Search tips
Search criteria

Results 1-25 (1266672)

Clipboard (0)

Related Articles

1.  High-Sensitivity CRP Discriminates HNF1A-MODY From Other Subtypes of Diabetes 
Diabetes Care  2011;34(8):1860-1862.
Maturity-onset diabetes of the young (MODY) as a result of mutations in hepatocyte nuclear factor 1-α (HNF1A) is often misdiagnosed as type 1 diabetes or type 2 diabetes. Recent work has shown that high-sensitivity C-reactive protein (hs-CRP) levels are lower in HNF1A-MODY than type 1 diabetes, type 2 diabetes, or glucokinase (GCK)-MODY. We aim to replicate these findings in larger numbers and other MODY subtypes.
hs-CRP levels were assessed in 750 patients (220 HNF1A, 245 GCK, 54 HNF4-α [HNF4A], 21 HNF1-β (HNF1B), 53 type 1 diabetes, and 157 type 2 diabetes).
hs-CRP was lower in HNF1A-MODY (median [IQR] 0.3 [0.1–0.6] mg/L) than type 2 diabetes (1.40 [0.60–3.45] mg/L; P < 0.001) and type 1 diabetes (1.10 [0.50–1.85] mg/L; P < 0.001), HNF4A-MODY (1.45 [0.46–2.88] mg/L; P < 0.001), GCK-MODY (0.60 [0.30–1.80] mg/L; P < 0.001), and HNF1B-MODY (0.60 [0.10–2.8] mg/L; P = 0.07). hs-CRP discriminated HNF1A-MODY from type 2 diabetes with hs-CRP <0.75 mg/L showing 79% sensitivity and 70% specificity (receiver operating characteristic area under the curve = 0.84).
hs-CRP levels are lower in HNF1A-MODY than other forms of diabetes and may be used as a biomarker to select patients for diagnostic HNF1A genetic testing.
PMCID: PMC3142017  PMID: 21700917
2.  Assessment of High-Sensitivity C-Reactive Protein Levels as Diagnostic Discriminator of Maturity-Onset Diabetes of the Young Due to HNF1A Mutations 
Diabetes Care  2010;33(9):1919-1924.
Despite the clinical importance of an accurate diagnosis in individuals with monogenic forms of diabetes, restricted access to genetic testing leaves many patients with undiagnosed diabetes. Recently, common variation near the HNF1 homeobox A (HNF1A) gene was shown to influence C-reactive protein levels in healthy adults. We hypothesized that serum levels of high-sensitivity C-reactive protein (hs-CRP) could represent a clinically useful biomarker for the identification of HNF1A mutations causing maturity-onset diabetes of the young (MODY).
Serum hs-CRP was measured in subjects with HNF1A-MODY (n = 31), autoimmune diabetes (n = 316), type 2 diabetes (n = 240), and glucokinase (GCK) MODY (n = 24) and in nondiabetic individuals (n = 198). The discriminative accuracy of hs-CRP was evaluated through receiver operating characteristic (ROC) curve analysis, and performance was compared with standard diagnostic criteria. Our primary analyses excluded ∼11% of subjects in whom the single available hs-CRP measurement was >10 mg/l.
Geometric mean (SD range) hs-CRP levels were significantly lower (P ≤ 0.009) for HNF1A-MODY individuals, 0.20 (0.03–1.14) mg/l, than for any other group: autoimmune diabetes 0.58 (0.10–2.75) mg/l, type 2 diabetes 1.33 (0.28–6.14) mg/l, GCK-MODY 1.01 (0.19–5.33) mg/l, and nondiabetic 0.48 (0.10–2.42) mg/l. The ROC-derived C-statistic for discriminating HNF1A-MODY and type 2 diabetes was 0.8. Measurement of hs-CRP, either alone or in combination with current diagnostic criteria, was superior to current diagnostic criteria alone. Sensitivity and specificity for the combined criteria approached 80%.
Serum hs-CRP levels are markedly lower in HNF1A-MODY than in other forms of diabetes. hs-CRP has potential as a widely available, cost-effective screening test to support more precise targeting of MODY diagnostic testing.
PMCID: PMC2928334  PMID: 20724646
3.  Apolipoprotein M can discriminate HNF1A-MODY from Type 1 diabetes 
Missed diagnosis of maturity-onset diabetes of the young (MODY) has led to an interest in biomarkers that enable efficient prioritization of patients for definitive molecular testing. Apolipoprotein M (apoM) was suggested as a biomarker for hepatocyte nuclear factor 1 alpha (HNF1A)-MODY because of its reduced expression in Hnf1a−/− mice. However, subsequent human studies examining apoM as a biomarker have yielded conflicting results. We aimed to evaluate apoM as a biomarker for HNF1A-MODY using a highly specific and sensitive ELISA.
ApoM concentration was measured in subjects with HNF1A-MODY (n = 69), Type 1 diabetes (n = 50), Type 2 diabetes (n = 120) and healthy control subjects (n = 100). The discriminative accuracy of apoM and of the apoM/HDL ratio for diabetes aetiology was evaluated.
Mean (standard deviation) serum apoM concentration (μmol/l) was significantly lower for subjects with HNF1A-MODY [0.86 (0.29)], than for those with Type 1 diabetes [1.37 (0.26), P = 3.1 × 10−18) and control subjects [1.34 (0.22), P = 7.2 × 10−19). There was no significant difference in apoM concentration between subjects with HNF1A-MODY and Type 2 diabetes [0.89 (0.28), P = 0.13]. The C-statistic measure of discriminative accuracy for apoM was 0.91 for HNF1A-MODY vs. Type 1 diabetes, indicating high discriminative accuracy. The apoM/HDL ratio was significantly lower in HNF1A-MODY than other study groups. However, this ratio did not perform well in discriminating HNF1A-MODY from either Type 1 diabetes (C-statistic = 0.79) or Type 2 diabetes (C-statistic = 0.68).
We confirm an earlier report that serum apoM levels are lower in HNF1A-MODY than in controls. Serum apoM provides good discrimination between HNF1A-MODY and Type 1 diabetes and warrants further investigation for clinical utility in diabetes diagnostics.
PMCID: PMC4193536  PMID: 23157689
4.  Serum levels of pancreatic stone protein (PSP)/reg1A as an indicator of beta-cell apoptosis suggest an increased apoptosis rate in hepatocyte nuclear factor 1 alpha (HNF1A-MODY) carriers from the third decade of life onward 
Mutations in the transcription factor hepatocyte nuclear factor-1-alpha (HNF1A) result in the commonest type of maturity onset diabetes of the young (MODY). HNF1A-MODY carriers have reduced pancreatic beta cell mass, partially due to an increased rate of apoptosis. To date, it has not been possible to determine when apoptosis is occurring in HNF1A-MODY.We have recently demonstrated that beta cell apoptosis stimulates the expression of the pancreatic stone protein/regenerating (PSP/reg) gene in surviving neighbour cells, and that PSP/reg1A protein is subsequently secreted from these cells. The objective of this study was to determine whether serum levels of PSP/reg1A are elevated during disease progression in HNF1A-MODY carriers, and whether it may provide information regarding the onset of beta-cell apoptosis.
We analysed serum PSP/reg1A levels and correlated with clinical and biochemical parameters in subjects with HNF1A-MODY, glucokinase (GCK-MODY), and type 1 diabetes mellitus. A control group of normoglycaemic subjects was also analysed.
PSP/reg1A serum levels were significantly elevated in HNF1A-MODY (n = 37) subjects compared to controls (n = 60) (median = 12.50 ng/ml, IQR = 10.61-17.87 ng/ml versus median = 10.72 ng/ml, IQR = 8.94-12.54 ng/ml, p = 0.0008). PSP/reg1A correlated negatively with insulin levels during OGTT, (rho = −0.40, p = 0.02). Interestingly we noted a significant positive correlation of PSP/reg1A with age of the HNF1A-MODY carriers (rho = 0.40 p = 0.02) with an age of 25 years separating carriers with low and high PSP/reg1A levels. Patients with type 1 diabetes mellitus also had elevated serum levels of PSP/reg1A compared to controls, however this was independent of the duration of diabetes.
Our data suggest that beta cell apoptosis contributes increasingly to the pathophysiology of HNF1A-MODY in patients 25 years and over. PSP/reg1A may be developed as a serum marker to detect increased beta-cell apoptosis, or its therapeutic response.
PMCID: PMC3433346  PMID: 22808921
Maturity onset diabetes of the young (MODY); Apoptosis; Serum biomarker; Beta-Cell; Type 1 diabetes; Pancreatic stone protein (PSP); Regenerating gene 1A (reg1A)
5.  Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene 
PLoS Medicine  2007;4(4):e118.
Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice.
Methods and Findings
We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic β-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth.
HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life.
HNF4A mutations were found to be associated with a considerable increase in birthweight and macrosomia, and were a cause of neonatal hypoglycaemia.
Editors' Summary
MODY, or maturity-onset diabetes of the young, is a particular subtype of diabetes; only a few percent of people with diabetes are thought to have this subtype. The condition comes about as a result of a mutation in one of six genes. Generally, people with MODY have high glucose (sugar) levels in the blood, and the typical symptoms of diabetes, such as increased thirst and urination, typically develop when the person is below the age of 25 y. Two of the genes that are known to cause MODY are mutant forms of HNF4A and HNF1A. The proteins that are encoded by these two genes control insulin levels produced by the pancreas; when these genes are mutated, not enough insulin is produced. Without enough insulin to control blood sugar, levels rise, leading to the symptoms of diabetes. However, MODY can be managed by many of the same interventions as other types of diabetes, such as diet, exercise, drug treatments, and insulin injections.
Why Was This Study Done?
Although the evidence shows that individuals who carry mutations in HNF4A and HNF1A do not produce enough insulin and therefore have higher glucose levels in their blood, there were some tantalizing suggestions from mouse experiments that this might not be the whole story. Specifically, the researchers suspected that during embryonic development, mutations in HNF4A or HNF1A might actually cause higher insulin levels. Too much insulin during development of a fetus is known to cause it to gain weight, resulting in a baby that is larger than the average size for its age. Larger babies are risky for both the baby and the mother. The researchers doing this study wanted to understand more precisely what the links were between the forms of MODY caused by HNF4A and HNF1A mutations, and birth-weight and blood-sugar levels.
What Did the Researchers Do and Find?
In this study, the researchers examined 15 families in which some family members had MODY caused by a mutation in HNF4A. They compared the birthweight for family members carrying the mutation (54 people) against the birthweight for those who did not (54 people). A similar comparison was done for 38 families in which some members had a different form of MODY, this time caused by a mutation in HNF1A. The results showed that the birthweight of family members who carried a mutation in HNF4A was, on average, 790 g higher than the birthweight of family members who didn't carry the mutation. Low blood-sugar levels at birth were also more common in people carrying the HNF4A mutation as compared to people who did not. However, the HNF1A mutation did not seem to be associated with greater birthweight or low blood-sugar levels at birth. Finally, in order to understand these findings further, the researchers created embryonic mice carrying mutations in the mouse equivalent of HNF4A. These embryos produced more insulin than normal mouse embryos and, after birth, were more likely to have low blood-sugar levels.
What Do These Findings Mean?
These findings show that there is a link between mutations in HNF4A, but not in HNF1A, and increased birthweight. The increase found in this study is quite substantial (a median weight of 4,660 g in the affected babies; a birthweight of more than 4,000 g is generally considered large). The results suggest that in human embryos with a mutated form of HNF4A, too much insulin is produced during development, causing faster growth and a higher chance of the baby being born with low blood-sugar levels. This is an unexpected finding, because later in life the HNF4A mutation causes lower insulin levels. Therefore, the biochemical pathways causing this type of MODY seem to be quite complicated, and further research will need to be done to fully understand them. Crucially, the research also suggests that pregnant women carrying HNF4A mutations should be closely followed to check their baby's growth and minimize the chance of complications. Doctors and families should also consider doing a genetic test for HNF4A if a baby has low blood-sugar levels and if there is a family history of diabetes; this would increase the chance of diagnosing MODY early.
Additional Information.
Please access these Web sites via the online version of this summary at 0040118.
In a related Perspective in PLoS Medicine, Benjamin Glaser discusses causes of type 2 diabetes mellitus in the context of this study's findings
The US National Institute of Diabetes and Digestive and Kidney Diseases has pages of information on different types of diabetes
Wikipedia has an entry on Maturity Onset Diabetes of the Young (MODY) (note that Wikipedia is an internet encyclopedia that anyone can edit)
Diabetes Research Department, Peninsula Medical School, Exeter, UK provides information for patients and doctors on genetic types of diabetes; the website is maintained by the research group carrying out this study
Information from the Centers for Disease Control and Prevention on diabetes and pregnancy
PMCID: PMC1845156  PMID: 17407387
6.  Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile 
Diabetes  2013;62(4):1329-1337.
A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction.
PMCID: PMC3609552  PMID: 23274891
7.  Metabolic Profiling in Maturity-Onset Diabetes of the Young (MODY) and Young Onset Type 2 Diabetes Fails to Detect Robust Urinary Biomarkers 
PLoS ONE  2012;7(7):e40962.
It is important to identify patients with Maturity-onset diabetes of the young (MODY) as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK) or hepatocyte nuclear factor 1 alpha (HNF1A), type 2 diabetes (T2D) and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR) and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS) was performed in a Discovery set of subjects with HNF1A-MODY (n = 14), GCK-MODY (n = 17), T2D (n = 14) and normoglycaemic controls (n = 34). Data were used to build a valid partial least squares discriminate analysis (PLS-DA) model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic subtypes from T2D. Our results have implications for studies investigating metabolic profiles in complex traits including T2D.
PMCID: PMC3408469  PMID: 22859960
8.  Less but better: cardioprotective lipid profile of patients with GCK-MODY despite lower HDL cholesterol level 
Acta Diabetologica  2014;51(4):625-632.
Patients with diabetes caused by single-gene mutations generally exhibit an altered course of diabetes. Those with mutations of the glucokinase gene (GCK-MODY) show good metabolic control and low risk of cardiovascular complications despite paradoxically lowered high-density lipoprotein (HDL) cholesterol levels. In order to investigate the matter, we analyzed the composition of low-density lipoprotein (LDL) and HDL subpopulations in such individuals. The LipoPrint© system (Quantimetrix, USA) based on non-denaturing, linear polyacrylamide gel electrophoresis was used to separate and measure LDL and HDL subclasses in fresh-frozen serum samples from patients with mutations of glucokinase or HNF1A, type 1 diabetes (T1DM) and healthy controls. Fresh serum samples from a total of 37 monogenic diabetes patients (21 from GCK-MODY and 16 from HNF1A-MODY), 22 T1DM patients and 15 healthy individuals were measured in this study. Concentrations of the small, highly atherogenic LDL subpopulation were similar among the compared groups. Large HDL percentage was significantly higher in GCK-MODY than in control (p = 0.0003), T1DM (p = 0.0006) and HNF1A-MODY groups (p = 0.0246). Patients with GCK-MODY were characterized by significantly lower intermediate HDL levels than controls (p = 0.0003) and T1DM (p = 0.0005). Small, potentially atherogenic HDL content differed significantly with the GCK-MODY group showing concentrations of that subfraction from control (p = 0.0096), T1DM (p = 0.0193) and HNF1A-MODY (p = 0.0057) groups. Within-group heterogeneity suggested the existence of potential gene–gene or gene–environment interactions. GCK-MODY is characterized by a strongly protective profile of HDL cholesterol subpopulations. A degree of heterogeneity within the groups suggests the existence of interactions with other genetic or clinical factors.
PMCID: PMC4127439  PMID: 24549415
MODY; Monogenic diabetes; Lipid subpopulations
9.  Metabolite Profiling Reveals Normal Metabolic Control in Carriers of Mutations in the Glucokinase Gene (MODY2) 
Diabetes  2013;62(2):653-661.
Mutations in the gene encoding glucokinase (GCK) cause a mild hereditary form of diabetes termed maturity-onset diabetes of the young (MODY)2 or GCK-MODY. The disease does not progress over time, and diabetes complications rarely develop. It has therefore been suggested that GCK-MODY represents a metabolically compensated condition, but experimental support for this notion is lacking. Here, we profiled metabolites in serum from patients with MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), and type 2 diabetes and from healthy individuals to characterize metabolic perturbations caused by specific mutations. Analysis of four GCK-MODY patients revealed a metabolite pattern similar to that of healthy individuals, while other forms of diabetes differed markedly in their metabolite profiles. Furthermore, despite elevated glucose concentrations, carriers of GCK mutations showed lower levels of free fatty acids and triglycerides than healthy control subjects. The metabolite profiling was confirmed by enzymatic assays and replicated in a cohort of 11 GCK-MODY patients. Elevated levels of fatty acids are known to associate with β-cell dysfunction, insulin resistance, and increased incidence of late complications. Our results show that GCK-MODY represents a metabolically normal condition, which may contribute to the lack of late complications and the nonprogressive nature of the disease.
PMCID: PMC3554352  PMID: 23139355
10.  Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors 
Diabetologia  2016;59:1463-1473.
We aimed to identify microRNAs (miRNAs) under transcriptional control of the HNF1β transcription factor, and investigate whether its effect manifests in serum.
The Polish cohort (N = 60) consisted of 11 patients with HNF1B-MODY, 17 with HNF1A-MODY, 13 with GCK-MODY, an HbA1c-matched type 1 diabetic group (n = 9) and ten healthy controls. Replication was performed in 61 clinically-matched British patients mirroring the groups in the Polish cohort. The Polish cohort underwent miRNA serum level profiling with quantitative real-time PCR (qPCR) arrays to identify differentially expressed miRNAs. Validation was performed using qPCR. To determine whether serum content reflects alterations at a cellular level, we quantified miRNA levels in a human hepatocyte cell line (HepG2) with small interfering RNA knockdowns of HNF1α or HNF1β.
Significant differences (adjusted p < 0.05) were noted for 11 miRNAs. Five of them differed between HNF1A-MODY and HNF1B-MODY, and, amongst those, four (miR-24, miR-27b, miR-223 and miR-199a) showed HNF1B-MODY-specific expression levels in the replication group. In all four cases the miRNA expression level was lower in HNF1B-MODY than in all other tested groups. Areas under the receiver operating characteristic curves ranged from 0.79 to 0.86, with sensitivity and specificity reaching 91.7% (miR-24) and 82.1% (miR-199a), respectively. The cellular expression pattern of miRNA was consistent with serum levels, as all were significantly higher in HNF1α- than in HNF1β-deficient HepG2 cells.
We have shown that expression of specific miRNAs depends on HNF1β function. The impact of HNF1β deficiency was evidenced at serum level, making HNF1β-dependent miRNAs potentially applicable in the diagnosis of HNF1B-MODY.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-016-3945-0) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC4901123  PMID: 27059371
HNF; microRNA; MODY; Monogenic diabetes; Transcription factors
11.  Cost-Effectiveness of MODY Genetic Testing: Translating Genomic Advances Into Practical Health Applications 
Diabetes Care  2013;37(1):202-209.
To evaluate the cost-effectiveness of a genetic testing policy for HNF1A-, HNF4A-, and GCK-MODY in a hypothetical cohort of type 2 diabetic patients 25–40 years old with a MODY prevalence of 2%.
We used a simulation model of type 2 diabetes complications based on UK Prospective Diabetes Study data, modified to account for the natural history of disease by genetic subtype to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A-MODY and HNF4A-MODY was modeled to produce a glycosylated hemoglobin reduction of −1.5% compared with usual care. GCK-MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs) based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER) (USD/QALY).
The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of 205,000 USD. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ∼50,000 USD. If MODY prevalence was >30%, the testing policy was cost saving. Reducing genetic testing costs to 700 USD also resulted in an ICER of ∼50,000 USD.
Our simulated model suggests that a policy of testing for MODY in selected populations is cost-effective for the U.S. based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.
PMCID: PMC3867988  PMID: 24026547
12.  Urinary C-Peptide Creatinine Ratio Is a Practical Outpatient Tool for Identifying Hepatocyte Nuclear Factor 1-α/Hepatocyte Nuclear Factor 4-α Maturity-Onset Diabetes of the Young From Long-Duration Type 1 Diabetes 
Diabetes Care  2011;34(2):286-291.
Hepatocyte nuclear factor 1-α (HNF1A)/hepatocyte nuclear factor 4-α (HNF4A) maturity-onset diabetes of the young (MODY) is frequently misdiagnosed as type 1 diabetes, and patients are inappropriately treated with insulin. Blood C-peptide can aid in the diagnosis of MODY, but practical reasons limit its widespread use. Urinary C-peptide creatinine ratio (UCPCR), a stable measure of endogenous insulin secretion, is a noninvasive alternative. We aimed to compare stimulated UCPCR in adults with HNF1A/4A MODY, type 1 diabetes, and type 2 diabetes.
Adults with diabetes for ≥5years, without renal impairment, were studied (HNF1A MODY [n = 54], HNF4A MODY [n = 23], glucokinase MODY [n = 20], type 1 diabetes [n = 69], and type 2 diabetes [n = 54]). The UCPCR was collected in boric acid 120 min after the largest meal of the day and mailed for analysis. Receiver operating characteristic (ROC) curves were used to identify optimal UCPCR cutoffs to differentiate HNF1A/4A MODY from type 1 and type 2 diabetes.
UCPCR was lower in type 1 diabetes than HNF1A/4A MODY (median [interquartile range]) (<0.02 nmol/mmol [<0.02 to <0.02] vs. 1.72 nmol/mmol [0.98–2.90]; P < 0.0001). ROC curves showed excellent discrimination (area under curve [AUC] 0.98) and identified a cutoff UCPCR of ≥0.2 nmol/mmol for differentiating HNF1A/4A MODY from type 1 diabetes (97% sensitivity, 96% specificity). UCPCR was lower in HNF1A/4A MODY than in type 2 diabetes (1.72 nmol/mmol [0.98–2.90] vs. 2.47 nmol/mmol [1.4–4.13]); P = 0.007). ROC curves showed a weak distinction between HNF1A/4A MODY and type 2 diabetes (AUC 0.64).
UCPCR is a noninvasive outpatient tool that can be used to discriminate HNF1A and HNF4A MODY from long-duration type 1 diabetes. To differentiate MODY from type 1 diabetes of >5 years’ duration, UCPCR could be used to determine whether genetic testing is indicated.
PMCID: PMC3024335  PMID: 21270186
13.  Circulating ghrelin level is higher in HNF1A–MODY and GCK–MODY than in polygenic forms of diabetes mellitus 
Endocrine  2015;50(3):643-649.
Ghrelin is a hormone that regulates appetite. It is likely to be involved in the pathophysiology of varying forms of diabetes. In animal studies, the ghrelin expression was regulated by the hepatocyte nuclear factor 1 alpha (HNF1A). Mutations of the HNF1A gene cause maturity onset diabetes of the young (MODY). We aimed to assess the circulating ghrelin levels in HNF1A–MODY and in other types of diabetes and to evaluate its association with HNF1A mutation status. Our cohort included 46 diabetic HNF1A gene mutation carriers, 55 type 2 diabetes (T2DM) subjects, 42 type 1 diabetes (T1DM) patients, and 31 glucokinase (GCK) gene mutation carriers with diabetes as well as 51 healthy controls. Plasma ghrelin concentration was measured using the immunoenzymatic assay with polyclonal antibody against the C-terminal fragment of its acylated and desacylated forms. Ghrelin concentrations were 0.75 ± 0.32, 0.70 ± 0.21, 0.50 ± 0.20, and 0.40 ± 0.16 ng/ml in patients with HNF1A–MODY, GCK–MODY, T1DM, and T2DM, respectively. The ghrelin levels were higher in HNF1A–MODY and GCK–MODY than in T1DM and T2DM (p < 0.001 for all comparisons) but lower than in non-diabetic controls (1.02 ± 0.29 ng/ml, p < 0.001 for both comparisons). In the multivariate linear model, the differences between both MODY groups and common diabetes types remained significant. Analysis by a HNF1A mutation type indicated that ghrelin concentration is similar in patients with different types of sequence differences. Plasma ghrelin level is higher in HNF1A–MODY and GCK–MODY than in the common polygenic forms of diabetes.
PMCID: PMC4662709  PMID: 25987348
14.  Effects of hepatocyte nuclear factor-1A and -4A on pancreatic stone protein/regenerating protein and C-reactive protein gene expression: implications for maturity-onset diabetes of the young 
There is a significant clinical overlap between patients with hepatocyte nuclear factor (HNF)-1A and HNF4A maturity-onset diabetes of the young (MODY), two forms of monogenic diabetes. HNF1A and HNF4A are transcription factors that control common and partly overlapping sets of target genes. We have previously shown that elevated serum pancreatic stone protein / regenerating protein A (PSP/reg1A) levels can be detected in subjects with HNF1A-MODY. In this study, we investigated whether PSP/reg is differentially regulated by HNF1A and HNF4A.
Quantitative real-time PCR (qPCR) and Western blotting were used to validate gene and protein expression in cellular models of HNF1A- and HNF4A-MODY. Serum PSP/reg1A levels and high-sensitivity C-reactive protein (hsCRP) were measured by ELISA in 31 HNF1A- and 9 HNF4A-MODY subjects. The two groups were matched for age, body mass index, diabetes duration, blood pressure, lipid profile and aspirin and statin use.
Inducible repression of HNF1A and HNF4A function in INS-1 cells suggested that PSP/reg induction required HNF4A, but not HNF1A. In contrast, crp gene expression was significantly reduced by repression of HNF1A, but not HNF4A function. PSP/reg levels were significantly lower in HNF4A subjects when compared to HNF1A subjects [9.25 (7.85-12.85) ng/ml vs. 12.5 (10.61-17.87) ng/ml, U-test P = 0.025]. hsCRP levels were significantly lower in HNF1A-MODY [0.22 (0.17-0.35) mg/L] compared to HNF4A-MODY group [0.81 (0.38-1.41) mg/L, U-test P = 0.002], Parallel measurements of serum PSP/reg1A and hsCRP levels were able to discriminate HNF1A- and HNF4A-MODY subjects.
Our study demonstrates that two distinct target genes, PSP/reg and crp, are differentially regulated by HNF1A and HNF4A, and provides clinical proof-of-concept that serum PSP/reg1A and hsCRP levels may distinguish HNF1A-MODY from HNF4A-MODY subjects.
PMCID: PMC3707779  PMID: 23803251
HNF1A; HNF4A; MODY; PSP/reg; HsCRP; Gene regulation
15.  Cystatin C is not a good candidate biomarker for HNF1A-MODY 
Acta Diabetologica  2012;50(5):815-820.
Cystatin C is a marker of glomerular filtration rate (GFR). Its level is influenced, among the others, by CRP whose concentration is decreased in HNF1A-MODY. We hypothesized that cystatin C level might be altered in HNF1A-MODY. We aimed to evaluate cystatin C in HNF1A-MODY both as a diagnostic marker and as a method of assessing GFR. We initially examined 51 HNF1A-MODY patients, 56 subjects with type 1 diabetes (T1DM), 39 with type 2 diabetes (T2DM) and 43 non-diabetic individuals (ND) from Poland. Subjects from two UK centres were used as replication panels: including 215 HNF1A-MODY, 203 T2DM, 39 HNF4A-MODY, 170 GCK-MODY, 17 HNF1B-MODY and 58 T1DM patients. The data were analysed with additive models, adjusting for gender, age, BMI and estimated GFR (creatinine). In the Polish subjects, adjusted cystatin C level in HNF1A-MODY was lower compared with T1DM, T2DM and ND (p < 0.05). Additionally, cystatin C-based GFR was higher than that calculated from creatinine level (p < 0.0001) in HNF1A-MODY, while the two GFR estimates were similar or cystatin C-based lower in the other groups. In the UK subjects, there were no differences in cystatin C between HNF1A-MODY and the other diabetic subgroups, except HNF1B-MODY. In UK HNF1A-MODY, cystatin C-based GFR estimate was higher than the creatinine-based one (p < 0.0001). Concluding, we could not confirm our hypothesis (supported by the Polish results) that cystatin C level is altered by HNF1A mutations; thus, it cannot be used as a biomarker for HNF1A-MODY. In HNF1A-MODY, the cystatin C-based GFR estimate is higher than the creatinine-based one.
PMCID: PMC3898131  PMID: 22350134
Monogenic diabetes; MODY; Cystatin C; HNF1A
16.  Systematic Assessment of Etiology in Adults With a Clinical Diagnosis of Young-Onset Type 2 Diabetes Is a Successful Strategy for Identifying Maturity-Onset Diabetes of the Young 
Diabetes Care  2012;35(6):1206-1212.
Misdiagnosis of maturity-onset diabetes of the young (MODY) remains widespread, despite the benefits of optimized management. This cross-sectional study examined diagnostic misclassification of MODY in subjects with clinically labeled young adult-onset type 1 and type 2 diabetes by extending genetic testing beyond current guidelines.
Individuals were selected for diagnostic sequencing if they displayed features atypical for their diagnostic label. From 247 case subjects with clinically labeled type 1 diabetes, we sequenced hepatocyte nuclear factor 1 α (HNF1A) and hepatocyte nuclear factor 4 α (HNF4A) in 20 with residual β-cell function ≥3 years from diagnosis (random or glucagon-stimulated C-peptide ≥0.2 nmol/L). From 322 with clinically labeled type 2 diabetes, we sequenced HNF1A and HNF4A in 80 with diabetes diagnosed ≤30 years and/or diabetes diagnosed ≤45 years without metabolic syndrome. We also sequenced the glucokinase (GCK) in 40 subjects with mild fasting hyperglycemia.
In the type 1 diabetic group, two HNF1A mutations were found (0.8% prevalence). In type 2 diabetic subjects, 10 HNF1A, two HNF4A, and one GCK mutation were identified (4.0%). Only 47% of MODY case subjects identified met current guidelines for diagnostic sequencing. Follow-up revealed a further 12 mutation carriers among relatives. Twenty-seven percent of newly identified MODY subjects changed treatment, all with improved glycemic control (HbA1c 8.8 vs. 7.3% at 3 months; P = 0.02).
The systematic use of widened diagnostic testing criteria doubled the numbers of MODY case subjects identified compared with current clinical practice. The yield was greatest in young adult-onset type 2 diabetes. We recommend that all patients diagnosed before age 30 and with presence of C-peptide at 3 years' duration are considered for molecular diagnostic analysis.
PMCID: PMC3357216  PMID: 22432108
17.  Comparison of Glomerular Filtration Rate Estimation from Serum Creatinine and Cystatin C in HNF1A-MODY and Other Types of Diabetes 
Journal of Diabetes Research  2015;2015:183094.
Introduction. We previously showed that in HNF1A-MODY the cystatin C-based glomerular filtration rate (GFR) estimate is higher than the creatinine-based estimate. Currently, we aimed to replicate this finding and verify its clinical significance. Methods. The study included 72 patients with HNF1A-MODY, 72 with GCK-MODY, 53 with type 1 diabetes (T1DM), 70 with type 2 diabetes (T2DM), and 65 controls. Serum creatinine and cystatin C levels were measured. GFR was calculated from creatinine and cystatin C using the CKD-EPI creatinine equation (eGRF-cr) and CKD-EPI cystatin C equation (eGFR-cys), respectively. Results. Cystatin C levels were lower (p < 0.001) in the control (0.70 ± 0.13 mg/L), HNF1A (0.75 ± 0.21), and GCK (0.72 ± 0.16 mg/L) groups in comparison to those with either T1DM (0.87 ± 0.15 mg/L) or T2DM (0.9 ± 0.23 mg/L). Moreover, eGFR-cys was higher than eGRF-cr in HNF1A-MODY, GCK-MODY, and the controls (p = 0.004; p = 0.003; p < 0.0001). This corresponded to 8.9 mL/min/1.73 m2, 9.7 mL/min/1.73 m2, and 16.9 mL/min/1.73 m2 of difference. Additionally, T1DM patients had higher eGFR-cr than eGFR-cys (11.6 mL/min/1.73 m2; p = 0.0004); no difference occurred in T2DM (p = 0.91). Conclusions. We confirmed that eGFR-cys values in HNF1A-MODY patients are higher compared to eGFR-cr. Some other differences were also described in diabetic groups. However, none of them appears to be clinically relevant.
PMCID: PMC4546972  PMID: 26347889
18.  The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults 
eLife  null;5:e11183.
Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal.
eLife digest
Diabetes is a complex disease that is caused by a combination of factors, including the person’s habits and environment, as well as their genetic make-up. However, there are some rare forms of diabetes that are caused simply by mutations in single genes and are directly inherited. For example, it has been known for twenty years that a type of diabetes called “Maturity Onset Diabetes of the Young type 1” (or MODY1 for short) occurs when a gene called HNF4 is mutated or deleted. The symptoms of MODY1 usually appear during early adulthood and include abnormally high levels of sugar in the blood, as well as the pancreas not being able to release the hormone insulin properly in response to these sugars.
Previous studies in mice have tried to understand how losing the HNF4 gene leads to MODY1. However, these mouse models did not fully recreate the symptoms of this disorder and the precise role of HNF4 in preventing diabetes remains unclear. Barry and Thummel have now used the fruit fly, because it is a model organism with simple genetics, to help shed light on this question. Furthermore, flies and mammals use many of the same pathways to control metabolism, making the fly a good model for the disease in humans.
Barry and Thummel deleted the HNF4 gene in fruit flies and observed that the flies had all the symptoms that are typical in people with MODY1. These symptoms included high sugar levels and decreased production of insulin-like hormones. The experiments also showed that HNF4 normally supports the proper expression of another gene called Hex-C; this gene encodes a protein that senses how much sugar is available and helps to keep the amount of sugar circulating the body within normal levels. Barry and Thummel went on to discover that the HNF4 gene is required for the expression of some genes in structures called mitochondria, which provide most of the energy used by animal cells. Lastly, the HNF4 gene became more active as the flies matured, and appeared to help the metabolism of a developing fruit fly transition towards that of an adult.
Together these findings show that HNF4 protects against MODY1 by influencing several components of sugar metabolism in fruit flies. In the future, more studies are needed to understand how exactly HNF4 acts in mitochondria and to explore if similar results are seen in mammals.
PMCID: PMC4869932  PMID: 27185732
metabolism; insulin secretion; mitochondria; transcription; nuclear receptors; gene regulation; D. melanogaster
19.  Reclassification of diabetes etiology in a family with multiple diabetes phenotypes 
Maturity-onset diabetes of the young (MODY) is uncommon, however accurate diagnosis facilitates personalized management and informs prognosis in probands and relatives.
To highlight that the appropriate use of genetic and non-genetic investigations leads to correct classification of diabetes etiology.
Case Discussion
A 30 year-old European female was diagnosed with insulin-treated gestational diabetes. She discontinued insulin post-delivery, however fasting hyperglycemia persisted. β-cell antibodies were negative and C-peptide was 0.79 nmol/l. Glucokinase-MODY (GCK-MODY) was suspected and confirmed by the identification of a GCK mutation (p.T206M).
Systematic clinical and biochemical characterization and GCK mutational analysis were implemented to determine diabetes etiology in 5 relatives. Functional characterization of GCK mutations was performed.
Identification of the p.T206M mutation in the proband’s sister confirmed a diagnosis of GCK-MODY. Her daughter was diagnosed at 16 weeks with permanent neonatal diabetes (PNDM). Mutation analysis identified two GCK mutations which were inherited in trans p.([R43P];[T206M]) confirming a diagnosis of GCK-PNDM. Both mutations were shown to be kinetically inactivating. The proband’s mother, other sister and daughter all had a clinical diagnosis of Type 1 Diabetes (T1D), confirmed by undetectable C-peptide levels and β-cell antibody positivity. GCK mutations were not detected.
Two previously misclassified family members were shown to have GCK-MODY whilst another was shown to have GCK-PNDM. A diagnosis of T1D was confirmed in three relatives. This family exemplifies the importance of careful phenotyping and systematic evaluation of relatives after discovering monogenic diabetes in an individual.
PMCID: PMC4186945  PMID: 24606082
20.  Clinically-Defined Maturity Onset Diabetes of the Young in Omanis 
We are seeing a progressive increase in the number of young patients with clinically defined maturity onset diabetes of the young (MODY) having a family history suggestive of a monogenic cause of their disease and no evidence of autoimmune type 1 diabetes mellitus (T1DM). The aim of this study was to determine whether or not mutations in the 3 commonest forms of MODY, hepatic nuclear factor 4α (HNF4α), HNF1α and glucokinase (GK), are a cause of diabetes in young Omanis.
The study was performed at Sultan Qaboos University Hospital (SQUH), Oman. Twenty young diabetics with a family history suggestive of monogenic inheritance were identified in less than 18 months; the median age of onset of diabetes was 25 years and the median body mass index (BMI) 29 at presentation. Screening for the presence of autoimmune antibodies against pancreatic beta cells islet cell antibody (ICA) and glutamic acid decarboxylase (GAD) was negative. Fourteen of them consented to genetic screening and their blood was sent to Prof. A. Hattersley’s Unit at the Peninsular Medical School, Exeter, UK. There, their DNA was screened for known mutations by sequencing exon 1–10 of the GCK and exon 2–10 of the HNF1α and HNF4α genes, the three commonest forms of MODY in Europe.
Surprisingly, none of the patients had any of the tested MODY mutations.
In this small sample of patients with clinically defined MODY, mutations of the three most commonly affected genes occurring in Caucasians were not observed. Either these patients have novel MODY mutations or have inherited a high proportion of the type 2 diabetes mellitus (T2DM) susceptibility genes compounded by excessive insulin resistance due to obesity.
PMCID: PMC3074660  PMID: 21509085
Diabetes Mellitus; Type II; Diabetes mellitus; maturity onset; MODY; mutations; Diabetes; familial; Young adults; Oman
21.  Mild fasting hyperglycemia in children: high rate of glucokinase mutations and some risk of developing type 1 diabetes mellitus 
Pediatric diabetes  2009;10(6):382-388.
Incidental hyperglycemia in children generates concern about the presence of preclinical type 1 diabetes mellitus (T1DM).
To genetically evaluate two common forms of maturity-onset diabetes of youth (MODY), the short-term prognosis in children with mild hyperglycemia, and a positive family history of diabetes mellitus.
Asymptomatic children and adolescents (n = 14), younger than 15 yr, with fasting hyperglycemia, a positive family history of mild non-progressive hyperglycemia, and negative pancreatic autoantibodies were studied.
Patients and methods
Glucokinase gene (GCK) and hepatocyte nuclear factor 1 alpha gene (HNF1A) causing two common forms of MODY were sequenced. The clinical outcome was evaluated after a follow-up period of 2.8 ± 1.3 yr.
GCK mutations were present in seven children. The confirmation of this diagnosis allowed discontinuation of insulin in two families and oral medications in three families. Mutations of HNF1A were not detected in any of the families. During the follow-up period, all the GCK mutation carrier children remained asymptomatic without medication and the last hemoglobin A1c levels were 6.4 ± 0.7%. In the GCK-negative children (n = 7), one developed T1DM, corresponding to 7.2% of the total group. Mild fasting hyperglycemia persisted during follow-up in four GCK-negative children and normalized in the remaining two.
The presence of mild persistent hyperglycemia in any patient without autoantibodies should lead to genetic analysis of GCK, particularly if there is a positive family history. Furthermore, those without GCK mutations should be followed with repeat autoantibody testing, and other genetic types of diabetes should be considered if hyperglycemia worsens.
PMCID: PMC2864306  PMID: 19309449
DM; genetics; glucokinase; hyperglycemia; incidental hyperglycemia; MODY; prognosis
22.  Reclassification of Diabetes Etiology in a Family With Multiple Diabetes Phenotypes 
Maturity-onset diabetes of the young (MODY) is uncommon; however, accurate diagnosis facilitates personalized management and informs prognosis in probands and relatives.
The objective of the study was to highlight that the appropriate use of genetic and nongenetic investigations leads to the correct classification of diabetes etiology.
Case Discussion:
A 30-year-old European female was diagnosed with insulin-treated gestational diabetes. She discontinued insulin after delivery; however, her fasting hyperglycemia persisted. β-Cell antibodies were negative and C-peptide was 0.79 nmol/L. Glucokinase (GCK)-MODY was suspected and confirmed by the identification of a GCK mutation (p.T206M).
Systematic clinical and biochemical characterization and GCK mutational analysis were implemented to determine the diabetes etiology in five relatives. Functional characterization of GCK mutations was performed.
Identification of the p.T206M mutation in the proband's sister confirmed a diagnosis of GCK-MODY. Her daughter was diagnosed at 16 weeks with permanent neonatal diabetes (PNDM). Mutation analysis identified two GCK mutations that were inherited in trans-p. [(R43P);(T206M)], confirming a diagnosis of GCK-PNDM. Both mutations were shown to be kinetically inactivating. The proband's mother, other sister, and daughter all had a clinical diagnosis of type 1 diabetes, confirmed by undetectable C-peptide levels and β-cell antibody positivity. GCK mutations were not detected.
Two previously misclassified family members were shown to have GCK-MODY, whereas another was shown to have GCK-PNDM. A diagnosis of type 1 diabetes was confirmed in three relatives. This family exemplifies the importance of careful phenotyping and systematic evaluation of relatives after discovering monogenic diabetes in an individual.
PMCID: PMC4186945  PMID: 24606082
23.  A decade of molecular genetic testing for MODY: a retrospective study of utilization in The Netherlands 
Genetic testing for maturity-onset diabetes of the young (MODY) may be relevant for treatment and prognosis in patients with usually early-onset, non-ketotic, insulin-sensitive diabetes and for monitoring strategies in non-diabetic mutation carriers. This study describes the first 10 years of genetic testing for MODY in The Netherlands in terms of volume and test positive rate, medical setting, purpose of the test and age of patients tested. Some analyses focus on the most prevalent subtype, HNF1A MODY. Data were retrospectively extracted from a laboratory database. In total, 502 individuals were identified with a pathogenic mutation in HNF4A, GCK or HNF1A between 2001 and 2010. Although mutation scanning for MODY was used at an increasing rate, cascade testing was only used for one relative, on average, per positive index patient. Testing for HNF1A MODY was mostly requested by internists and paediatricians, often from regional hospitals. Primary care physicians and clinical geneticists rarely requested genetic testing for HNF1A MODY. Clinical geneticists requested cascade testing relatively more often than other health professionals. A substantial proportion (currently 29%) of HNF1A MODY probands was at least 40 years old at the time of testing. In conclusion, the number of individuals genetically tested for MODY so far in The Netherlands is low compared with previously predicted numbers of patients. Doctors' valuation of the test and patients' and family members' response to (an offer of) genetic testing on the other hand need to be investigated. Efforts may be needed to develop and implement translational guidelines.
PMCID: PMC4266743  PMID: 24736738
24.  Circulating CD36 Is Reduced in HNF1A-MODY Carriers 
PLoS ONE  2013;8(9):e74577.
Premature atherosclerosis is a significant cause of morbidity and mortality in type 2 diabetes mellitus. Maturity onset diabetes of the young (MODY) accounts for approximately 2% of all diabetes, with mutations in the transcription factor; hepatocyte nuclear factor 1 alpha (HNF1A) accounting for the majority of MODY cases. There is somewhat limited data available on the prevalence of macrovascular disease in HNF1A-MODY carriers with diabetes. Marked insulin resistance and the associated dyslipidaemia are not clinical features of HNF1A-MODY carriers. The scavenger protein CD36 has been shown to play a substantial role in the pathogenesis of atherosclerosis, largely through its interaction with oxidised LDL. Higher levels of monocyte CD36 and plasma CD36(sCD36) are seen to cluster with insulin resistance and diabetes. The aim of this study was to determine levels of sCD36 in participants with HNF1A-MODY diabetes and to compare them with unaffected normoglycaemic family members and participants with type 2 diabetes mellitus.
We recruited 37 participants with HNF1A-MODY diabetes and compared levels of sCD36 with BMI-matched participants with type 2 diabetes mellitus and normoglycaemic HNF1A-MODY negative family controls. Levels of sCD36 were correlated with phenotypic and biochemical parameters.
HNF1A-MODY participants were lean, normotensive, with higher HDL and lower triglyceride levels when compared to controls and participants with type 2 diabetes mellitus. sCD36 was also significantly lower in HNF1A-MODY participants when compared to both the normoglycaemic family controls and to lean participants with type 2 diabetes mellitus.
In conclusion, sCD36 is significantly lower in lean participants with HNF1A-MODY diabetes when compared to weight-matched normoglycaemic familial HNF1A-MODY negative controls and to lean participants with type 2 diabetes mellitus. Lower levels of this pro-atherogenic marker may result from the higher HDL component in the lipid profile of HNF1A-MODY participants.
PMCID: PMC3771933  PMID: 24069322
25.  Clinical Application of 1,5-Anhydroglucitol Measurements in Patients with Hepatocyte Nuclear Factor-1α Maturity-Onset Diabetes of the Young  
Diabetes Care  2008;31(8):1496-1501.
OBJECTIVE—1,5-anhydroglucitol (1,5-AG) is a short-term marker of metabolic control in diabetes. Its renal loss is stimulated in hyperglycemic conditions by glycosuria, which results in a lowered plasma concentration. As a low renal threshold for glucose has been described in hepatocyte nuclear factor-1α (HNF-1α) maturity-onset diabetes of the young (MODY), the 1,5-AG level may be altered in these patients. The purpose of this study was to assess the 1,5-AG levels in patients with HNF-1α MODY and in type 2 diabetic subjects with a similar degree of metabolic control. In addition, we aimed to evaluate this particle as a biomarker for HNF-1α MODY.
RESEARCH DESIGN AND METHODS—We included 33 diabetic patients from the Polish Nationwide Registry of MODY. In addition, we examined 43 type 2 diabetic patients and 47 nondiabetic control subjects. The 1,5-AG concentration was measured with an enzymatic assay (GlycoMark). Receiver operating characteristic (ROC) curve analysis was used to evaluate 1,5-AG as a screening marker for HNF-1α MODY.
RESULTS—The mean 1,5-AG plasma concentration in diabetic HNF-1α mutation carriers was 5.9 μg/ml, and it was lower than that in type 2 diabetic patients (11.0 μg/ml, P = 0.003) and in nondiabetic control subjects (23.9 μg/ml, P < 0.00005). The ROC curve analysis revealed 85.7% sensitivity and 80.0% specificity of 1,5-AG in screening for HNF-1α MODY at the criterion of <6.5 μg/ml in patients with an A1C level between 6.5 and 9.0%.
CONCLUSIONS—1,5-AG may be a useful biomarker for differential diagnosis of patients with HNF-1α MODY with a specific range of A1C, although this requires further investigation. However, the clinical use of this particle in diabetic HNF-1α mutation carriers for metabolic control has substantial limitations.
PMCID: PMC2494661  PMID: 18492944

Results 1-25 (1266672)