing multiple conditions were included if COPD was addressed explicitly
Exclusion Criteria
studies addressing topics other than the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers
studies labelled “qualitative” but not using a qualitative descriptive or interpretive methodology (e.g., case studies, experiments, or observational analysis using qualitative categorical variables)
quantitative research (i.e., using statistical hypothesis testing, using primarily quantitative data or analyses, or expressing results in quantitative or statistical terms)
studies that did not pose an empirical research objective or question, or involve the primary or secondary analysis of empirical data
Outcomes of Interest
qualitative descriptions and interpretations (narrative or theoretical) of personal and social experiences of COPD
Summary of Findings
Experiences at Diagnosis
Patients typically seek initial treatment for an acute episode rather than for chronic early symptoms of COPD.
Many patients initially misunderstand terms such as COPD, chronic obstructive pulmonary disease, or exacerbation.
Patients may not realize that COPD is incurable and fatal; some physicians themselves do not consider early COPD to be a fatal disease.
Smokers may not readily understand or agree with the idea that smoking caused or worsens their COPD. Those who believe there is a causal link may feel regret or shame.
Experiences of Living Day to Day
COPD patients experience alternating good days and bad days. A roller-coaster pattern of ups and downs becomes apparent, and COPD becomes a way of life.
Patients use many means (social, psychological, medical, organizational) to control what they can, and to cope with what they cannot. Economic hardship, comorbidities, language barriers, and low health literacy can make coping more difficult.
Increasing vulnerability and unpredictable setbacks make patients dependent on others for practical assistance, but functional limitations, institutional living or self-consciousness can isolate patients from the people they need.
For smokers, medical advice to quit can conflict with increased desire to smoke as a coping strategy.
Many of the factors that isolate COPD patients from social contact also isolate them from health care.
Experiences of Exacerbations
Patients may not always attribute repeated exacerbations to advancing disease, instead seeing them as temporary setbacks caused by activities, environmental factors, faltering self-management, or infection.
Lack of confidence in community-based services leads some patients to seek hospital admission, but patients also feel vulnerable when hospitalized. They may feel dependent on others for care or traumatized by hospital care routines.
Upon hospital discharge following an exacerbation, patients may face new levels of uncertainty about their illness, prognosis, care providers, and supports.
Experiences of the End of Life
Patients tend to be poorly informed about the long-term prognosis of COPD and what to expect toward the end of life; this lack of understanding impairs quality of life as the disease progresses.
As the end of life approaches, COPD patients face the usual challenges of daily living, but in a context of increasing exacerbations and deepening dependency. Activities and mobility decrease, and life may become confined.
Some clinicians have difficulty identifying the beginning of “the end of life,” given the unpredictable course of COPD. Long-term physician-patient relationships, familiarity and understanding, trust, good communication skills, sensitivity, and secure discussion settings can help facilitate end-of-life discussions.
Divergent meanings and goals of palliative care in COPD lead to confusion about whether such services are the responsibility of home care, primary care, specialty care, or even critical care. Palliative end-of-life care may not be anticipated prior to referral for such care. A palliative care referral can convey the demoralizing message that providers have “given up.”
Experiences of Carers
Carers’ challenges often echo patients’ challenges, and include anxiety, uncertainty about the future, helplessness, powerlessness, depression, difficulties maintaining employment, loss of mobility and freedoms, strained relationships, and growing social isolation.
Carers feel pressured by their many roles, struggling to maintain patience when they feel overwhelmed, and often feeling guilty about not doing enough.
Carers often face their own health problems and may have difficulty sustaining employment.
Synthesis: A Disease Trajectory Reflecting Patient Experiences
The flux of needs in COPD calls for service continuity and flexibility to allow both health care providers and patients to respond to the unpredictable yet increasing demands of the disease over time.
PMCID: PMC3384365  PMID: 23074423
5.  The Effectiveness of Mobile-Health Technology-Based Health Behaviour Change or Disease Management Interventions for Health Care Consumers: A Systematic Review 
PLoS Medicine  2013;10(1):e1001362.
Caroline Free and colleagues systematically review a fast-moving field, that of the effectiveness of mobile technology interventions delivered to healthcare consumers, and conclude that high-quality, adequately powered trials of optimized interventions are required to evaluate effects on objective outcomes.
Background
Mobile technologies could be a powerful media for providing individual level support to health care consumers. We conducted a systematic review to assess the effectiveness of mobile technology interventions delivered to health care consumers.
Methods and Findings
We searched for all controlled trials of mobile technology-based health interventions delivered to health care consumers using MEDLINE, EMBASE, PsycINFO, Global Health, Web of Science, Cochrane Library, UK NHS HTA (Jan 1990–Sept 2010). Two authors extracted data on allocation concealment, allocation sequence, blinding, completeness of follow-up, and measures of effect. We calculated effect estimates and used random effects meta-analysis. We identified 75 trials. Fifty-nine trials investigated the use of mobile technologies to improve disease management and 26 trials investigated their use to change health behaviours. Nearly all trials were conducted in high-income countries. Four trials had a low risk of bias. Two trials of disease management had low risk of bias; in one, antiretroviral (ART) adherence, use of text messages reduced high viral load (>400 copies), with a relative risk (RR) of 0.85 (95% CI 0.72–0.99), but no statistically significant benefit on mortality (RR 0.79 [95% CI 0.47–1.32]). In a second, a PDA based intervention increased scores for perceived self care agency in lung transplant patients. Two trials of health behaviour management had low risk of bias. The pooled effect of text messaging smoking cessation support on biochemically verified smoking cessation was (RR 2.16 [95% CI 1.77–2.62]). Interventions for other conditions showed suggestive benefits in some cases, but the results were not consistent. No evidence of publication bias was demonstrated on visual or statistical examination of the funnel plots for either disease management or health behaviours. To address the limitation of the older search, we also reviewed more recent literature.
Conclusions
Text messaging interventions increased adherence to ART and smoking cessation and should be considered for inclusion in services. Although there is suggestive evidence of benefit in some other areas, high quality adequately powered trials of optimised interventions are required to evaluate effects on objective outcomes.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
Every year, millions of people die from cardiovascular diseases (diseases of the heart and circulation), chronic obstructive pulmonary disease (a long-term lung disease), lung cancer, HIV infection, and diabetes. These diseases are increasingly important causes of mortality (death) in low- and middle-income countries and are responsible for nearly 40% of deaths in high-income countries. For all these diseases, individuals can adopt healthy behaviors that help prevent disease onset. For example, people can lower their risk of diabetes and cardiovascular disease by maintaining a healthy body weight, and, if they are smokers, they can reduce their risk of lung cancer and cardiovascular disease by giving up cigarettes. In addition, optimal treatment of existing diseases can reduce mortality and morbidity (illness). Thus, in people who are infected with HIV, antiretroviral therapy delays the progression of HIV infection and the onset of AIDS, and in people who have diabetes, good blood sugar control can prevent retinopathy (a type of blindness) and other serious complications of diabetes.
Why Was This Study Done?
Health-care providers need effective ways to encourage "health-care consumers" to make healthy lifestyle choices and to self-manage chronic diseases. The amount of information, encouragement and support that can be conveyed to individuals during face-to-face consultations or through traditional media such as leaflets is limited, but mobile technologies such as mobile phones and portable computers have the potential to transform the delivery of health messages. These increasingly popular technologies—more than two-thirds of the world's population now owns a mobile phone—can be used to deliver health messages to people anywhere and at the most relevant times. For example, smokers trying to quit smoking can be sent regular text messages to sustain their motivation, but can also use text messaging to request extra support when it is needed. But is "mHealth," the provision of health-related services using mobile communication technology, an effective way to deliver health messages to health-care consumers? In this systematic review (a study that uses predefined criteria to identify all the research on a given topic), the researchers assess the effectiveness of mobile technology-based health behavior change interventions and disease management interventions delivered to health-care consumers.
What Did the Researchers Do and Find?
The researchers identified 75 controlled trials (studies that compare the outcomes of people who do and do not receive an intervention) of mobile technology-based health interventions delivered to health-care consumers that met their predefined criteria. Twenty-six trials investigated the use of mobile technologies to change health behaviors, 59 investigated their use in disease management, most were of low quality, and nearly all were undertaken in high-income countries. In one high-quality trial that used text messages to improve adherence to antiretroviral therapy among HIV-positive patients in Kenya, the intervention significantly reduced the patients’ viral load but did not significantly reduce mortality (the observed reduction in deaths may have happened by chance). In two high-quality UK trials, a smoking intervention based on text messaging (txt2stop) more than doubled biochemically verified smoking cessation. Other lower-quality trials indicated that using text messages to encourage physical activity improved diabetes control but had no effect on body weight. Combined diet and physical activity text messaging interventions also had no effect on weight, whereas interventions for other conditions showed suggestive benefits in some but not all cases.
What Do These Findings Mean?
These findings provide mixed evidence for the effectiveness of health intervention delivery to health-care consumers using mobile technologies. Moreover, they highlight the need for additional high-quality controlled trials of this mHealth application, particularly in low- and middle-income countries. Specifically, the demonstration that text messaging interventions increased adherence to antiretroviral therapy in a low-income setting and increased smoking cessation in a high-income setting provides some support for the inclusion of these two interventions in health-care services in similar settings. However, the effects of these two interventions need to be established in other settings and their cost-effectiveness needs to be measured before they are widely implemented. Finally, for other mobile technology–based interventions designed to change health behaviors or to improve self-management of chronic diseases, the results of this systematic review suggest that the interventions need to be optimized before further trials are undertaken to establish their clinical benefits.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001362.
A related PLOS Medicine Research Article by Free et al. investigates the ability of mHealth technologies to improve health-care service delivery processes
Wikipedia has a page on mHealth (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
mHealth: New horizons for health through mobile technologies is a global survey of mHealth prepared by the World Health Organization’s Global Observatory for eHealth (eHealth is health-care practice supported by electronic processes and communication)
The mHealth in Low-Resource Settings website, which is maintained by the Netherlands Royal Tropical Institute, provides information on the current use, potential, and limitations of mHealth in low-resource settings
More information about Txt2stop is available, the UK National Health Service Choices website provides an analysis of the Txt2stop trial and what its results mean, and the UK National Health Service Smokefree website provides a link to a Quit App for the iPhone
The US Centers for Disease Control and Prevention has launched a text messaging service that delivers regular health tips and alerts to mobile phones
doi:10.1371/journal.pmed.1001362
PMCID: PMC3548655  PMID: 23349621
6.  Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of multidisciplinary care (MDC) compared with usual care (UC, single health care provider) for the treatment of stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Chronic obstructive pulmonary disease is a progressive disorder with episodes of acute exacerbations associated with significant morbidity and mortality. Cigarette smoking is linked causally to COPD in more than 80% of cases. Chronic obstructive pulmonary disease is among the most common chronic diseases worldwide and has an enormous impact on individuals, families, and societies through reduced quality of life and increased health resource utilization and mortality.
The estimated prevalence of COPD in Ontario in 2007 was 708,743 persons.
Technology
Multidisciplinary care involves professionals from a range of disciplines, working together to deliver comprehensive care that addresses as many of the patient’s health care and psychosocial needs as possible.
Two variables are inherent in the concept of a multidisciplinary team: i) the multidisciplinary components such as an enriched knowledge base and a range of clinical skills and experiences, and ii) the team components, which include but are not limited to, communication and support measures. However, the most effective number of team members and which disciplines should comprise the team for optimal effect is not yet known.
Research Question
What is the effectiveness and cost-effectiveness of MDC compared with UC (single health care provider) for the treatment of stable COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on July 19, 2010 using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 1, 1995 until July 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
health technology assessments, systematic reviews, or randomized controlled trials
studies published between January 1995 and July 2010;
COPD study population
studies comparing MDC (2 or more health care disciplines participating in care) compared with UC (single health care provider)
Exclusion Criteria
grey literature
duplicate publications
non-English language publications
study population less than 18 years of age
Outcomes of Interest
hospital admissions
emergency department (ED) visits
mortality
health-related quality of life
lung function
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Six randomized controlled trials were obtained from the literature search. Four of the 6 studies were completed in the United States. The sample size of the 6 studies ranged from 40 to 743 participants, with a mean study sample between 66 and 71 years of age. Only 2 studies characterized the study sample in terms of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria, and in general the description of the study population in the other 4 studies was limited. The mean percent predicted forced expiratory volume in 1 second (% predicted FEV1) among study populations was between 32% and 59%. Using this criterion, 3 studies included persons with severe COPD and 2 with moderate COPD. Information was not available to classify the population in the sixth study.
Four studies had MDC treatment groups which included a physician. All studies except 1 reported a respiratory specialist (i.e., respiratory therapist, specialist nurse, or physician) as part of the multidisciplinary team. The UC group was comprised of a single health care practitioner who may or may not have been a respiratory specialist.
A meta-analysis was completed for 5 of the 7 outcome measures of interest including:
health-related quality of life,
lung function,
all-cause hospitalization,
COPD-specific hospitalization, and
mortality.
There was only 1 study contributing to the outcome of all-cause and COPD-specific ED visits which precluded pooling data for these outcomes. Subgroup analyses were not completed either because heterogeneity was not significant or there were a small number of studies that were meta-analysed for the outcome.
Quality of Life
Three studies reported results of quality of life assessment based on the St. George’s Respiratory Questionnaire (SGRQ). A mean decrease in the SGRQ indicates an improvement in quality of life while a mean increase indicates deterioration in quality of life. In all studies the mean change score from baseline to the end time point in the MDC treatment group showed either an improvement compared with the control group or less deterioration compared with the control group. The mean difference in change scores between MDC and UC groups was statistically significant in all 3 studies. The pooled weighted mean difference in total SGRQ score was −4.05 (95% confidence interval [CI], −6.47 to 1.63; P = 0.001). The GRADE quality of evidence was assessed as low for this outcome.
Lung Function
Two studies reported results of the FEV1 % predicted as a measure of lung function. A negative change from baseline infers deterioration in lung function and a positive change from baseline infers an improvement in lung function. The MDC group showed a statistically significant improvement in lung function up to 12 months compared with the UC group (P = 0.01). However this effect is not maintained at 2-year follow-up (P = 0.24). The pooled weighted mean difference in FEV1 percent predicted was 2.78 (95% CI, −1.82 to −7.37). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
Hospital Admissions
All-Cause
Four studies reported results of all-cause hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 4 studies were pooled to determine a summary estimate. There is a statistically significant 25% relative risk (RR) reduction in all-cause hospitalizations in the MDC group compared with the UC group (P < 0.001). The index of heterogeneity (I2) value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
COPD-Specific Hospitalization
Three studies reported results of COPD-specific hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically significant 33% RR reduction in all-cause hospitalizations in the MDC group compared with the UC group (P = 0.002). The I2 value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
Emergency Department Visits
All-Cause
Two studies reported results of all-cause ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically nonsignificant reduction in all-cause ED visits when data from these 2 studies are pooled (RR, 0.64; 95% CI, 0.31 to −1.33; P = 0.24). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
COPD-Specific
One study reported results of COPD-specific ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically significant 41% reduction in COPD-specific ED visits when the data from these 2 studies are pooled (RR, 0.59; 95% CI, 0.43−0.81; P < 0.001). The GRADE quality of evidence was assessed as moderate for this outcome.
Mortality
Three studies reported the mortality during the study follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically nonsignificant reduction in mortality between treatment groups (RR, 0.81; 95% CI, 0.52−1.27; P = 0.36). The I2 value is 19%, indicating low statistical heterogeneity between studies. All studies had a 12-month follow-up period. The GRADE quality of evidence was assessed as low for this outcome.
Conclusions
Significant effect estimates with moderate quality of evidence were found for all-cause hospitalization, COPD-specific hospitalization, and COPD-specific ED visits (Table ES1). A significant estimate with low quality evidence was found for the outcome of quality of life (Table ES2). All other outcome measures were nonsignificant and supported by low or very low quality of evidence.
Summary of Dichotomous Data
Abbreviations: CI, confidence intervals; COPD, chronic obstructive pulmonary disease; n, number.
Summary of Continuous Data
Abbreviations: CI, confidence intervals; FEV1, forced expiratory volume in 1 second; n, number; SGRQ, St. George’s Respiratory Questionnaire.
PMCID: PMC3384374  PMID: 23074433
7.  Community-Based Care for the Specialized Management of Heart Failure 
Executive Summary
In August 2008, the Medical Advisory Secretariat (MAS) presented a vignette to the Ontario Health Technology Advisory Committee (OHTAC) on a proposed targeted health care delivery model for chronic care. The proposed model was defined as multidisciplinary, ambulatory, community-based care that bridged the gap between primary and tertiary care, and was intended for individuals with a chronic disease who were at risk of a hospital admission or emergency department visit. The goals of this care model were thought to include: the prevention of emergency department visits, a reduction in hospital admissions and re-admissions, facilitation of earlier hospital discharge, a reduction or delay in long-term care admissions, and an improvement in mortality and other disease-specific patient outcomes.
OHTAC approved the development of an evidence-based assessment to determine the effectiveness of specialized community based care for the management of heart failure, Type 2 diabetes and chronic wounds.
Please visit the Medical Advisory Secretariat Web site at: www.health.gov.on.ca/ohtas to review the following reports associated with the Specialized Multidisciplinary Community-Based care series.
Specialized multidisciplinary community-based care series: a summary of evidence-based analyses
Community-based care for the specialized management of heart failure: an evidence-based analysis
Community-based care for chronic wound management: an evidence-based analysis
Please note that the evidence-based analysis of specialized community-based care for the management of diabetes titled: “Community-based care for the management of type 2 diabetes: an evidence-based analysis” has been published as part of the Diabetes Strategy Evidence Platform at this URL: http://www.health.gov.on.ca/english/providers/program/mas/tech/ohtas/tech_diabetes_20091020.html
Please visit the Toronto Health Economics and Technology Assessment Collaborative Web site at: http://theta.utoronto.ca/papers/MAS_CHF_Clinics_Report.pdf to review the following economic project associated with this series:
Community-based Care for the specialized management of heart failure: a cost-effectiveness and budget impact analysis.
Objective
The objective of this evidence-based analysis was to determine the effectiveness of specialized multidisciplinary care in the management of heart failure (HF).
Clinical Need: Target Population and Condition
HF is a progressive, chronic condition in which the heart becomes unable to sufficiently pump blood throughout the body. There are several risk factors for developing the condition including hypertension, diabetes, obesity, previous myocardial infarction, and valvular heart disease.(1) Based on data from a 2005 study of the Canadian Community Health Survey (CCHS), the prevalence of congestive heart failure in Canada is approximately 1% of the population over the age of 12.(2) This figure rises sharply after the age of 45, with prevalence reports ranging from 2.2% to 12%.(3) Extrapolating this to the Ontario population, an estimated 98,000 residents in Ontario are believed to have HF.
Disease management programs are multidisciplinary approaches to care for chronic disease that coordinate comprehensive care strategies along the disease continuum and across healthcare delivery systems.(4) Evidence for the effectiveness of disease management programs for HF has been provided by seven systematic reviews completed between 2004 and 2007 (Table 1) with consistency of effect demonstrated across four main outcomes measures: all cause mortality and hospitalization, and heart-failure specific mortality and hospitalization. (4-10)
However, while disease management programs are multidisciplinary by definition, the published evidence lacks consistency and clarity as to the exact nature of each program and usual care comparators are generally ill defined. Consequently, the effectiveness of multidisciplinary care for the management of persons with HF is still uncertain. Therefore, MAS has completed a systematic review of specialized, multidisciplinary, community-based care disease management programs compared to a well-defined usual care group for persons with HF.
Evidence-Based Analysis Methods
Research Questions
What is the effectiveness of specialized, multidisciplinary, community-based care (SMCCC) compared with usual care for persons with HF?
Literature Search Strategy
A comprehensive literature search was completed of electronic databases including MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, Cochrane Library and Cumulative Index to Nursing & Allied Health Literature. Bibliographic references of selected studies were also searched. After a review of the title and abstracts, relevant studies were obtained and the full reports evaluated. All studies meeting explicit inclusion and exclusion criteria were retained. Where appropriate, a meta-analysis was undertaken to determine the pooled estimate of effect of specialized multidisciplinary community-based care for explicit outcomes. The quality of the body of evidence, defined as one or more relevant studies was determined using GRADE Working Group criteria. (11)
Inclusion Criteria
Randomized controlled trial
Systematic review with meta analysis
Population includes persons with New York Heart Association (NYHA) classification 1-IV HF
The intervention includes a team consisting of a nurse and physician one of which is a specialist in HF management.
The control group receives care by a single practitioner (e.g. primary care physician (PCP) or cardiologist)
The intervention begins after discharge from the hospital
The study reports 1-year outcomes
Exclusion Criteria
The intervention is delivered predominately through home-visits
Studies with mixed populations where discrete data for HF is not reported
Outcomes of Interest
All cause mortality
All cause hospitalization
HF specific mortality
HF specific hospitalization
All cause duration of hospital stay
HF specific duration of hospital stay
Emergency room visits
Quality of Life
Summary of Findings
One large and seven small randomized controlled trials were obtained from the literature search.
A meta-analysis was completed for four of the seven outcomes including:
All cause mortality
HF-specific mortality
All cause hospitalization
HF-specific hospitalization.
Where the pooled analysis was associated with significant heterogeneity, subgroup analyses were completed using two primary categories:
direct and indirect model of care; and
type of control group (PCP or cardiologist).
The direct model of care was a clinic-based multidisciplinary HF program and the indirect model of care was a physician supervised, nurse-led telephonic HF program.
All studies, except one, were completed in jurisdictions outside North America. (12-19) Similarly, all but one study had a sample size of less than 250. The mean age in the studies ranged from 65 to 77 years. Six of the studies(12;14-18) included populations with a NYHA classification of II-III. In two studies, the control treatment was a cardiologist (12;15) and two studies reported the inclusion of a dietitian, physiotherapist and psychologist as members of the multidisciplinary team (12;19).
All Cause Mortality
Eight studies reported all cause mortality (number of persons) at 1 year follow-up. (12-19) When the results of all eight studies were pooled, there was a statistically significant RRR of 29% with moderate heterogeneity (I2 of 38%). The results of the subgroup analyses indicated a significant RRR of 40% in all cause mortality when SMCCC is delivered through a direct team model (clinic) and a 35% RRR when SMCCC was compared with a primary care practitioner.
HF-Specific Mortality
Three studies reported HF-specific mortality (number of persons) at 1 year follow-up. (15;18;19) When the results of these were pooled, there was an insignificant RRR of 42% with high statistical heterogeneity (I2 of 60%). The GRADE quality of evidence is moderate for the pooled analysis of all studies.
All Cause Hospitalization
Seven studies reported all cause hospitalization at 1-year follow-up (13-15;17-19). When pooled, their results showed a statistically insignificant 12% increase in hospitalizations in the SMCCC group with high statistical heterogeneity (I2 of 81%). A significant RRR of 12% in all cause hospitalization in favour of the SMCCC care group was achieved when SMCCC was delivered using an indirect model (telephonic) with an associated (I2 of 0%). The Grade quality of evidence was found to be low for the pooled analysis of all studies and moderate for the subgroup analysis of the indirect team care model.
HF-Specific Hospitalization
Six studies reported HF-specific hospitalization at 1-year follow-up. (13-15;17;19) When pooled, the results of these studies showed an insignificant RRR of 14% with high statistical heterogeneity (I2 of 60%); however, the quality of evidence for the pooled analysis of was low.
Duration of Hospital Stay
Seven studies reported duration of hospital stay, four in terms of mean duration of stay in days (14;16;17;19) and three in terms of total hospital bed days (12;13;18). Most studies reported all cause duration of hospital stay while two also reported HF-specific duration of hospital stay. These data were not amenable to meta-analyses as standard deviations were not provided in the reports. However, in general (and in all but one study) it appears that persons receiving SMCCC had shorter hospital stays, whether measured as mean days in hospital or total hospital bed days.
Emergency Room Visits
Only one study reported emergency room visits. (14) This was presented as a composite of readmissions and ER visits, where the authors reported that 77% (59/76) of the SMCCC group and 84% (63/75) of the usual care group were either readmitted or had an ER visit within the 1 year of follow-up (P=0.029).
Quality of Life
Quality of life was reported in five studies using the Minnesota Living with HF Questionnaire (MLHFQ) (12-15;19) and in one study using the Nottingham Health Profile Questionnaire(16). The MLHFQ results are reported in our analysis. Two studies reported the mean score at 1 year follow-up, although did not provide the standard deviation of the mean in their report. One study reported the median and range scores at 1 year follow-up in each group. Two studies reported the change scores of the physical and emotional subscales of the MLHFQ of which only one study reported a statistically significant change from baseline to 1 year follow-up between treatment groups in favour of the SMCCC group in the physical sub-scale. A significant change in the emotional subscale scores from baseline to 1 year follow-up in the treatment groups was not reported in either study.
Conclusion
There is moderate quality evidence that SMCCC reduces all cause mortality by 29%. There is low quality evidence that SMCCC contributes to a shorter duration of hospital stay and improves quality of life compared to usual care. The evidence supports that SMCCC is effective when compared to usual care provided by either a primary care practitioner or a cardiologist. It does not, however, suggest an optimal model of care or discern what the effective program components are. A field evaluation could address this uncertainty.
PMCID: PMC3377506  PMID: 23074521
8.  KRAS Testing for Anti-EGFR Therapy in Advanced Colorectal Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenomics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based and Economic Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based and Economic Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based and Economic Analysis.
Objective
The objective of this systematic review is to determine the predictive value of KRAS testing in the treatment of metastatic colorectal cancer (mCRC) with two anti-EGFR agents, cetuximab and panitumumab. Economic analyses are also being conducted to evaluate the cost-effectiveness of KRAS testing.
Clinical Need: Condition and Target Population
Metastatic colorectal cancer (mCRC) is usually defined as stage IV disease according to the American Joint Committee on Cancer tumour node metastasis (TNM) system or stage D in the Duke’s classification system. Patients with advanced colorectal cancer (mCRC) either present with metastatic disease or develop it through disease progression.
KRAS (Kristen-RAS, a member of the rat sarcoma virus (ras) gene family of oncogenes) is frequently mutated in epithelial cancers such as colorectal cancer, with mutations occurring in mutational hotspots (codons 12 and 13) of the KRAS protein. Involved in EGFR-mediated signalling of cellular processes such as cell proliferation, resistance to apoptosis, enhanced cell motility and neoangiogenesis, a mutation in the KRAS gene is believed to be involved in cancer pathogenesis. Such a mutation is also hypothesized to be involved in resistance to targeted anti-EGFR (epidermal growth factor receptor with tyrosine kinase activity) treatments such as cetuximab and panitumumab, hence, the important in evaluating the evidence on the predictive value of KRAS testing in this context.
KRAS Mutation Testing in Advanced Colorectal Cancer
Both cetuximab and panitumumab are indicated by Health Canada in the treatment of patients with metastatic colorectal cancer whose tumours are WT for the KRAS gene. Cetuximab may be offered as monotherapy in patients intolerant to irinotecan-based chemotherapy or in patients who have failed both irinotecan and oxaliplatin-based regimens and who received a fluoropyrimidine. It can also be administered in combination with irinotecan in patients refractory to other irinotecan-based chemotherapy regimens. Panitumumab is only indicated as a single agent after failure of fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens.
In Ontario, patients with advanced colorectal cancer who are refractory to chemotherapy may be offered the targeted anti-EGFR treatments cetuximab or panitumumab. Eligibility for these treatments is based on the KRAS status of their tumour, derived from tissue collected from surgical or biopsy specimens. It is believed that KRAS status is not affected by treatments, therefore, for patients for whom surgical tissue is available for KRAS testing, additional biopsies prior to treatment with these targeted agents is not necessary. For patients that have not undergone surgery or for whom surgical tissue is not available, a biopsy of either the primary or metastatic site is required to determine their KRAS status. This is possible as status at the metastatic and primary tumour sites is considered to be similar.
Research Question
To determine if there is predictive value of KRAS testing in guiding treatment decisions with anti-EGFR targeted therapies in advanced colorectal cancer patients refractory to chemotherapy.
Research Methods
Literature Search
The Medical Advisory Secretariat followed its standard procedures and on May 18, 2010, searched the following electronic databases: Ovid MEDLINE, EMBASE, Ovid MEDLINE In-Process & Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews and The International Network of Agencies for Health Technology Assessment database.
The subject headings and keywords searched included colorectal cancer, cetuximab, panitumumab, and KRAS testing. The search was further restricted to English-language articles published between January 1, 2009 and May 18, 2010 resulting in 1335 articles for review. Excluded were case reports, comments, editorials, nonsystematic reviews, and letters. Studies published from January 1, 2005 to December 31, 2008 were identified in a health technology assessment conducted by the Agency for Healthcare Research and Quality (AHRQ), published in 2010. In total, 14 observational studies were identified for inclusion in this EBA: 4 for cetuximab monotherapy, 7 for the cetuximab-irinotecan combination therapy, and 3 to be included in the review for panitumumab monotherapy
Inclusion Criteria
English-language articles, and English or French-language HTAs published from January 2005 to May 2010, inclusive.
Randomized controlled trials (RCTs) or observational studies, including single arm treatment studies that include KRAS testing.
Studies with data on main outcomes of interest, overall and progression-free survival.
Studies of third line treatment with cetuximab or panitumumab in patients with advanced colorectal cancer refractory to chemotherapy.
For the cetuximab-irinotecan evaluation, studies in which at least 70% of patients in the study received this combination therapy.
Exclusion Criteria
Studies whose entire sample was included in subsequent publications which have been included in this EBA.
Studies in pediatric populations.
Case reports, comments, editorials, or letters.
Outcomes of Interest
Overall survival (OS), median
Progression-free-survival (PFS), median.
Response rates.
Adverse event rates.
Quality of life (QOL).
Summary of Findings of Systematic Review
Cetuximab or Panitumumab Monotherapy
Based on moderate GRADE observational evidence, there is improvement in PFS and OS favouring patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation.
Cetuximab-Irinotecan Combination Therapy
There is low GRADE evidence that testing for KRAS may optimize survival benefits in patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation.
However, cetuximab-irinotecan combination treatments based on KRAS status discount any effect of cetuximab in possibly reversing resistance to irinotecan in patients with the mutation, as observed effects were lower than for patients without the mutation. Clinical experts have raised concerns about the biological plausibility of this observation and this conclusion would, therefore, be regarded as hypothesis generating.
Economic Analysis
Cost-effectiveness and budget impact analyses were conducted incorporating estimates of effectiveness from this systematic review. Evaluation of relative cost-effectiveness, based on a decision-analytic cost-utility analysis, assessed testing for KRAS genetic mutations versus no testing in the context of treatment with cetuximab monotherapy, panitumumab monotherapy, cetuximab in combination with irinotecan, and best supportive care.
Of importance to note is that the cost-effectiveness analysis focused on the impact of testing for KRAS mutations compared to no testing in the context of different treatment options, and does not assess the cost-effectiveness of the drug treatments alone.
Conclusions
KRAS status is predictive of outcomes in cetuximab and panitumumab monotherapy, and in cetuximab-irinotecan combination therapy.
While KRAS testing is cost-effective for all strategies considered, it is not equally cost-effective for all treatment options.
PMCID: PMC3377508  PMID: 23074403
9.  WHO Essential Medicines Policies and Use in Developing and Transitional Countries: An Analysis of Reported Policy Implementation and Medicines Use Surveys 
PLoS Medicine  2014;11(9):e1001724.
Kathleen Holloway and David Henry evaluate whether countries that report having implemented WHO essential medicines policies have higher quality use of medicines.
Please see later in the article for the Editors' Summary
Background
Suboptimal medicine use is a global public health problem. For 35 years the World Health Organization (WHO) has promoted essential medicines policies to improve quality use of medicines (QUM), but evidence of their effectiveness is lacking, and uptake by countries remains low. Our objective was to determine whether WHO essential medicines policies are associated with better QUM.
Methods and Findings
We compared results from independently conducted medicines use surveys in countries that did versus did not report implementation of WHO essential medicines policies. We extracted survey data on ten validated QUM indicators and 36 self-reported policy implementation variables from WHO databases for 2002–2008. We calculated the average difference (as percent) for the QUM indicators between countries reporting versus not reporting implementation of specific policies. Policies associated with positive effects were included in a regression of a composite QUM score on total numbers of implemented policies. Data were available for 56 countries. Twenty-seven policies were associated with better use of at least two percentage points. Eighteen policies were associated with significantly better use (unadjusted p<0.05), of which four were associated with positive differences of 10% or more: undergraduate training of doctors in standard treatment guidelines, undergraduate training of nurses in standard treatment guidelines, the ministry of health having a unit promoting rational use of medicines, and provision of essential medicines free at point of care to all patients. In regression analyses national wealth was positively associated with the composite QUM score and the number of policies reported as being implemented in that country. There was a positive correlation between the number of policies (out of the 27 policies with an effect size of 2% or more) that countries reported implementing and the composite QUM score (r = 0.39, 95% CI 0.14 to 0.59, p = 0.003). This correlation weakened but remained significant after inclusion of national wealth in multiple linear regression analyses. Multiple policies were more strongly associated with the QUM score in the 28 countries with gross national income per capita below the median value (US$2,333) (r = 0.43, 95% CI 0.06 to 0.69, p = 0.023) than in the 28 countries with values above the median (r = 0.22, 95% CI −0.15 to 0.56, p = 0.261). The main limitations of the study are the reliance on self-report of policy implementation and measures of medicine use from small surveys. While the data can be used to explore the association of essential medicines policies with medicine use, they cannot be used to compare or benchmark individual country performance.
Conclusions
WHO essential medicines policies are associated with improved QUM, particularly in low-income countries.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The widespread availability of effective medicines, particularly those used to treat infectious diseases, has been largely responsible for a doubling in the average global life expectancy over the past century. However, the suboptimal use (overuse and underuse) of medicines is an ongoing global public health problem. The unnecessary use of medicines (for example, the use of antibiotics for sore throats caused by viruses) needlessly consumes scarce resources and has undesirable effects such as encouraging the emergence of antibiotic resistance. Conversely, underuse deprives people of the undisputed benefits of many medicines. Since 1977, to help optimize medicine use, the World Health Organization (WHO) has advocated the concept of “essential medicines” and has developed policies to promote the quality use of medicines (QUM). Essential medicines are drugs that satisfy the priority needs of the human population and that should always be available to communities in adequate amounts of assured quality, in the appropriate dosage forms, and at an affordable price. Policies designed to promote QUM include recommendations that medicines should be free at the point of care and that all health care professionals should be educated about the WHO list of essential medicines (which is revised every two years) throughout their careers.
Why Was This Study Done?
Surveys of WHO member countries undertaken in 2003 and 2007 suggest that the implementation of WHO policies designed to promote QUM is patchy. Moreover, little is known about whether these policies are effective, particularly in middle- and low-income countries. For most of these countries, it is not known whether any of the policies affect validated QUM indicators such as the percentage of patients prescribed antibiotics (a lower percentage indicates better use of medicines) or the percentage of patients treated in compliance with national treatment guidelines (a higher percentage indicates better use of medicines). Here, the researchers analyze data from policy implementation questionnaires and medicine use surveys to determine whether implementation of WHO essential medicines policies is associated with improved QUM in low- and middle-income countries.
What Did the Researchers Do and Find?
The researchers extracted data on ten validated QUM indicators and on implementation of 36 policy variables from WHO databases for 2002–2008 and compared the average differences for the QUM indicators between low- and middle-income countries that did versus did not report implementation of specific WHO policies for QUM. Among 56 countries for which data were available, 27 policies were associated with improved QUM. Four policies were particularly effective, namely, doctors' undergraduate training in standard treatment guidelines, nurses' undergraduate training in standard treatment guidelines, the existence of a ministry of health department promoting the rational use of medicines, and the provision of essential medicines free to all patients at point of care. The researchers also analyzed correlations between how many of the 27 effective policies were implemented in a country and a composite QUM score. As national wealth increased, both the composite QUM score of a country and the reported number of policies implemented by the country increased. There was also a positive correlation between the numbers of policies that countries reported implementing and their composite QUM score. Finally, the implementation of multiple policies was more strongly associated with the composite QUM score in countries with a gross national income per capita below the average for the study countries than in countries with a gross national income above the average.
What Do These Findings Mean?
These findings show that between 2002 and 2008, the reported implementation of WHO essential medicines policies was associated with better QUM across low- and middle-income countries. These findings also reveal a positive correlation between the number of policies that countries report implementing and their QUM. Notably, this correlation was strongest in the countries with the lowest per capita national wealth levels, which underscores the importance of essential medicines policies in low-income countries. Because of the nature of the data available to the researchers, these findings do not show that the implementation of WHO policies actually causes improvements in QUM. Moreover, the age of the data, the reliance on self-report of policy implementation, and the small sample sizes of the medicine use surveys may all have introduced some inaccuracies into these findings. Nevertheless, overall, these findings suggest that WHO should continue to develop its medicine policies and to collect data on medicine use as part of its core functions.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001724.
The World Health Organization provides information about essential medicines; its latest lists of essential medicines are available on the Internet; information about WHO policies to improve the quality use of medicines is also available (in several languages)
The International Network for the Rational Use of Drugs designs, tests, and disseminates effective strategies to improve the way drugs are prescribed, dispensed, and used, particularly in resource-poor countries
The essentialdrugs.org website helps health care professionals, researchers, and policy makers obtain and discuss current information on essential drugs, policy, program activities, education, and training (available in several languages); the website is run by Satellife, which aims to use technology to connect health workers in resource-limited countries to each other and to up-to-date clinical and public health content
doi:10.1371/journal.pmed.1001724
PMCID: PMC4165598  PMID: 25226527
10.  Behavioural Interventions for Urinary Incontinence in Community-Dwelling Seniors 
Executive Summary
In early August 2007, the Medical Advisory Secretariat began work on the Aging in the Community project, an evidence-based review of the literature surrounding healthy aging in the community. The Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the ministry’s newly released Aging at Home Strategy.
After a broad literature review and consultation with experts, the secretariat identified 4 key areas that strongly predict an elderly person’s transition from independent community living to a long-term care home. Evidence-based analyses have been prepared for each of these 4 areas: falls and fall-related injuries, urinary incontinence, dementia, and social isolation. For the first area, falls and fall-related injuries, an economic model is described in a separate report.
Please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html, to review these titles within the Aging in the Community series.
Aging in the Community: Summary of Evidence-Based Analyses
Prevention of Falls and Fall-Related Injuries in Community-Dwelling Seniors: An Evidence-Based Analysis
Behavioural Interventions for Urinary Incontinence in Community-Dwelling Seniors: An Evidence-Based Analysis
Caregiver- and Patient-Directed Interventions for Dementia: An Evidence-Based Analysis
Social Isolation in Community-Dwelling Seniors: An Evidence-Based Analysis
The Falls/Fractures Economic Model in Ontario Residents Aged 65 Years and Over (FEMOR)
Objective
To assess the effectiveness of behavioural interventions for the treatment and management of urinary incontinence (UI) in community-dwelling seniors.
Clinical Need: Target Population and Condition
Urinary incontinence defined as “the complaint of any involuntary leakage of urine” was identified as 1 of the key predictors in a senior’s transition from independent community living to admission to a long-term care (LTC) home. Urinary incontinence is a health problem that affects a substantial proportion of Ontario’s community-dwelling seniors (and indirectly affects caregivers), impacting their health, functioning, well-being and quality of life. Based on Canadian studies, prevalence estimates range from 9% to 30% for senior men and nearly double from 19% to 55% for senior women. The direct and indirect costs associated with UI are substantial. It is estimated that the total annual costs in Canada are $1.5 billion (Cdn), and that each year a senior living at home will spend $1,000 to $1,500 on incontinence supplies.
Interventions to treat and manage UI can be classified into broad categories which include lifestyle modification, behavioural techniques, medications, devices (e.g., continence pessaries), surgical interventions and adjunctive measures (e.g., absorbent products).
The focus of this review is behavioural interventions, since they are commonly the first line of treatment considered in seniors given that they are the least invasive options with no reported side effects, do not limit future treatment options, and can be applied in combination with other therapies. In addition, many seniors would not be ideal candidates for other types of interventions involving more risk, such as surgical measures.
Note: It is recognized that the terms “senior” and “elderly” carry a range of meanings for different audiences; this report generally uses the former, but the terms are treated here as essentially interchangeable.
Description of Technology/Therapy
Behavioural interventions can be divided into 2 categories according to the target population: caregiver-dependent techniques and patient-directed techniques. Caregiver-dependent techniques (also known as toileting assistance) are targeted at medically complex, frail individuals living at home with the assistance of a caregiver, who tends to be a family member. These seniors may also have cognitive deficits and/or motor deficits. A health care professional trains the senior’s caregiver to deliver an intervention such as prompted voiding, habit retraining, or timed voiding. The health care professional who trains the caregiver is commonly a nurse or a nurse with advanced training in the management of UI, such as a nurse continence advisor (NCA) or a clinical nurse specialist (CNS).
The second category of behavioural interventions consists of patient-directed techniques targeted towards mobile, motivated seniors. Seniors in this population are cognitively able, free from any major physical deficits, and motivated to regain and/or improve their continence. A nurse or a nurse with advanced training in UI management, such as an NCA or CNS, delivers the patient-directed techniques. These are often provided as multicomponent interventions including a combination of bladder training techniques, pelvic floor muscle training (PFMT), education on bladder control strategies, and self-monitoring. Pelvic floor muscle training, defined as a program of repeated pelvic floor muscle contractions taught and supervised by a health care professional, may be employed as part of a multicomponent intervention or in isolation.
Education is a large component of both caregiver-dependent and patient-directed behavioural interventions, and patient and/or caregiver involvement as well as continued practice strongly affect the success of treatment. Incontinence products, which include a large variety of pads and devices for effective containment of urine, may be used in conjunction with behavioural techniques at any point in the patient’s management.
Evidence-Based Analysis Methods
A comprehensive search strategy was used to identify systematic reviews and randomized controlled trials that examined the effectiveness, safety, and cost-effectiveness of caregiver-dependent and patient-directed behavioural interventions for the treatment of UI in community-dwelling seniors (see Appendix 1).
Research Questions
Are caregiver-dependent behavioural interventions effective in improving UI in medically complex, frail community-dwelling seniors with/without cognitive deficits and/or motor deficits?
Are patient-directed behavioural interventions effective in improving UI in mobile, motivated community-dwelling seniors?
Are behavioural interventions delivered by NCAs or CNSs in a clinic setting effective in improving incontinence outcomes in community-dwelling seniors?
Assessment of Quality of Evidence
The quality of the evidence was assessed as high, moderate, low, or very low according to the GRADE methodology and GRADE Working Group. As per GRADE the following definitions apply:
Summary of Findings
Executive Summary Table 1 summarizes the results of the analysis.
The available evidence was limited by considerable variation in study populations and in the type and severity of UI for studies examining both caregiver-directed and patient-directed interventions. The UI literature frequently is limited to reporting subjective outcome measures such as patient observations and symptoms. The primary outcome of interest, admission to a LTC home, was not reported in the UI literature. The number of eligible studies was low, and there were limited data on long-term follow-up.
Summary of Evidence on Behavioural Interventions for the Treatment of Urinary Incontinence in Community-Dwelling Seniors
Prompted voiding
Habit retraining
Timed voiding
Bladder training
PFMT (with or without biofeedback)
Bladder control strategies
Education
Self-monitoring
CI refers to confidence interval; CNS, clinical nurse specialist; NCA, nurse continence advisor; PFMT, pelvic floor muscle training; RCT, randomized controlled trial; WMD, weighted mean difference; UI, urinary incontinence.
Economic Analysis
A budget impact analysis was conducted to forecast costs for caregiver-dependent and patient-directed multicomponent behavioural techniques delivered by NCAs, and PFMT alone delivered by physiotherapists. All costs are reported in 2008 Canadian dollars. Based on epidemiological data, published medical literature and clinical expert opinion, the annual cost of caregiver-dependent behavioural techniques was estimated to be $9.2 M, while the annual costs of patient-directed behavioural techniques delivered by either an NCA or physiotherapist were estimated to be $25.5 M and $36.1 M, respectively. Estimates will vary if the underlying assumptions are changed.
Currently, the province of Ontario absorbs the cost of NCAs (available through the 42 Community Care Access Centres across the province) in the home setting. The 2007 Incontinence Care in the Community Report estimated that the total cost being absorbed by the public system of providing continence care in the home is $19.5 M in Ontario. This cost estimate included resources such as personnel, communication with physicians, record keeping and product costs. Clinic costs were not included in this estimation because currently these come out of the global budget of the respective hospital and very few continence clinics actually exist in the province. The budget impact analysis factored in a cost for the clinic setting, assuming that the public system would absorb the cost with this new model of community care.
Considerations for Ontario Health System
An expert panel on aging in the community met on 3 occasions from January to May 2008, and in part, discussed treatment of UI in seniors in Ontario with a focus on caregiver-dependent and patient-directed behavioural interventions. In particular, the panel discussed how treatment for UI is made available to seniors in Ontario and who provides the service. Some of the major themes arising from the discussions included:
Services/interventions that currently exist in Ontario offering behavioural interventions to treat UI are not consistent. There is a lack of consistency in how seniors access services for treatment of UI, who manages patients and what treatment patients receive.
Help-seeking behaviours are important to consider when designing optimal service delivery methods.
There is considerable social stigma associated with UI and therefore there is a need for public education and an awareness campaign.
The cost of incontinent supplies and the availability of NCAs were highlighted.
Conclusions
There is moderate-quality evidence that the following interventions are effective in improving UI in mobile motivated seniors:
Multicomponent behavioural interventions including a combination of bladder training techniques, PFMT (with or without biofeedback), education on bladder control strategies and self-monitoring techniques.
Pelvic floor muscle training alone.
There is moderate quality evidence that when behavioural interventions are led by NCAs or CNSs in a clinic setting, they are effective in improving UI in seniors.
There is limited low-quality evidence that prompted voiding may be effective in medically complex, frail seniors with motivated caregivers.
There is insufficient evidence for the following interventions in medically complex, frail seniors with motivated caregivers:
habit retraining, and
timed voiding.
PMCID: PMC3377527  PMID: 23074508
11.  Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness and cost-effectiveness of noninvasive ventilation for stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Noninvasive ventilation is used for COPD patients with chronic respiratory failure. Chronic respiratory failure in COPD patients may be due to the inability of the pulmonary system to coordinate ventilation, leading to adverse arterial levels of oxygen and carbon dioxide. Noninvasive ventilation in stable COPD patients has the potential to improve quality of life, prolong survival, and improve gas exchange and sleep quality in patients who are symptomatic after optimal therapy, have hypercapnia or nocturnal hypoventilation and mild hypercapnia, and are frequently hospitalized.
Technology
Noninvasive positive pressure ventilation (NPPV) is any form of positive ventilatory support without the use of an endotracheal tube. For stable COPD, the standard of care when using noninvasive ventilation is bilevel positive airway pressure (BiPAP). Bilevel positive airway pressure involves both inspiratory and expiratory pressure, high during inspiration and lower during expiration. It acts as a pressure support to accentuate a patient’s inspiratory efforts. The gradient between pressures maintains alveolar ventilation and helps to reduce carbon dioxide levels. Outpatients typically use BiPAP at night. Additional advantages of using BiPAP include resting of respiratory muscles, decreased work of breathing, and control of obstructive hypopnea.
Research Question
What is the effectiveness and cost-effectiveness of noninvasive ventilation, compared with no ventilation while receiving usual care, for stable COPD patients?
Research Methods
Literature Search
Search Strategy
A literature search was performed on December 3, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 2004 to December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. When the reviewer was unsure of the eligibility of articles, a second clinical epidemiologist and then a group of epidemiologists reviewed these until consensus was reached.
Inclusion Criteria
full-text English language articles,
studies published between January 1, 2004 and December 3, 2010,
journal articles that report on the effectiveness or cost-effectiveness of noninvasive ventilation,
clearly described study design and methods, and
health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs).
Exclusion Criteria
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
cross-over RCTs
studies on noninvasive negative pressure ventilation (e.g., iron lung)
studies that combine ventilation therapy with other regimens (e.g., daytime NPPV plus exercise or pulmonary rehabilitation)
studies on heliox with NPPV
studies on pulmonary rehabilitation with NPPV
Outcomes of Interest
mortality/survival
hospitalizations/readmissions
length of stay in hospital
forced expiratory volume
arterial partial pressure of oxygen
arterial partial pressure of carbon dioxide
dyspnea
exercise tolerance
health-related quality of life
Note: arterial pressure of oxygen and carbon dioxide are surrogate outcomes.
Statistical Methods
A meta-analysis and an analysis of individual studies were performed using Review Manager Version 5. For continuous data, a mean difference was calculated, and for dichotomous data, a relative risk ratio was calculated for RCTs. For continuous variables with mean baseline and mean follow-up data, a change value was calculated as the difference between the 2 mean values.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Conclusions
The following conclusions refer to stable, severe COPD patients receiving usual care.
Short-Term Studies
Based on low quality of evidence, there is a beneficial effect of NPPV compared with no ventilation on oxygen gas exchange, carbon dioxide gas exchange, and exercise tolerance measured using the 6 Minute Walking Test.
Based on very low quality of evidence, there is no effect of NPPV therapy on lung function measured as forced expiratory volume in 1 second (Type II error not excluded).
Long-Term Studies
Based on moderate quality of evidence, there is no effect of NPPV therapy for the outcomes of mortality, lung function measured as forced expiratory volume in 1 second, and exercise tolerance measured using the 6 Minute Walking Test.
Based on low quality of evidence, there is no effect of NPPV therapy for the outcomes of oxygen gas exchange and carbon dioxide gas exchange (Type II error not excluded).
Qualitative Assessment
Based on low quality of evidence, there is a beneficial effect of NPPV compared with no ventilation for dyspnea based on reduced Borg score or Medical Research Council dyspnea score.
Based on moderate quality of evidence, there is no effect of NPPV therapy for hospitalizations.
Health-related quality of life could not be evaluated.
PMCID: PMC3384378  PMID: 23074437
12.  A Systematic Review and Meta-Analysis of Utility-Based Quality of Life in Chronic Kidney Disease Treatments 
PLoS Medicine  2012;9(9):e1001307.
Melanie Wyld and colleagues examined previously published studies to assess pooled utility-based quality of life of the various treatments for chronic kidney disease. They conclude that the highest utility was for kidney transplants, with home-based automated peritoneal dialysis being second.
Background
Chronic kidney disease (CKD) is a common and costly condition to treat. Economic evaluations of health care often incorporate patient preferences for health outcomes using utilities. The objective of this study was to determine pooled utility-based quality of life (the numerical value attached to the strength of an individual's preference for a specific health outcome) by CKD treatment modality.
Methods and Findings
We conducted a systematic review, meta-analysis, and meta-regression of peer-reviewed published articles and of PhD dissertations published through 1 December 2010 that reported utility-based quality of life (utility) for adults with late-stage CKD. Studies reporting utilities by proxy (e.g., reported by a patient's doctor or family member) were excluded.
In total, 190 studies reporting 326 utilities from over 56,000 patients were analysed. There were 25 utilities from pre-treatment CKD patients, 226 from dialysis patients (haemodialysis, n = 163; peritoneal dialysis, n = 44), 66 from kidney transplant patients, and three from patients treated with non-dialytic conservative care. Using time tradeoff as a referent instrument, kidney transplant recipients had a mean utility of 0.82 (95% CI: 0.74, 0.90). The mean utility was comparable in pre-treatment CKD patients (difference = −0.02; 95% CI: −0.09, 0.04), 0.11 lower in dialysis patients (95% CI: −0.15, −0.08), and 0.2 lower in conservative care patients (95% CI: −0.38, −0.01). Patients treated with automated peritoneal dialysis had a significantly higher mean utility (0.80) than those on continuous ambulatory peritoneal dialysis (0.72; p = 0.02). The mean utility of transplant patients increased over time, from 0.66 in the 1980s to 0.85 in the 2000s, an increase of 0.19 (95% CI: 0.11, 0.26). Utility varied by elicitation instrument, with standard gamble producing the highest estimates, and the SF-6D by Brazier et al., University of Sheffield, producing the lowest estimates. The main limitations of this study were that treatment assignments were not random, that only transplant had longitudinal data available, and that we calculated EuroQol Group EQ-5D scores from SF-36 and SF-12 health survey data, and therefore the algorithms may not reflect EQ-5D scores measured directly.
Conclusions
For patients with late-stage CKD, treatment with dialysis is associated with a significant decrement in quality of life compared to treatment with kidney transplantation. These findings provide evidence-based utility estimates to inform economic evaluations of kidney therapies, useful for policy makers and in individual treatment discussions with CKD patients.
Editors' Summary
Background
Ill health can adversely affect an individual's quality of life, particularly if caused by long-term (chronic) conditions, such as chronic kidney disease—in the United States alone, 23 million people have chronic kidney disease, of whom 570,000 are treated with dialysis or kidney transplantation. In order to measure the cost-effectiveness of interventions to manage medical conditions, health economists use an objective measurement known as quality-adjusted life years. However, although useful, quality-adjusted life years are often criticized for not taking into account the views and preferences of the individuals with the medical conditions. A measurement called a utility solves this problem. Utilities are a numerical value (measured on a 0 to 1 scale, where 0 represents death and 1 represents full health) of the strength of an individual's preference for specified health-related outcomes, as measured by “instruments” (questionnaires) that rate direct comparisons or assess quality of life.
Why Was This Study Done?
Previous studies have suggested that, in people with chronic kidney disease, quality of life (as measured by utility) is higher in those with a functioning kidney transplant than in those on dialysis. However, currently, it is unclear whether the type of dialysis affects quality of life: hemodialysis is a highly technical process that directly filters the blood, usually must be done 2–4 times a week, and can only be performed in a health facility; peritoneal dialysis, in which fluids are infused into the abdominal cavity, can be done nightly at home (automated peritoneal dialysis) or throughout the day (continuous ambulatory peritoneal dialysis). In this study, the researchers reviewed and assimilated all of the available evidence to investigate whether quality of life in people with chronic kidney disease (as measured by utility) differed according to treatment type.
What Did the Researchers Do and Find?
The researchers did a comprehensive search of 11 databases to identify all relevant studies that included people with severe (stage 3, 4, or 5) chronic kidney disease, their form of treatment, and information on utilities—either reported directly, or included in quality of life instruments (SF-36), so the researchers could calculate utilities by using a validated algorithm. The researchers also recorded the prevalence rates of diabetes in study participants. Then, using statistical models that adjusted for various factors, including treatment type and the method of measuring utilities, the researchers were able to calculate the pooled utilities of each form of treatment for chronic kidney disease.
The researchers included 190 studies, representing over 56,000 patients and generating 326 utility estimates, in their analysis. The majority of utilities (77%) were derived through the SF-36 questionnaire via calculation. Of the 326 utility estimates, 25 were from patients pre-dialysis, 226 were from dialysis patients (the majority of whom were receiving hemodialysis), 66 were from kidney transplant patients, and three were from conservative care patients. The researchers found that the highest average utility was for those who had renal transplantation, 0.82, followed by the pre-dialysis group (0.80), dialysis patients (0.71), and, finally, patients receiving conservative care (0.62). When comparing the type of dialysis, the researchers found that there was little difference in utility between hemodialysis and peritoneal dialysis, but patients using automated peritoneal dialysis had, on average, a higher utility (0.80) than those treated with continuous ambulatory peritoneal dialysis (0.72). Finally, the researchers found that patient groups with diabetes had significantly lower utilities than those without diabetes.
What Do These Findings Mean?
These findings suggest that in people with chronic kidney disease, renal transplantation is the best treatment option to improve quality of life. For those on dialysis, home-based automated peritoneal dialysis may improve quality of life more than the other forms of dialysis: this finding is important, as this type of dialysis is not as widely used as other forms and is also cheaper than hemodialysis. Furthermore, these findings suggest that patients who choose conservative care have significantly lower quality of life than patients treated with dialysis, a finding that warrants further investigation. Overall, in addition to helping to inform economic evaluations of treatment options, the information from this analysis can help guide clinicians caring for patients with chronic kidney disease in their discussions about possible treatment options.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001307.
Information about chronic kidney disease is available from the National Kidney Foundation and MedlinePlus
Wikipedia gives information on general utilities (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001307
PMCID: PMC3439392  PMID: 22984353
13.  Point-of-Care International Normalized Ratio (INR) Monitoring Devices for Patients on Long-term Oral Anticoagulation Therapy 
Executive Summary
Subject of the Evidence-Based Analysis
The purpose of this evidence based analysis report is to examine the safety and effectiveness of point-of-care (POC) international normalized ratio (INR) monitoring devices for patients on long-term oral anticoagulation therapy (OAT).
Clinical Need: Target Population and Condition
Long-term OAT is typically required by patients with mechanical heart valves, chronic atrial fibrillation, venous thromboembolism, myocardial infarction, stroke, and/or peripheral arterial occlusion. It is estimated that approximately 1% of the population receives anticoagulation treatment and, by applying this value to Ontario, there are an estimated 132,000 patients on OAT in the province, a figure that is expected to increase with the aging population.
Patients on OAT are regularly monitored and their medications adjusted to ensure that their INR scores remain in the therapeutic range. This can be challenging due to the narrow therapeutic window of warfarin and variation in individual responses. Optimal INR scores depend on the underlying indication for treatment and patient level characteristics, but for most patients the therapeutic range is an INR score of between 2.0 and 3.0.
The current standard of care in Ontario for patients on long-term OAT is laboratory-based INR determination with management carried out by primary care physicians or anticoagulation clinics (ACCs). Patients also regularly visit a hospital or community-based facility to provide a venous blood samples (venipuncture) that are then sent to a laboratory for INR analysis.
Experts, however, have commented that there may be under-utilization of OAT due to patient factors, physician factors, or regional practice variations and that sub-optimal patient management may also occur. There is currently no population-based Ontario data to permit the assessment of patient care, but recent systematic reviews have estimated that less that 50% of patients receive OAT on a routine basis and that patients are in the therapeutic range only 64% of the time.
Overview of POC INR Devices
POC INR devices offer an alternative to laboratory-based testing and venipuncture, enabling INR determination from a fingerstick sample of whole blood. Independent evaluations have shown POC devices to have an acceptable level of precision. They permit INR results to be determined immediately, allowing for more rapid medication adjustments.
POC devices can be used in a variety of settings including physician offices, ACCs, long-term care facilities, pharmacies, or by the patients themselves through self-testing (PST) or self-management (PSM) techniques. With PST, patients measure their INR values and then contact their physician for instructions on dose adjustment, whereas with PSM, patients adjust the medication themselves based on pre-set algorithms. These models are not suitable for all patients and require the identification and education of suitable candidates.
Potential advantages of POC devices include improved convenience to patients, better treatment compliance and satisfaction, more frequent monitoring and fewer thromboembolic and hemorrhagic complications. Potential disadvantages of the device include the tendency to underestimate high INR values and overestimate low INR values, low thromboplastin sensitivity, inability to calculate a mean normal PT, and errors in INR determination in patients with antiphospholipid antibodies with certain instruments. Although treatment satisfaction and quality of life (QoL) may improve with POC INR monitoring, some patients may experience increased anxiety or preoccupation with their disease with these strategies.
Evidence-Based Analysis Methods
Research Questions
1. Effectiveness
Does POC INR monitoring improve clinical outcomes in various settings compared to standard laboratory-based testing?
Does POC INR monitoring impact patient satisfaction, QoL, compliance, acceptability, convenience compared to standard laboratory-based INR determination?
Settings include primary care settings with use of POC INR devices by general practitioners or nurses, ACCs, pharmacies, long-term care homes, and use by the patient either for PST or PSM.
2. Cost-effectiveness
What is the cost-effectiveness of POC INR monitoring devices in various settings compared to standard laboratory-based INR determination?
Inclusion Criteria
English-language RCTs, systematic reviews, and meta-analyses
Publication dates: 1996 to November 25, 2008
Population: patients on OAT
Intervention: anticoagulation monitoring by POC INR device in any setting including anticoagulation clinic, primary care (general practitioner or nurse), pharmacy, long-term care facility, PST, PSM or any other POC INR strategy
Minimum sample size: 50 patients Minimum follow-up period: 3 months
Comparator: usual care defined as venipuncture blood draw for an INR laboratory test and management provided by an ACC or individual practitioner
Outcomes: Hemorrhagic events, thromboembolic events, all-cause mortality, anticoagulation control as assessed by proportion of time or values in the therapeutic range, patient reported outcomes including satisfaction, QoL, compliance, acceptability, convenience
Exclusion criteria
Non-RCTs, before-after studies, quasi-experimental studies, observational studies, case reports, case series, editorials, letters, non-systematic reviews, conference proceedings, abstracts, non-English articles, duplicate publications
Studies where POC INR devices were compared to laboratory testing to assess test accuracy
Studies where the POC INR results were not used to guide patient management
Method of Review
A search of electronic databases (OVID MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, The Cochrane Library, and the International Agency for Health Technology Assessment [INAHTA] database) was undertaken to identify evidence published from January 1, 1998 to November 25, 2008. Studies meeting the inclusion criteria were selected from the search results. Reference lists of selected articles were also checked for relevant studies.
Summary of Findings
Five existing reviews and 22 articles describing 17 unique RCTs met the inclusion criteria. Three RCTs examined POC INR monitoring devices with PST strategies, 11 RCTs examined PSM strategies, one RCT included both PST and PSM strategies and two RCTs examined the use of POC INR monitoring devices by health care professionals.
Anticoagulation Control
Anticoagulation control is measured by the percentage of time INR is within the therapeutic range or by the percentage of INR values in the therapeutic range. Due to the differing methodologies and reporting structures used, it was deemed inappropriate to combine the data and estimate whether the difference between groups would be significant. Instead, the results of individual studies were weighted by the number of person-years of observation and then pooled to calculate a summary measure.
Across most studies, patients in the intervention groups tended to have a higher percentage of time and values in the therapeutic target range in comparison to control patients. When the percentage of time in the therapeutic range was pooled across studies and weighted by the number of person-years of observation, the difference between the intervention and control groups was 4.2% for PSM, 7.2% for PST and 6.1% for POC use by health care practitioners. Overall, intervention patients were in the target range 69% of the time and control patients were in the therapeutic target range 64% of the time leading to an overall difference between groups of roughly 5%.
Major Complications and Deaths
There was no statistically significant difference in the number of major hemorrhagic events between patients managed with POC INR monitoring devices and patients managed with standard laboratory testing (OR =0.74; 95% CI: 0.52- 1.04). This difference was non-significant for all POC strategies (PSM, PST, health care practitioner).
Patients managed with POC INR monitoring devices had significantly fewer thromboembolic events than usual care patients (OR =0.52; 95% CI: 0.37 - 0.74). When divided by POC strategy, PSM resulted in significantly fewer thromboembolic events than usual care (OR =0.46.; 95% CI: 0.29 - 0.72). The observed difference in thromboembolic events for PSM remained significant when the analysis was limited to major thromboembolic events (OR =0.40; 95% CI: 0.17 - 0.93), but was non-significant when the analysis was limited to minor thromboembolic events (OR =0.73; 95% CI: 0.08 - 7.01). PST and GP/Nurse strategies did not result in significant differences in thromboembolic events, however there were only a limited number of studies examining these interventions.
No statistically significant difference was observed in the number of deaths between POC intervention and usual care control groups (OR =0.67; 95% CI: 0.41 - 1.10). This difference was non-significant for all POC strategies. Only one study reported on survival with 10-year survival rate of 76.1% in the usual care control group compared to 84.5% in the PSM group (P=0.05).
Summary Results of Meta-Analyses of Major Complications and Deaths in POC INR Monitoring Studies
Patient Satisfaction and Quality of Life
Quality of life measures were reported in eight studies comparing POC INR monitoring to standard laboratory testing using a variety of measurement tools. It was thus not possible to calculate a quantitative summary measure. The majority of studies reported favourable impacts of POC INR monitoring on QoL and found better treatment satisfaction with POC monitoring. Results from a pre-analysis patient and caregiver focus group conducted in Ontario also indicated improved patient QoL with POC monitoring.
Quality of the Evidence
Studies varied with regard to patient eligibility, baseline patient characteristics, follow-up duration, and withdrawal rates. Differential drop-out rates were observed such that the POC intervention groups tended to have a larger number of patients who withdrew. There was a lack of consistency in the definitions and reporting for OAT control and definitions of adverse events. In most studies, the intervention group received more education on the use of warfarin and performed more frequent INR testing, which may have overestimated the effect of the POC intervention. Patient selection and eligibility criteria were not always fully described and it is likely that the majority of the PST/PSM trials included a highly motivated patient population. Lastly, a large number of trials were also sponsored by industry.
Despite the observed heterogeneity among studies, there was a general consensus in findings that POC INR monitoring devices have beneficial impacts on the risk of thromboembolic events, anticoagulation control and patient satisfaction and QoL (ES Table 2).
GRADE Quality of the Evidence on POC INR Monitoring Studies
CI refers to confidence interval; Interv, intervention; OR, odds ratio; RCT, randomized controlled trial.
Economic Analysis
Using a 5-year Markov model, the health and economic outcomes associated with four different anticoagulation management approaches were evaluated:
Standard care: consisting of a laboratory test with a venipuncture blood draw for an INR;
Healthcare staff testing: consisting of a test with a POC INR device in a medical clinic comprised of healthcare staff such as pharmacists, nurses, and physicians following protocol to manage OAT;
PST: patient self-testing using a POC INR device and phoning in results to an ACC or family physician; and
PSM: patient self-managing using a POC INR device and self-adjustment of OAT according to a standardized protocol. Patients may also phone in to a medical office for guidance.
The primary analytic perspective was that of the MOHLTC. Only direct medical costs were considered and the time horizon of the model was five years - the serviceable life of a POC device.
From the results of the economic analysis, it was found that POC strategies are cost-effective compared to traditional INR laboratory testing. In particular, the healthcare staff testing strategy can derive potential cost savings from the use of one device for multiple patients. The PSM strategy, however, seems to be the most cost-effective method i.e. patients are more inclined to adjust their INRs more readily (as opposed to allowing INRs to fall out of range).
Considerations for Ontario Health System
Although the use of POC devices continues to diffuse throughout Ontario, not all OAT patients are suitable or have the ability to practice PST/PSM. The use of POC is currently concentrated at the institutional setting, including hospitals, ACCs, long-term care facilities, physician offices and pharmacies, and is much less commonly used at the patient level. It is, however, estimated that 24% of OAT patients (representing approximately 32,000 patients in Ontario), would be suitable candidates for PST/PSM strategies and willing to use a POC device.
There are several barriers to the use and implementation of POC INR monitoring devices, including factors such as lack of physician familiarity with the devices, resistance to changing established laboratory-based methods, lack of an approach for identifying suitable patients and inadequate resources for effective patient education and training. Issues of cost and insufficient reimbursement strategies may also hinder implementation and effective quality assurance programs would need to be developed to ensure that INR measurements are accurate and precise.
Conclusions
For a select group of patients who are highly motivated and trained, PSM resulted in significantly fewer thromboembolic events compared to conventional laboratory-based INR testing. No significant differences were observed for major hemorrhages or all-cause mortality. PST and GP/Nurse use of POC strategies are just as effective as conventional laboratory-based INR testing for thromboembolic events, major hemorrhages, and all-cause mortality. POC strategies may also result in better OAT control as measured by the proportion of time INR is in the therapeutic range and there appears to be beneficial impacts on patient satisfaction and QoL. The use of POC devices should factor in patient suitability, patient education and training, health system constraints, and affordability.
Keywords
anticoagulants, International Normalized Ratio, point-of-care, self-monitoring, warfarin.
PMCID: PMC3377545  PMID: 23074516
14.  Hyperbaric Oxygen Therapy for Non-Healing Ulcers in Diabetes Mellitus 
Executive Summary
Objective
To examine the effectiveness and cost-effectiveness of hyperbaric oxygen therapy (HBOT) to treat people with diabetes mellitus (DM) and non-healing ulcers. This policy appraisal systematically reviews the published literature in the above patient population, and applies the results and conclusions of the review to current health care practices in Ontario, Canada.
Although HBOT is an insured service in Ontario, the costs for the technical provision of this technology are not covered publicly outside the hospital setting. Moreover, access to this treatment is limited, because many hospitals do not offer it, or are not expanding capacity to meet the demand.
Clinical Need
Diabetes mellitus is a chronic disease characterized by an increase in blood sugar that can lead to many severe conditions such as vision, cardiac, and vascular disorders. The prevalence of DM is difficult to estimate, because some people who have the condition are undiagnosed or may not be captured through data that reflect access to the health care system. The Canadian Diabetic Association estimates there are about 2 million people in Canada with diabetes (almost 7% of the population). According to recent data, the prevalence of DM increased from 4.72% of the population aged 20 years and over in 1995, to 6.19% of the population aged 20 years and over in 1999, or about 680,900 people in 1999. Prevalence estimates expanded to 700,000 in 2003.
About 10% to 15% of people with DM develop a foot wound in their lifetimes because of underlying peripheral neuropathy and peripheral vascular disease. This equals between 70,000 and 105,000 people in Ontario, based on the DM prevalence estimate of 700,000 people. Without early treatment, a foot ulcer may fester until it becomes infected and chronic. Chronic wounds are difficult to heal, despite medical and nursing care, and may lead to impaired quality of life and functioning, amputation, or even death.
The Technology
Hyperbaric oxygen therapy has been in use for about 40 years. It is thought to aid wound healing by supplying oxygen to the wound. According to the Hyperbaric Oxygen Therapy Association, HBOT acts as a bactericidal, stops toxin production, and promotes tissue growth to heal difficult wounds.
During the procedure, a patient is placed in a compression chamber with increased pressure between 2.0 and 2.5 atmospheres absolute for 60 to 120 minutes, once or twice daily. In the chamber, the patient inhales 100% oxygen. Treatment usually runs for 15 to 20 sessions.
Noted complications are rare but may include claustrophobia; ear, sinus, or lung damage due to pressure; temporary worsening of short sightedness; and oxygen poisoning. Careful monitoring during the treatment sessions and follow-up by a trained health care provider is recommended.
Review Strategy
The aims of this health technology policy appraisal were to assess the effectiveness, safety, and cost-effectiveness of HBOT, either alone, or as an adjunct, compared with the standard treatments for non-healing foot or leg ulcers in patients with DM. The following questions were asked:
Alone or as an adjunct therapy, is HBOT more effective than other therapies for non-healing foot or leg ulcers in patients with DM?
If HBOT is effective, what is the incremental benefit over and above currently used strategies?
When is the best time in a wound treatment strategy to use HBOT?
What is the best treatment algorithm with HBOT?
The Medical Advisory Secretariat searched for health technology assessments in the published and grey literature. The search yielded 4 reports, which were published from 2000 to 2005. The most recent from the Cochrane Collaboration had a literature review and analysis of randomized control trials to 2003.
As an update to this review, as per the standard Medical Advisory Secretariat systematic review strategy, the abstracts of peer-reviewed publications were identified using Ovid MEDLINE, EMBASE, MEDLINE in-process and not-yet-indexed citations, Cochrane Database of Systematic Reviews, Cochrane CENTRAL, and INAHTA using key words and searching from January 1, 2003 to 2004.
The criteria for inclusion were as follows:
Patients with diabetes
Live human study
English-language study
HBOT as adjunctive therapy or alone
Randomized control trial
The number of excluded studies included the following:
2 animal studies
13 focus on condition other than DM
8 review/protocol for HBOT use
3 HBOT not focus of report
2 health technology assessments (2)
1 non-RCT
Outcomes of interest were wound healing and prevention of amputation.
The search yielded 29 articles published between 2003 and 2004. All 29 of these were excluded, as shown beside the exclusion criteria above. Therefore, this health technology policy assessment focused exclusively on the most recently published health technology assessments and systematic reviews.
Summary of Findings
Four health technology assessments and reviews were found. Cochrane Collaboration researchers published the most recent review in 2005. They included only randomized controlled trials and conducted a meta-analysis to examine wound healing and amputation outcomes. They found that, based on findings from 118 patients in 3 studies, HBOT may help to prevent major amputation (relative risk, 0.31; 95% confidence interval [CI], 0.13–0.71) with a number needed to treat (NNT) of 4 (95% CI, 3–11). They noted, however, that the point estimates derived from trials were not well reported, and had varying populations with respect to wound severity, HBOT regimens, and outcome measures. These noted limitations rendered the comparison of results from the trials difficult. Further, they suggested that the evidence was not strong enough to suggest a benefit for wound healing in general or for prevention of minor amputations.
The Medical Advisory Secretariat also evaluated the studies that the Cochrane Collaboration used in their analysis, and agreed with their evaluation that the quality of the evidence was low for major and minor amputations, but low to moderate for wound healing, suggesting that the results from new and well-conducted studies would likely change the estimates calculated by Cochrane and others.
Conclusions
In 2003, the Ontario Health Technology Advisory Committee recommended a more coordinated strategy for wound care in Ontario to the Ministry of Health and Long-term Care. This strategy has begun at the community care and long-term care institution levels, but is pending in other areas of the health care system.
There are about 700,000 people in Ontario with diabetes; of these, 10% to 15% may have a foot ulcer sometime in their lifetimes. Foot ulcers are treatable, however, when they are identified, diagnosed and treated early according to best practice guidelines. Routine follow-up for people with diabetes who may be at risk for neuropathy and/or peripheral vascular disease may prevent subsequent foot ulcers. There are 4 chambers that provide HBOT in Ontario. Fewer than 20 people with DM received HBOT in 2003.
The quality of the evidence assessing the effectiveness of HBOT as an adjunct to standard therapy for people with non-healing diabetic foot ulcers is low, and the results are inconsistent. The results of a recent meta-analysis that found benefit of HBOT to prevent amputation are therefore uncertain. Future well-conducted studies may change the currently published estimates of effectiveness for wound healing and prevention of amputation using HBOT in the treatment of non-healing diabetic foot ulcers.
Although HBOT is an insured service in Ontario, a well conducted, randomized controlled trial that has wound healing and amputation as the primary end-points is needed before this technology is used widely among patients with foot wounds due to diabetes.
PMCID: PMC3382405  PMID: 23074462
15.  Multiple Intravenous Infusions Phase 1b 
Background
Minimal research has been conducted into the potential patient safety issues related to administering multiple intravenous (IV) infusions to a single patient. Previous research has highlighted that there are a number of related safety risks. In Phase 1a of this study, an analysis of 2 national incident-reporting databases (Institute for Safe Medical Practices Canada and United States Food and Drug Administration MAUDE) found that a high percentage of incidents associated with the administration of multiple IV infusions resulted in patient harm.
Objectives
The primary objectives of Phase 1b of this study were to identify safety issues with the potential to cause patient harm stemming from the administration of multiple IV infusions; and to identify how nurses are being educated on key principles required to safely administer multiple IV infusions.
Data Sources and Review Methods
A field study was conducted at 12 hospital clinical units (sites) across Ontario, and telephone interviews were conducted with program coordinators or instructors from both the Ontario baccalaureate nursing degree programs and the Ontario postgraduate Critical Care Nursing Certificate programs. Data were analyzed using Rasmussen’s 1997 Risk Management Framework and a Health Care Failure Modes and Effects Analysis.
Results
Twenty-two primary patient safety issues were identified with the potential to directly cause patient harm. Seventeen of these (critical issues) were categorized into 6 themes. A cause-consequence tree was established to outline all possible contributing factors for each critical issue. Clinical recommendations were identified for immediate distribution to, and implementation by, Ontario hospitals. Future investigation efforts were planned for Phase 2 of the study.
Limitations
This exploratory field study identifies the potential for errors, but does not describe the direct observation of such errors, except in a few cases where errors were observed. Not all issues are known in advance, and the frequency of errors is too low to be observed in the time allotted and with the limited sample of observations.
Conclusions
The administration of multiple IV infusions to a single patient is a complex task with many potential associated patient safety risks. Improvements to infusion and infusion-related technology, education standards, clinical best practice guidelines, hospital policies, and unit work practices are required to reduce the risk potential. This report makes several recommendations to Ontario hospitals so that they can develop an awareness of the issues highlighted in this report and minimize some of the risks. Further investigation of mitigating strategies is required and will be undertaken in Phase 2 of this research.
Plain Language Summary
Patients, particularly in critical care environments, often require multiple intravenous (IV) medications via large volumetric or syringe infusion pumps. The infusion of multiple IV medications is not without risk; unintended errors during these complex procedures have resulted in patient harm. However, the range of associated risks and the factors contributing to these risks are not well understood.
Health Quality Ontario’s Ontario Health Technology Advisory Committee commissioned the Health Technology Safety Research Team at the University Health Network to conduct a multi-phase study to identify and mitigate the risks associated with multiple IV infusions. Some of the questions addressed by the team were as follows: What is needed to reduce the risk of errors for individuals who are receiving a lot of medications? What strategies work best?
The initial report, Multiple Intravenous Infusions Phase 1a: Situation Scan Summary Report, summarizes the interim findings based on a literature review, an incident database review, and a technology scan.
The Health Technology Safety Research Team worked in close collaboration with the Institute for Safe Medication Practices Canada on an exploratory study to understand the risks associated with multiple IV infusions and the degree to which nurses are educated to help mitigate them. The current report, Multiple Intravenous Infusions Phase 1b: Practice and Training Scan, presents the findings of a field study of 12 hospital clinical units across Ontario, as well as 13 interviews with educators from baccalaureate-level nursing degree programs and postgraduate Critical Care Nursing Certificate programs. It makes 9 recommendations that emphasize best practices for the administration of multiple IV infusions and pertain to secondary infusions, line identification, line set-up and removal, and administering IV bolus medications.
The Health Technology Safety Research Team has also produced an associated report for hospitals entitled Mitigating the Risks Associated With Multiple IV Infusions: Recommendations Based on a Field Study of Twelve Ontario Hospitals, which highlights the 9 interim recommendations and provides a brief rationale for each one.
PMCID: PMC3377572  PMID: 23074426
16.  Behavioural Interventions for Type 2 Diabetes 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this report is to determine whether behavioural interventions1 are effective in improving glycemic control in adults with type 2 diabetes.
Background
Diabetes is a serious chronic condition affecting millions of people worldwide and is the sixth leading cause of death in Canada. In 2005, an estimated 8.8% of Ontario’s population had diabetes, representing more than 816,000 Ontarians. The direct health care cost of diabetes was $1.76 billion in the year 2000 and is projected to rise to a total cost of $3.14 billion by 2016. Much of this cost arises from the serious long-term complications associated with the disease including: coronary heart disease, stroke, adult blindness, limb amputations and kidney disease.
Type 2 diabetes accounts for 90–95% of diabetes and while type 2 diabetes is more prevalent in people aged 40 years and older, prevalence in younger populations is increasing due to a rise in obesity and physical inactivity in children.
Data from the United Kingdom Prospective Diabetes Study (UKPDS) has shown that tight glycemic control can significantly reduce the risk of developing serious complications in type 2 diabetics. Despite physicians’ and patients’ knowledge of the importance of glycemic control, Canadian data has shown that only 38% of patients with diabetes have HbA1C levels in the optimal range of 7% or less. This statistic highlights the complexities involved in the management of diabetes, which is characterized by extensive patient involvement in addition to the support provided by physicians. An enormous demand is, therefore, placed on patients to self-manage the physical, emotional and psychological aspects of living with a chronic illness.
Despite differences in individual needs to cope with diabetes, there is general agreement for the necessity of supportive programs for patient self-management. While traditional programs were didactic models with the goal of improving patients’ knowledge of their disease, current models focus on behavioural approaches aimed at providing patients with the skills and strategies required to promote and change their behaviour.
Several meta-analyses and systematic reviews have demonstrated improved health outcomes with self-management support programs in type 2 diabetics. They have all, however, either looked at a specific component of self-management support programs (i.e. self-management education) or have been conducted in specific populations. Most reviews are also qualitative and do not clearly define the interventions of interest, making findings difficult to interpret. Moreover, heterogeneity in the interventions has led to conflicting evidence on the components of effective programs. There is thus much uncertainty regarding the optimal design and delivery of these programs by policymakers.
Evidence-Based Analysis of Effectiveness
Research Questions
Are behavioural interventions effective in improving glycemic control in adults with type 2 diabetes?
Is the effectiveness of the intervention impacted by intervention characteristics (e.g. delivery of intervention, length of intervention, mode of instruction, interventionist etc.)?
Inclusion Criteria
English Language
Published between January 1996 to August 2008
Type 2 diabetic adult population (>18 years)
Randomized controlled trials (RCTs)
Systematic reviews, or meta-analyses
Describing a multi-faceted self-management support intervention as defined by the 2007 Self-Management Mapping Guide (1)
Reporting outcomes of glycemic control (HbA1c) with extractable data
Studies with a minimum of 6-month follow up
Exclusion Criteria
Studies with a control group other than usual care
Studies with a sample size <30
Studies without a clearly defined intervention
Outcomes of Interest
Primary outcome: glycemic control (HbA1c)
Secondary outcomes: systolic blood pressure (SBP) control, lipid control, change in smoking status, weight change, quality of life, knowledge, self-efficacy, managing psychosocial aspects of diabetes, assessing dissatisfaction and readiness to change, and setting and achieving diabetes goals.
Search Strategy
A search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), The Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published between January 1996 and August 2008. Abstracts were reviewed by a single author and studies meeting the inclusion criteria outlined above were obtained. Data on population characteristics, glycemic control outcomes, and study design were extracted. Reference lists were also checked for relevant studies. The quality of the evidence was assessed as being either high, moderate, low, or very low according to the GRADE methodology.
Summary of Findings
The search identified 638 citations published between 1996 and August 2008, of which 12 met the inclusion criteria and one was a meta-analysis (Gary et al. 2003). The remaining 11 studies were RCTs (9 were used in the meta-analysis) and only one was defined as small (total sample size N=47).
Summary of Participant Demographics across studies
A total of 2,549 participants were included in the 11 identified studies. The mean age of participants reported was approximately 58 years and the mean duration of diabetes was approximately 6 years. Most studies reported gender with a mean percentage of females of approximately 67%. Of the eleven studies, two focused only on women and four included only Hispanic individuals. All studies evaluated type 2 diabetes patients exclusively.
Study Characteristics
The studies were conducted between 2002 and 2008. Approximately six of 11 studies were carried out within the USA, with the remaining studies conducted in the UK, Sweden, and Israel (sample size ranged from 47 to 824 participants). The quality of the studies ranged from moderate to low with four of the studies being of moderate quality and the remaining seven of low quality (based on the Consort Checklist). Differences in quality were mainly due to methodological issues such as inadequate description of randomization, sample size calculation allocation concealment, blinding and uncertainty of the use of intention-to-treat (ITT) analysis. Patients were recruited from several settings: six studies from primary or general medical practices, three studies from the community (e.g. via advertisements), and two from outpatient diabetes clinics. A usual care control group was reported in nine of 11 of the studies and two studies reported some type of minimal diabetes care in addition to usual care for the control group.
Intervention Characteristics
All of the interventions examined in the studies were mapped to the 2007 Self-management Mapping Guide. The interventions most often focused on problem solving, goal setting and encouraging participants to engage in activities that protect and promote health (e.g. modifying behaviour, change in diet, and increase physical activity). All of the studies examined comprehensive interventions targeted at least two self-care topics (e.g. diet, physical activity, blood glucose monitoring, foot care, etc.). Despite the homogeneity in the aims of the interventions, there was substantial clinical heterogeneity in other intervention characteristics such as duration, intensity, setting, mode of delivery (group vs. individual), interventionist, and outcomes of interest (discussed below).
Duration, Intensity and Mode of Delivery
Intervention durations ranged from 2 days to 1 year, with many falling into the range of 6 to 10 weeks. The rest of the interventions fell into categories of ≤ 2 weeks (2 studies), 6 months (2 studies), or 1 year (3 studies). Intensity of the interventions varied widely from 6 hours over 2 days, to 52 hours over 1 year; however, the majority consisted of interventions of 6 to 15 hours. Both individual and group sessions were used to deliver interventions. Group counselling was used in five studies as a mode of instruction, three studies used both individual and group sessions, and one study used individual sessions as its sole mode of instruction. Three studies also incorporated the use of telephone support as part of the intervention.
Interventionists and Setting
The following interventionists were reported (highest to lowest percentage, categories not mutually exclusive): nurse (36%), dietician (18%), physician (9%), pharmacist (9%), peer leader/community worker (18%), and other (36%). The ‘other’ category included interventionists such as consultants and facilitators with unspecified professional backgrounds. The setting of most interventions was community-based (seven studies), followed by primary care practices (three studies). One study described an intervention conducted in a pharmacy setting.
Outcomes
Duration of follow up of the studies ranged from 6 months to 8 years with a median follow-up duration of 12 months. Nine studies followed up patients at a minimum of two time points. Despite clear reporting of outcomes at follow up time points, there was poor reporting on whether the follow up was measured from participant entry into study or from end of intervention. All studies reported measures of glycemic control, specifically HbA1c levels. BMI was measured in five studies, while body weight was reported in two studies. Cholesterol was examined in three studies and blood pressure reduction in two. Smoking status was only examined in one of the studies. Additional outcomes examined in the trials included patient satisfaction, quality of life, diabetes knowledge, diabetes medication reduction, and behaviour modification (i.e. daily consumption of fruits/vegetables, exercise etc). Meta-analysis of the studies identified a moderate but significant reduction in HbA1c levels -0.44% 95%CI: -0.60, -0.29) for behavioural interventions in comparison to usual care for adults with type 2 diabetes. Subgroup analyses suggested the largest effects in interventions which were of at least duration and interventions in diabetics with higher baseline HbA1c (≥9.0). The quality of the evidence according to GRADE for the overall estimate was moderate and the quality of evidence for the subgroup analyses was identified as low.
Summary of Meta-Analysis of Studies Investigating the Effectiveness of Behavioural Interventions on HbA1c in Patients with Type 2 Diabetes.
Based on one study
Conclusions
Based on moderate quality evidence, behavioural interventions as defined by the 2007 Self-management mapping guide (Government of Victoria, Australia) produce a moderate reduction in HbA1c levels in patients with type 2 diabetes compared with usual care.
Based on low quality evidence, the interventions with the largest effects are those:
- in diabetics with higher baseline HbA1c (≥9.0)
- in which the interventions were of at least 1 year in duration
PMCID: PMC3377516  PMID: 23074526
17.  Community-Based Care for Chronic Wound Management 
Executive Summary
In August 2008, the Medical Advisory Secretariat (MAS) presented a vignette to the Ontario Health Technology Advisory Committee (OHTAC) on a proposed targeted health care delivery model for chronic care. The proposed model was defined as multidisciplinary, ambulatory, community-based care that bridged the gap between primary and tertiary care, and was intended for individuals with a chronic disease who were at risk of a hospital admission or emergency department visit. The goals of this care model were thought to include: the prevention of emergency department visits, a reduction in hospital admissions and re-admissions, facilitation of earlier hospital discharge, a reduction or delay in long-term care admissions, and an improvement in mortality and other disease-specific patient outcomes.
OHTAC approved the development of an evidence-based assessment to determine the effectiveness of specialized community based care for the management of heart failure, Type 2 diabetes and chronic wounds.
Please visit the Medical Advisory Secretariat Web site at: www.health.gov.on.ca/ohtas to review the following reports associated with the Specialized Multidisciplinary Community-Based care series.
Specialized multidisciplinary community-based care series: a summary of evidence-based analyses
Community-based care for the specialized management of heart failure: an evidence-based analysis
Community-based care for chronic wound management: an evidence-based analysis
Please note that the evidence-based analysis of specialized community-based care for the management of diabetes titled: “Community-based care for the management of type 2 diabetes: an evidence-based analysis” has been published as part of the Diabetes Strategy Evidence Platform at this URL: http://www.health.gov.on.ca/english/providers/program/mas/tech/ohtas/tech_diabetes_20091020.html
Please visit the Toronto Health Economics and Technology Assessment Collaborative Web site at: http://theta.utoronto.ca/papers/MAS_CHF_Clinics_Report.pdf to review the following economic project associated with this series:
Community-based Care for the specialized management of heart failure: a cost-effectiveness and budget impact analysis.
Objective
The objective of this evidence-based review is to determine the effectiveness of a multidisciplinary wound care team for the management of chronic wounds.
Clinical Need: Condition and Target Population
Chronic wounds develop from various aetiologies including pressure, diabetes, venous pathology, and surgery. A pressure ulcer is defined as a localized injury to the skin/and or underlying tissue occurring most often over a bony prominence and caused, alone or in combination, by pressure, shear, or friction. Up to three fifths of venous leg ulcers are due to venous aetiology.
Approximately 1.5 million Ontarians will sustain a pressure ulcer, 111,000 will develop a diabetic foot ulcer, and between 80,000 and 130,000 will develop a venous leg ulcer. Up to 65% of those afflicted by chronic leg ulcers report experiencing decreased quality of life, restricted mobility, anxiety, depression, and/or severe or continuous pain.
Multidisciplinary Wound Care Teams
The term ‘multidisciplinary’ refers to multiple disciplines on a team and ‘interdisciplinary’ to such a team functioning in a coordinated and collaborative manner. There is general consensus that a group of multidisciplinary professionals is necessary for optimum specialist management of chronic wounds stemming from all aetiologies. However, there is little evidence to guide the decision of which professionals might be needed form an optimal wound care team.
Evidence-Based Analysis Methods
Literature Search
A literature search was performed on July 7, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, Wiley Cochrane, Centre for Reviews and Dissemination/International Agency for Health Technology Assessment, and on July 13, 2009 using the Cumulative Index to Nursing & Allied Health Literature (CINAHL), and the International Agency for Health Technology Assessment (INAHTA) for studies pertaining to leg and foot ulcers. A similar literature search was conducted on July 29’ 2009 for studies pertaining to pressure ulcers. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established.
Inclusion Criteria
Randomized controlled trials and Controlled clinical Trials (CCT)
Systematic review with meta analysis
Population includes persons with pressure ulcers (anywhere) and/or leg and foot ulcers
The intervention includes a multidisciplinary (two or more disciplines) wound care team.
The control group does not receive care by a wound care team
Studies published in the English language between 2004 and 2009
Exclusion Criteria
Single centre retrospective observational studies
Outcomes of Interest
Proportion of persons and/or wounds completely healed
Time to complete healing
Quality of Life
Pain assessment
Summary of Findings
Two studies met the inclusion and exclusion criteria, one a randomized controlled trial (RCT), the other a CCT using a before and after study design. There was variation in the setting, composition of the wound care team, outcome measures, and follow up periods between the studies. In both studies, however, the wound care team members received training in wound care management and followed a wound care management protocol.
In the RCT, Vu et al. reported a non-significant difference between the proportion of wounds healed in 6 months using a univariate analysis (61.7% for treatment vs. 52.5% for control; p=0.074, RR=1.19) There was also a non-significant difference in the mean time to healing in days (82 for treatment vs. 101 for control; p=0.095). More persons in the intervention group had a Brief Pain Inventory (BPI) score equal to zero (better pain control) at 6 months when compared with the control group (38.6% for intervention vs. 24.4% for control; p=0.017, RR=1.58). By multivariate analysis a statistically significant hazard ratio was reported in the intervention group (1.73, 95% CI 1.20-1.50; p=0.003).
In the CCT, Harrison et al. reported a statistically significant difference in healing rates between the pre (control) and post (intervention) phases of the study. Of patients in the pre phase, 23% had healed ulcers 3 months after study enrolment, whereas 56% were healed in the post phase (P<0.001, OR=4.17) (Figure 3). Furthermore, 27% of patients were treated daily or more often in the pre phase whereas only 6% were treated at this frequency in the post phase (P<0.001), equal to a 34% relative risk reduction in frequency of daily treatments. The authors did not report the results of pain relief assessment.
The body of evidence was assessed using the GRADE methodology for 4 outcomes: proportion of wounds healed, proportion of persons with healed wounds, wound associated pain relief, and proportion of persons needing daily wound treatments. In general, the evidence was found to be low to very low quality.
Conclusion
The evidence supports that managing chronic wounds with a multidisciplinary wound care team significantly increases wound healing and reduces the severity of wound-associated pain and the required daily wound treatments compared to persons not managed by a wound care team. The quality of evidence supporting these outcomes is low to very low meaning that further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
PMCID: PMC3377537  PMID: 23074522
18.  Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients with Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to compare hospital-at-home care with inpatient hospital care for patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) who present to the emergency department (ED).
Clinical Need: Condition and Target Population
Acute Exacerbations of Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease is a disease state characterized by airflow limitation that is not fully reversible. This airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The natural history of COPD involves periods of acute-onset worsening of symptoms, particularly increased breathlessness, cough, and/or sputum, that go beyond normal day-to-day variations; these are known as acute exacerbations.
Two-thirds of COPD exacerbations are caused by an infection of the tracheobronchial tree or by air pollution; the cause in the remaining cases is unknown. On average, patients with moderate to severe COPD experience 2 or 3 exacerbations each year.
Exacerbations have an important impact on patients and on the health care system. For the patient, exacerbations result in decreased quality of life, potentially permanent losses of lung function, and an increased risk of mortality. For the health care system, exacerbations of COPD are a leading cause of ED visits and hospitalizations, particularly in winter.
Technology
Hospital-at-home programs offer an alternative for patients who present to the ED with an exacerbation of COPD and require hospital admission for their treatment. Hospital-at-home programs provide patients with visits in their home by medical professionals (typically specialist nurses) who monitor the patients, alter patients’ treatment plans if needed, and in some programs, provide additional care such as pulmonary rehabilitation, patient and caregiver education, and smoking cessation counselling.
There are 2 types of hospital-at-home programs: admission avoidance and early discharge hospital-at-home. In the former, admission avoidance hospital-at-home, after patients are assessed in the ED, they are prescribed the necessary medications and additional care needed (e.g., oxygen therapy) and then sent home where they receive regular visits from a medical professional. In early discharge hospital-at-home, after being assessed in the ED, patients are admitted to the hospital where they receive the initial phase of their treatment. These patients are discharged into a hospital-at-home program before the exacerbation has resolved. In both cases, once the exacerbation has resolved, the patient is discharged from the hospital-at-home program and no longer receives visits in his/her home.
In the models that exist to date, hospital-at-home programs differ from other home care programs because they deal with higher acuity patients who require higher acuity care, and because hospitals retain the medical and legal responsibility for patients. Furthermore, patients requiring home care services may require such services for long periods of time or indefinitely, whereas patients in hospital-at-home programs require and receive the services for a short period of time only.
Hospital-at-home care is not appropriate for all patients with acute exacerbations of COPD. Ineligible patients include: those with mild exacerbations that can be managed without admission to hospital; those who require admission to hospital; and those who cannot be safely treated in a hospital-at-home program either for medical reasons and/or because of a lack of, or poor, social support at home.
The proposed possible benefits of hospital-at-home for treatment of exacerbations of COPD include: decreased utilization of health care resources by avoiding hospital admission and/or reducing length of stay in hospital; decreased costs; increased health-related quality of life for patients and caregivers when treated at home; and reduced risk of hospital-acquired infections in this susceptible patient population.
Ontario Context
No hospital-at-home programs for the treatment of acute exacerbations of COPD were identified in Ontario. Patients requiring acute care for their exacerbations are treated in hospitals.
Research Question
What is the effectiveness, cost-effectiveness, and safety of hospital-at-home care compared with inpatient hospital care of acute exacerbations of COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on August 5, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 1990, to August 5, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
English language full-text reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies including patients with COPD as well as patients with other conditions, if results are reported for COPD patients separately;
studies performed in patients with acute exacerbations of COPD who present to the ED;
studies published between January 1, 1990, and August 5, 2010;
studies comparing hospital-at-home and inpatient hospital care for patients with acute exacerbations of COPD;
studies that include at least 1 of the outcomes of interest (listed below).
Cochrane Collaboration reviews have defined hospital-at-home programs as those that provide patients with active treatment for their acute exacerbation in their home by medical professionals for a limited period of time (in this case, until the resolution of the exacerbation). If a hospital-at-home program had not been available, these patients would have been admitted to hospital for their treatment.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
Outcomes of Interest
Patient/clinical outcomes
mortality
lung function (forced expiratory volume in 1 second)
health-related quality of life
patient or caregiver preference
patient or caregiver satisfaction with care
complications
Health system outcomes
hospital readmissions
length of stay in hospital and hospital-at-home
ED visits
transfer to long-term care
days to readmission
eligibility for hospital-at-home
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1; otherwise, results were summarized descriptively. Data from RCTs were analyzed using intention-to-treat protocols. In addition, a sensitivity analysis was done assigning all missing data/withdrawals to the event. P values less than 0.05 were considered significant. A priori subgroup analyses were planned for the acuity of hospital-at-home program, type of hospital-at-home program (early discharge or admission avoidance), and severity of the patients’ COPD. Additional subgroup analyses were conducted as needed based on the identified literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Fourteen studies met the inclusion criteria and were included in this review: 1 health technology assessment, 5 systematic reviews, and 7 RCTs.
The following conclusions are based on low to very low quality of evidence. The reviewed evidence was based on RCTs that were inadequately powered to observe differences between hospital-at-home and inpatient hospital care for most outcomes, so there is a strong possibility of type II error. Given the low to very low quality of evidence, these conclusions must be considered with caution.
Approximately 21% to 37% of patients with acute exacerbations of COPD who present to the ED may be eligible for hospital-at-home care.
Of the patients who are eligible for care, some may refuse to participate in hospital-at-home care.
Eligibility for hospital-at-home care may be increased depending on the design of the hospital-at-home program, such as the size of the geographical service area for hospital-at-home and the hours of operation for patient assessment and entry into hospital-at-home.
Hospital-at-home care for acute exacerbations of COPD was associated with a nonsignificant reduction in the risk of mortality and hospital readmissions compared with inpatient hospital care during 2- to 6-month follow-up.
Limited, very low quality evidence suggests that hospital readmissions are delayed in patients who received hospital-at-home care compared with those who received inpatient hospital care (mean additional days before readmission comparing hospital-at-home to inpatient hospital care ranged from 4 to 38 days).
There is insufficient evidence to determine whether hospital-at-home care, compared with inpatient hospital care, is associated with improved lung function.
The majority of studies did not find significant differences between hospital-at-home and inpatient hospital care for a variety of health-related quality of life measures at follow-up. However, follow-up may have been too late to observe an impact of hospital-at-home care on quality of life.
A conclusion about the impact of hospital-at-home care on length of stay for the initial exacerbation (defined as days in hospital or days in hospital plus hospital-at-home care for inpatient hospital and hospital-at-home, respectively) could not be determined because of limited and inconsistent evidence.
Patient and caregiver satisfaction with care is high for both hospital-at-home and inpatient hospital care.
PMCID: PMC3384361  PMID: 23074420
19.  A Holistic Framework to Improve the Uptake and Impact of eHealth Technologies 
Background
Many eHealth technologies are not successful in realizing sustainable innovations in health care practices. One of the reasons for this is that the current development of eHealth technology often disregards the interdependencies between technology, human characteristics, and the socioeconomic environment, resulting in technology that has a low impact in health care practices. To overcome the hurdles with eHealth design and implementation, a new, holistic approach to the development of eHealth technologies is needed, one that takes into account the complexity of health care and the rituals and habits of patients and other stakeholders.
Objective
The aim of this viewpoint paper is to improve the uptake and impact of eHealth technologies by advocating a holistic approach toward their development and eventual integration in the health sector.
Methods
To identify the potential and limitations of current eHealth frameworks (1999–2009), we carried out a literature search in the following electronic databases: PubMed, ScienceDirect, Web of Knowledge, PiCarta, and Google Scholar. Of the 60 papers that were identified, 44 were selected for full review. We excluded those papers that did not describe hands-on guidelines or quality criteria for the design, implementation, and evaluation of eHealth technologies (28 papers). From the results retrieved, we identified 16 eHealth frameworks that matched the inclusion criteria. The outcomes were used to posit strategies and principles for a holistic approach toward the development of eHealth technologies; these principles underpin our holistic eHealth framework.
Results
A total of 16 frameworks qualified for a final analysis, based on their theoretical backgrounds and visions on eHealth, and the strategies and conditions for the research and development of eHealth technologies. Despite their potential, the relationship between the visions on eHealth, proposed strategies, and research methods is obscure, perhaps due to a rather conceptual approach that focuses on the rationale behind the frameworks rather than on practical guidelines. In addition, the Web 2.0 technologies that call for a more stakeholder-driven approach are beyond the scope of current frameworks. To overcome these limitations, we composed a holistic framework based on a participatory development approach, persuasive design techniques, and business modeling.
Conclusions
To demonstrate the impact of eHealth technologies more effectively, a fresh way of thinking is required about how technology can be used to innovate health care. It also requires new concepts and instruments to develop and implement technologies in practice. The proposed framework serves as an evidence-based roadmap.
doi:10.2196/jmir.1672
PMCID: PMC3278097  PMID: 22155738
eHealth; design; participation; implementation; evaluation; multidisciplinary approach; Health 2.0; Wiki; e-collaboration
20.  Invasive home mechanical ventilation, mainly focused on neuromuscular disorders 
Introduction and background
Invasive home mechanical ventilation is used for patients with chronic respiratory insufficiency. This elaborate and technology-dependent ventilation is carried out via an artificial airway (tracheal cannula) to the trachea. Exact numbers about the incidence of home mechanical ventilation are not available. Patients with neuromuscular diseases represent a large portion of it.
Research questions
Specific research questions are formulated and answered concerning the dimensions of medicine/nursing, economics, social, ethical and legal aspects. Beyond the technical aspect of the invasive home, mechanical ventilation, medical questions also deal with the patient’s symptoms and clinical signs as well as the frequency of complications. Economic questions pertain to the composition of costs and the differences to other ways of homecare concerning costs and quality of care. Questions regarding social aspects consider the health-related quality of life of patients and caregivers. Additionally, the ethical aspects connected to the decision of home mechanical ventilation are viewed. Finally, legal aspects of financing invasive home mechanical ventilation are discussed.
Methods
Based on a systematic literature search in 2008 in a total of 31 relevant databases current literature is viewed and selected by means of fixed criteria. Randomized controlled studies, systematic reviews and HTA reports (health technology assessment), clinical studies with patient numbers above ten, health-economic evaluations, primary studies with particular cost analyses and quality-of-life studies related to the research questions are included in the analysis.
Results and discussion
Invasive mechanical ventilation may improve symptoms of hypoventilation, as the analysis of the literature shows. An increase in life expectancy is likely, but for ethical reasons it is not confirmed by premium-quality studies. Complications (e. g. pneumonia) are rare. Mobile home ventilators are available for the implementation of the ventilation. Their technical performance however, differs regrettably.
Studies comparing the economic aspects of ventilation in a hospital to outpatient ventilation, describe home ventilation as a more cost-effective alternative to in-patient care in an intensive care unit, however, more expensive in comparison to a noninvasive (via mask) ventilation. Higher expenses arise due to the necessary equipment and the high expenditure of time for the partial 24-hour care of the affected patients through highly qualified personnel. However, none of the studies applies to the German provisionary conditions. The calculated costs strongly depend on national medical fees and wages of caregivers, which barely allows a transmission of the results.
The results of quality-of-life studies are mostly qualitative. The patient’s quality of life using mechanical ventilation is predominantly considered well. Caregivers of ventilated patients report positive as well as negative ratings. Regarding the ethical questions, it was researched which aspects of ventilation implementation will have to be considered.
From a legal point of view the financing of home ventilation, especially invasive mechanical ventilation, requiring specialised technical nursing is regulated in the code of social law (Sozialgesetzbuch V). The absorption of costs is distributed to different insurance carriers, who often, due to cost pressures within the health care system, insurance carriers, who consider others and not themselves as responsible. Therefore in practice, the necessity to enforce a claim of cost absorption often arises in order to exercise the basic right of free choice of location.
Conclusion
Positive effects of the invasive mechanical ventilation (overall survival and symptomatic) are highly probable based on the analysed literature, although with a low level of evidence. An establishment of a home ventilation registry and health care research to ascertain valid data to improve outpatient structures is necessary. Gathering specific German data is needed to adequately depict the national concepts of provision and reimbursement. A differentiation of the cost structure according to the type of chosen outpatient care is currently not possible. There is no existing literature concerning the difference of life quality depending on the chosen outpatient care (homecare, assisted living, or in a nursing home specialised in invasive home ventilation). Further research is required.
For a so called participative decision – made by the patient after intense counselling – an early and honest patient education pro respectively contra invasive mechanical ventilation is needed. Besides the long term survival, the quality of life and individual, social and religious aspects have also to be considered.
doi:10.3205/hta000086
PMCID: PMC3010883  PMID: 21289881
home ventilation; invasive ventilation; extra-clinical ventilation; mechanical ventilation; neuromuscular disease; respiratory insufficience; vital capacity; Health Technology Assessment; HTA; economic analysis; ethics; psychologic pressure; quality of life; health related quality of life
21.  Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: http://www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis
Objective
The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa®) or erlotinib (Tarceva®) in patients with advanced non-small cell lung cancer (NSCLC).
Clinical Need: Target Population and Condition
With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer deaths in Ontario. Those with unresectable or advanced disease are commonly treated with concurrent chemoradiation or platinum-based combination chemotherapy. Although response rates to cytotoxic chemotherapy for advanced NSCLC are approximately 30 to 40%, all patients eventually develop resistance and have a median survival of only 8 to 10 months. Treatment for refractory or relapsed disease includes single-agent treatment with docetaxel, pemetrexed or EGFR-targeting TKIs (gefitinib, erlotinib). TKIs disrupt EGFR signaling by competing with adenosine triphosphate (ATP) for the binding sites at the tyrosine kinase (TK) domain, thus inhibiting the phosphorylation and activation of EGFRs and the downstream signaling network. Gefitinib and erlotinib have been shown to be either non-inferior or superior to chemotherapy in the first- or second-line setting (gefitinib), or superior to placebo in the second- or third-line setting (erlotinib).
Certain patient characteristics (adenocarcinoma, non-smoking history, Asian ethnicity, female gender) predict for better survival benefit and response to therapy with TKIs. In addition, the current body of evidence shows that somatic mutations in the EGFR gene are the most robust biomarkers for EGFR-targeting therapy selection. Drugs used in this therapy, however, can be costly, up to C$ 2000 to C$ 3000 per month, and they have only approximately a 10% chance of benefiting unselected patients. For these reasons, the predictive value of EGFR mutation testing for TKIs in patients with advanced NSCLC needs to be determined.
The Technology: EGFR mutation testing
The EGFR gene sequencing by polymerase chain reaction (PCR) assays is the most widely used method for EGFR mutation testing. PCR assays can be performed at pathology laboratories across Ontario. According to experts in the province, sequencing is not currently done in Ontario due to lack of adequate measurement sensitivity. A variety of new methods have been introduced to increase the measurement sensitivity of the mutation assay. Some technologies such as single-stranded conformational polymorphism, denaturing high-performance liquid chromatography, and high-resolution melting analysis have the advantage of facilitating rapid mutation screening of large numbers of samples with high measurement sensitivity but require direct sequencing to confirm the identity of the detected mutations. Other techniques have been developed for the simple, but highly sensitive detection of specific EGFR mutations, such as the amplification refractory mutations system (ARMS) and the peptide nucleic acid-locked PCR clamping. Others selectively digest wild-type DNA templates with restriction endonucleases to enrich mutant alleles by PCR. Experts in the province of Ontario have commented that currently PCR fragment analysis for deletion and point mutation conducts in Ontario, with measurement sensitivity of 1% to 5%.
Research Questions
In patients with locally-advanced or metastatic NSCLC, what is the clinical effectiveness of EGFR mutation testing for prediction of response to treatment with TKIs (gefitinib, erlotinib) in terms of progression-free survival (PFS), objective response rates (ORR), overall survival (OS), and quality of life (QoL)?
What is the impact of EGFR mutation testing on overall clinical decision-making for patients with advanced or metastatic NSCLC?
What is the cost-effectiveness of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the first-line setting?
What is the budget impact of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the second- or third-line setting?
Methods
A literature search was performed on March 9, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, Wiley Cochrane, CINAHL, Centre for Reviews and Dissemination/International Agency for Health Technology Assessment for studies published from January 1, 2004 until February 28, 2010 using the following terms:
Non-Small-Cell Lung Carcinoma
Epidermal Growth Factor Receptor
An automatic literature update program also extracted all papers published from February 2010 until August 2010. Abstracts were reviewed by a single reviewer and for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, and then a group of epidemiologists, until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
The inclusion criteria were as follows:
Population: patients with locally advanced or metastatic NSCLC (stage IIIB or IV)
Procedure: EGFR mutation testing before treatment with gefitinib or erlotinib
Language: publication in English
Published health technology assessments, guidelines, and peer-reviewed literature (abstracts, full text, conference abstract)
Outcomes: progression-free survival (PFS), Objective response rate (ORR), overall survival (OS), quality of life (QoL).
The exclusion criteria were as follows:
Studies lacking outcomes specific to those of interest
Studies focused on erlotinib maintenance therapy
Studies focused on gefitinib or erlotinib use in combination with cytotoxic agents or any other drug
Grey literature, where relevant, was also reviewed.
Outcomes of Interest
PFS
ORR determined by means of the Response Evaluation Criteria in Solid Tumours (RECIST)
OS
QoL
Quality of Evidence
The quality of the Phase II trials and observational studies was based on the method of subject recruitment and sampling, possibility of selection bias, and generalizability to the source population. The overall quality of evidence was assessed as high, moderate, low or very low according to the GRADE Working Group criteria.
Summary of Findings
Since the last published health technology assessment by Blue Cross Blue Shield Association in 2007 there have been a number of phase III trials which provide evidence of predictive value of EGFR mutation testing in patients who were treated with gefitinib compared to chemotherapy in the first- or second-line setting. The Iressa Pan Asian Study (IPASS) trial showed the superiority of gefitinib in terms of PFS in patients with EGFR mutations versus patients with wild-type EGFR (Hazard ratio [HR], 0.48, 95%CI; 0.36-0.64 versus HR, 2.85; 95%CI, 2.05-3.98). Moreover, there was a statistically significant increased ORR in patients who received gefitinib and had EGFR mutations compared to patients with wild-type EGFR (71% versus 1%). The First-SIGNAL trial in patients with similar clinical characteristics as IPASS as well as the NEJ002 and WJTOG3405 trials that included only patients with EGFR mutations, provide confirmation that gefitinib is superior to chemotherapy in terms of improved PFS or higher ORR in patients with EGFR mutations. The INTEREST trial further indicated that patients with EGFR mutations had prolonged PFS and higher ORR when treated with gefitinib compared with docetaxel.
In contrast, there is still a paucity of strong evidence regarding the predictive value of EGFR mutation testing for response to erlotinib in the second- or third-line setting. The BR.21 trial randomized 731 patients with NSCLC who were refractory or intolerant to prior first- or second-line chemotherapy to receive erlotinib or placebo. While the HR of 0.61 (95%CI, 0.51-0.74) favored erlotinib in the overall population, this was not a significant in the subsequent retrospective subgroup analysis. A retrospective evaluation of 116 of the BR.21 tumor samples demonstrated that patients with EGFR mutations had significantly higher ORRs when treated with erlotinib compared with placebo (27% versus 7%; P=0.03). However, erlotinib did not confer a significant survival benefit compared with placebo in patients with EGFR mutations (HR, 0.55; 95%CI, 0.25-1.19) versus wild-type (HR, 0.74; 95%CI, 0.52-1.05). The interaction between EGFR mutation status and erlotinib use was not significant (P=0.47). The lack of significance could be attributable to a type II error since there was a low sample size that was available for subgroup analysis.
A series of phase II studies have examined the clinical effectiveness of erlotinib in patients known to have EGFR mutations. Evidence from these studies has consistently shown that erlotinib yields a very high ORR (typically 70% vs. 4%) and a prolonged PFS (9 months vs. 2 months) in patients with EGFR mutations compared with patients with wild-type EGFR. Although having a prolonged PFS and higher respond in EGFR mutated patients might be due to a better prognostic profile regardless of the treatment received. In the absence of a comparative treatment or placebo control group, it is difficult to determine if the observed differences in survival benefit in patients with EGFR mutation is attributed to prognostic or predictive value of EGFR mutation status.
Conclusions
Based on moderate quality of evidence, patients with locally advanced or metastatic NSCLC with adenocarcinoma histology being treated with gefitinib in the first-line setting are highly likely to benefit from gefitinib if they have EGFR mutations compared to those with wild-type EGFR. This advantage is reflected in improved PFS, ORR and QoL in patients with EGFR mutation who are being treated with gefitinib relative to patients treated with chemotherapy.
Based on low quality of evidence, in patients with locally advanced or metastatic NSCLC who are being treated with erlotinib, the identification of EGFR mutation status selects those who are most likely to benefit from erlotinib relative to patients treated with placebo in the second or third-line setting.
PMCID: PMC3377519  PMID: 23074402
22.  Home Telemonitoring for Type 2 Diabetes 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this report is to determine whether home telemonitoring and management of blood glucose is effective for improving glycemic control in adults with type 2 diabetes.
Background
An aging population coupled with a shortage of nurses and physicians in Ontario is increasing the demand for home care services for chronic diseases, including diabetes. In recent years, there has also been a concurrent rise in the number of blood glucose home telemonitoring technologies available for diabetes management. The Canadian Diabetes Association (CDA) currently recommends self-monitoring of blood glucose for patients with type 2 diabetes, particularly for individuals using insulin. With the emergence of home telemonitoring, there is potential for improving the impact of self-monitoring by linking patients with health care professionals who can monitor blood glucose values and then provide guided recommendations remotely. The MAS has, therefore, conducted a review of the available evidence on blood glucose home telemonitoring and management technologies for type 2 diabetes.
Evidence-Based Analysis of Effectiveness
Research Question
Is home telemonitoring of blood glucose for adults with type 2 diabetes more efficacious in improving glycemic control (i.e. can it reduce HbA1c levels) in comparison to usual care?
Literature Search
Inclusion Criteria
Intervention: Must involve the frequent transmission of remotely-collected blood glucose measurements by patients to health care professionals for routine monitoring through the use of home telemonitoring technology.
Intervention: Monitoring must be combined with a coordinated management and feedback system based on transmitted data.
Control: Usual diabetes care as provided by the usual care provider (usual care largely varies by jurisdiction and study).
Population: Adults ≥18 years of age with type 2 diabetes.
Follow-up: ≥6 months.
Sample size: ≥30 patients total.
Publication type: Randomized controlled trials (RCTs), systematic reviews, and/or meta-analyses.
Publication date range: January 1, 1998 to January 31, 2009.
Exclusion Criteria
Studies with a control group other than usual care.
Studies published in a language other than English.
Studies in which there is indication that the monitoring of patients’ diabetic measurements by a health care professional(s) was not occurring more frequently in intervention patients than in control patients receiving usual care.
Outcomes of Interest
The primary outcome of interest was a reduction in glycosylated hemoglobin (HbA1c) levels.
Search Strategy
A comprehensive literature search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, The Cochrane Library, and INAHTA for studies published between January 1, 2007 and January 31, 2009. The search was designed as a continuation of a search undertaken for a systematic review by the Canadian Agency for Drugs and Technologies in Health, originally encompassing studies published from 1950 up until July of 2008 and which reviewed home telemonitoring in comparison to usual care for the management of type 1 and type 2 diabetes.
Summary of Findings
A total of eight studies identified by the literature search were eligible for inclusion (one was excluded post-hoc from analysis). Studies varied considerably on characteristics of design, population, and intervention/control. Of note, few trials limited populations to type 2 diabetics only, thus trials with mixed populations (type 1 and type 2) were included, though in such cases, the majority of patients (>60%) had type 2 diabetes. No studies restricted inclusion or analyses by diabetes treatment type (i.e. populations were mixed with respect to those on insulin therapy vs. not) and studies further varied on whether intervention was provided in addition to usual care or as a replacement. Lastly, trials often included blood glucose home telemonitoring as an adjunct to other telemedicine components and thus the incremental value of adding home telemonitoring remains unclear. The overall grading of the quality of evidence was low, indicating that there is uncertainty in the findings.
Meta-analysis of the seven trials identified a moderate but significant reduction in HbA1c levels (~0.5% reduction) in favour blood glucose home telemonitoring compared to usual care for adults with type 2 diabetes). Subgroup analyses suggested differences in effect size depending on the type of intervention, however, these findings should be held under caution as the analyses were exploratory in nature and intervention components overlapped between subgroups.
Meta-Analyses of Reduction in HbA1c Values for Analyzed Studies
Conclusions
Based on low quality evidence, blood glucose home telemonitoring technologies confer a statistically significant reduction in HbA1c of ~0.50% in comparison to usual care when used adjunctively to a broader telemedicine initiative for adults with type 2 diabetes.
Exploratory analysis suggests differences in effect sizes for the primary outcome when analyzing by subgroup; however, this should only be viewed as exploratory or hypothesis-generating only.
Significant limitations and/or sources of clinical heterogeneity are present in the available literature, generating great uncertainty in conclusions.
More robust trials in type 2 diabetics only, utilizing more modern technologies, preferably performed in an Ontario or a similar setting (given the infrastructure demands and that the standard comparator is usual care), while separating out the effects of other telemedicine intervention components, are needed to clarify the effect of emerging remote blood glucose monitoring technologies.
PMCID: PMC3377533  PMID: 23074529
23.  Community-Based Care for the Management of Type 2 Diabetes 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this report is to determine the efficacy of specialized multidisciplinary community care for the management of type 2 diabetes compared to usual care.
Clinical Need: Target Population and Condition
Diabetes (i.e. diabetes mellitus) is a highly prevalent chronic metabolic disorder that interferes with the body’s ability to produce or effectively use insulin. The majority (90%) of diabetes patients have type 2 diabetes. (1) Based on the United Kingdom Prospective Diabetes Study (UKPDS), intensive blood glucose and blood pressure control significantly reduce the risk of microvascular and macrovascular complications in type 2 diabetics. While many studies have documented that patients often do not meet the glycemic control targets specified by national and international guidelines, factors associated with glycemic control are less well studied, one of which is the provider(s) of care.
Multidisciplinary approaches to care may be particularly important for diabetes management. According guidelines from the Canadian Diabetes Association (CDA), the diabetes health care team should be multi-and interdisciplinary. Presently in Ontario, the core diabetes health care team consists of at least a family physician and/or diabetes specialist, and diabetes educators (registered nurse and registered dietician).
Increasing the role played by allied health care professionals in diabetes care and their collaboration with physicians may represent a more cost-effective option for diabetes management. Several systematic reviews and meta-analyses have examined multidisciplinary care programs, but these have either been limited to a specific component of multidisciplinary care (e.g. intensified education programs), or were conducted as part of a broader disease management program, of which not all were multidisciplinary in nature. Most reviews also do not clearly define the intervention(s) of interest, making the evaluation of such multidisciplinary community programs challenging.
Evidence-Based Analysis Methods
Research Questions
What is the evidence of efficacy of specialized multidisciplinary community care provided by at least a registered nurse, registered dietician and physician (primary care and/or specialist) for the management of type 2 diabetes compared to usual care? [Henceforth referred to as Model 1]
What is the evidence of efficacy of specialized multidisciplinary community care provided by at least a pharmacist and a primary care physician for the management of type 2 diabetes compared to usual care? [Henceforth referred to as Model 2]
Inclusion Criteria
English language full-reports
Published between January 1, 2000 and September 28, 2008
Randomized controlled trials (RCTs), systematic reviews and meta-analyses
Type 2 diabetic adult population (≥18 years of age)
Total sample size ≥30
Describe specialized multidisciplinary community care defined as ambulatory-based care provided by at least two health care disciplines (of which at least one must be a specialist in diabetes) with integrated communication between the care providers.
Compared to usual care (defined as health care provision by non-specialist(s) in diabetes, such as primary care providers; may include referral to other health care professionals/services as necessary)
≥6 months follow-up
Exclusion Criteria
Studies where discrete results on diabetes cannot be abstracted
Predominantly home-based interventions
Inpatient-based interventions
Outcomes of Interest
The primary outcomes for this review were glycosylated hemoglobin (rHbA1c) levels and systolic blood pressure (SBP).
Search Strategy
A literature search was performed on September 28, 2008 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published between January 1, 2000 and September 28, 2008. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Given the high clinical heterogeneity of the articles that met the inclusion criteria, specific models of specialized multidisciplinary community care were examined based on models of care that are currently being supported in Ontario, models of care that were commonly reported in the literature, as well as suggestions from an Expert Advisory Panel Meeting held on January 21, 2009.
Summary of Findings
The initial search yielded 2,116 unique citations, from which 22 RCTs trials and nine systematic reviews published were identified as meeting the eligibility criteria. Of these, five studies focused on care provided by at least a nurse, dietician, and physician (primary care and/or specialist) model of care (Model 1; see Table ES 1), while three studies focused on care provided by at least a pharmacist and primary care physician (Model 2; see Table ES 2).
Based on moderate quality evidence, specialized multidisciplinary community care Model 2 has demonstrated a statistically and clinically significant reduction in HbA1c of 1.0% compared with usual care. The effects of this model on SBP, however, are uncertain compared with usual care, based on very-low quality evidence. Specialized multidisciplinary community care Model 2 has demonstrated a statistically and clinically significant reduction in both HbA1c of 1.05% (based on high quality evidence) and SBP of 7.13 mm Hg (based on moderate quality evidence) compared to usual care. For both models, the evidence does not suggest a preferred setting of care delivery (i.e., primary care vs. hospital outpatient clinic vs. community clinic).
Summary of Results of Meta-Analyses of the Effects of Multidisciplinary Care Model 1
Mean change from baseline to follow-up between intervention and control groups
Summary of Results of Meta-Analyses of the Effects of Multidisciplinary Care Model 2
Mean change from baseline to follow-up between intervention and control groups
PMCID: PMC3377524  PMID: 23074528
24.  SOMWeb: A Semantic Web-Based System for Supporting Collaboration of Distributed Medical Communities of Practice 
Background
Information technology (IT) support for remote collaboration of geographically distributed communities of practice (CoP) in health care must deal with a number of sociotechnical aspects of communication within the community. In the mid-1990s, participants of the Swedish Oral Medicine Network (SOMNet) began discussing patient cases in telephone conferences. The cases were distributed prior to the conferences using PowerPoint and email. For the technical support of online CoP, Semantic Web technologies can potentially fulfill needs of knowledge reuse, data exchange, and reasoning based on ontologies. However, more research is needed on the use of Semantic Web technologies in practice.
Objectives
The objectives of this research were to (1) study the communication of distributed health care professionals in oral medicine; (2) apply Semantic Web technologies to describe community data and oral medicine knowledge; (3) develop an online CoP, Swedish Oral Medicine Web (SOMWeb), centered on user-contributed case descriptions and meetings; and (4) evaluate SOMWeb and study how work practices change with IT support.
Methods
Based on Java, and using the Web Ontology Language and Resource Description Framework for handling community data and oral medicine knowledge, SOMWeb was developed using a user-centered and iterative approach. For studying the work practices and evaluating the system, a mixed-method approach of interviews, observations, and a questionnaire was used.
Results
By May 2008, there were 90 registered users of SOMWeb, 93 cases had been added, and 18 meetings had utilized the system. The introduction of SOMWeb has improved the structure of meetings and their discussions, and a tenfold increase in the number of participants has been observed. Users submit cases to seek advice on diagnosis or treatment, to show an unusual case, or to create discussion. Identified barriers to submitting cases are lack of time, concern about whether the case is interesting enough, and showing gaps in one’s own knowledge. Three levels of member participation are discernable: a core group that contributes most cases and most meeting feedback; an active group that participates often but only sometimes contribute cases and feedback; and a large peripheral group that seldom or never contribute cases or feedback.
Conclusions
SOMWeb is beneficial for individual clinicians as well as for the SOMNet community. The system provides an opportunity for its members to share both high quality clinical practice knowledge and external evidence related to complex oral medicine cases. The foundation in Semantic Web technologies enables formalization and structuring of case data that can be used for further reasoning and research. Main success factors are the long history of collaboration between different disciplines, the user-centered development approach, the existence of a “champion” within the field, and nontechnical community aspects already being in place.
doi:10.2196/jmir.1059
PMCID: PMC2626431  PMID: 18725355
Dental informatics; medical informatics applications; communications applications; community networks; group and organization interfaces; interdisciplinary communication; Internet; knowledge bases; online information services; user/machine systems
25.  Sacral Nerve Stimulation For Urinary Urge Incontinence, Urgency-Frequency, Urinary Retention, and Fecal Incontinence 
Executive Summary
Objective
The aim of this review was to assess the effectiveness, safety, and cost of sacral nerve stimulation (SNS) to treat urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence.
Background: Condition and Target Population
Urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence are prevalent, yet rarely discussed, conditions. They are rarely discussed because patients may be uncomfortable disclosing their symptoms to a health professional or may be unaware that there are treatment options for these conditions. Briefly, urge incontinence is an involuntary loss of urine upon a sudden urge. Urgency-frequency is an uncontrollable urge to void, which results in frequent, small-volume voids. People with urgency-frequency may or may not also experience chronic pelvic pain. Urinary retention refers to the inability to void despite having the urge to void. It can be caused by a hypocontractile detrusor (weak or no bladder muscle contraction) or obstruction due to urethral overactivity. Fecal incontinence is a loss of voluntary bowel control.
The prevalence of urge incontinence, urgency-frequency, and urinary retention in the general population is 3.3% to 8.2%, and the prevalence of fecal incontinence is 1.4% to 1.9%. About three-quarters of these people will be successfully treated by behaviour and/or drug therapy. For those who do not respond to these therapies, the options for treatment are management with diapers or pads, or surgery. The surgical procedures are generally quite invasive, permanent, and are associated with complications. Pads and/or diapers are used throughout the course of treatment as different therapies are tried. Patients who respond successfully to treatment may still require pads or diapers, but to a lesser extent.
The Technology Being Reviewed: Sacral Nerve Stimulation
Sacral nerve stimulation is a procedure where a small device attached to an electrode is implanted in the abdomen or buttock to stimulate the sacral nerves in an attempt to manage urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence. The device was originally developed to manage urinary urge incontinence; however, it has also been used in patients with urgency-frequency, urinary retention, and fecal incontinence. SNS is intended for patients who are refractory to behaviour, drug, and/or interventional therapy.
There are 2 phases in the SNS process: first, patients must undergo a test stimulation phase to determine if they respond to sacral nerve stimulation. If there is a 50% or greater improvement in voiding function, then the patient is considered a candidate for the next phase, implantation.
Review Strategy
The standard Medical Advisory Secretariat search strategy was used to locate international health technology assessments and English-language journal articles published from 2000 to November 2004. The Medical Advisory Secretariat also conducted Internet searches of Medscape (1) and the manufacturer’s website (2) to identify product information and recent reports on trials that were unpublished but that were presented at international conferences. In addition, the Web site Current Controlled Trials (3) was searched for ongoing randomized controlled trials (RCTs) investigating the role of sacral nerve stimulation in the management of voiding conditions.
Summary of Findings
Four health technology assessments were found that reviewed SNS in patients with urge incontinence, urgency-frequency, and/or urinary retention. One assessment was found that reviewed SNS in patients with fecal incontinence. The assessments consistently reported that SNS was an effective technology in managing these voiding conditions in patients who did not respond to drug or behaviour therapy. They also reported that there was a substantial complication profile associated with SNS. Complication rates ranged from 33% to 50%. However, none of the assessments reported that they found any incidences of permanent injury or death associated with the device.
The health technology assessments for urge incontinence, urgency-frequency, and urinary retention included (RCTs (level 2) as their primary source of evidence for their conclusions. The assessment of fecal incontinence based its conclusions on evidence from case series (level 4). Because there was level 2 data available for the use of SNS in patients with urinary conditions, the Medical Advisory Secretariat chose to review thoroughly the RCTs included in the assessments and search for publications since the assessments were released. However, for the health technology assessment for fecal incontinence, which contained only level 4 evidence, the Medical Advisory Secretariat searched for studies on SNS and fecal incontinence that were published since that assessment was released.
Urge Incontinence
Two RCTs were identified that compared SNS to no treatment in patients with refractory urge incontinence. Both RCTs reported significant improvements (> 50% improvement in voiding function) in the SNS group for number of incontinence episodes per day, number of pads used per day, and severity of incontinence episodes.
Urgency-Frequency (With or Without Chronic Pelvic Pain)
One RCT was identified that compared SNS to no treatment in patients with refractory urgency-frequency. The RCT reported significant improvements in urgency-frequency symptoms in the SNS group (average volume per void, detrusor pressure). In addition to the RCT, 1 retrospective review and 2 prospective case series were identified that measured pelvic pain associated with urgency-frequency in patients who underwent SNS. All 3 studies reported a significant decrease in pain at median follow-up.
Urinary Retention
One RCT was identified that compared SNS to no treatment in patients with refractory urinary retention. The RCT reported significant improvements in urinary retention in the SNS group compared to the control group for number of catheterizations required and number of voids per day. In addition to this RCT, 1 case series was also identified investigating SNS in women with urinary retention. This study also found that there were significant improvements in urinary retention after the women had received the SNS implants.
Fecal Incontinence
Three case series were identified that investigated the role of SNS in patients with fecal incontinence. All 3 reported significant improvements in fecal incontinence symptoms (number of incontinent episodes per week) after the patients received the SNS implants.
Long-Term Follow-up
None of the studies identified followed patients until the point of battery failure. Of the 6 studies identified describing the long-term follow-up of patients with SNS, follow-up periods ranged from 1.5 years to over 5 years. None of the long-term follow-up studies included patients with fecal incontinence. All of the studies reported that most of the patients who had SNS had at least a 50% improvement in voiding function (range 58%–77%). These studies also reported the number of patients who had their device explanted in the follow-up period. The rates of explantation ranged from 12% to 21%.
Safety, Complications, and Quality of Life
A 33% surgical revision rate was reported in an analysis of the safety of 3 RCTs comparing SNS to no treatment in patients with urge incontinence, urgency-frequency, or urinary retention. The most commonly reported adverse effects were pain at the implant site and lead migration. Despite the high rate of surgical revision, there were no reports of permanent injury or death in any of the studies or health technology assessments identified. Additionally, patients consistently said that they would recommend the procedure to a friend or family member.
Economic Analysis
One health technology assessment and 1 abstract were found that investigated the costing factors pertinent to SNS. The authors of this assessment did their own “indicative analysis” and found that SNS was not more cost-effective than using incontinence supplies. However, the assessment did not account for quality of life. Conversely, the authors of the abstract found that SNS was more cost-effective than incontinence supplies alone; however, they noted that in the first year after SNS, it is much more expensive than only incontinence supplies. This is owing to the cost of the procedure, and the adjustments required to make the device most effective. They also noted the positive effects that SNS had on quality of life.
Conclusions and Implications
In summary, there is level 2 evidence to support the effectiveness of SNS to treat people with urge incontinence, urgency-frequency, or urinary retention. There is level 4 evidence to support the effectiveness of SNS to treat people with fecal incontinence.
To qualify for SNS, people must meet the following criteria:
Be refractory to behaviour and/or drug therapy
Have had a successful test stimulation before implantation; successful test stimulation is defined by a 50% or greater improvement in voiding function based on the results of a voiding diary. Test stimulation periods range from 3 to 7 days for patients with urinary dysfunctions, and from 2 to 3 weeks for patients with fecal incontinence.
Be able to record voiding diary data, so that clinical results of the implantation can be evaluated.
Patients with stress incontinence, urinary retention due to obstruction and neurogenic conditions (such as diabetes with peripheral nerve involvement) are ineligible for sacral nerve stimulation.
Physicians will need to learn how to use the InterStim System for Urinary Control. Requirements for training include these:
Physicians must be experienced in the diagnosis and treatment of lower urinary tract disorders and should be trained in the implantation and use of the InterStim System for Urinary Control.
Training should include the following:
Participation in a seminar or workshop that includes instructional and laboratory training on SNS. This seminar should include a review of the evidence on SNS with emphasis on techniques to prevent adverse events.
Completion of proctoring by a physician experienced in SNS for the first 2 test stimulations and the first 2 implants
PMCID: PMC3382408  PMID: 23074472

Results 1-25 (1075249)