PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1463433)

Clipboard (0)
None

Related Articles

1.  Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of smoking cessation interventions in the management of chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Tobacco smoking is the main risk factor for COPD. It is estimated that 50% of older smokers develop COPD and more than 80% of COPD-associated morbidity is attributed to tobacco smoking. According to the Canadian Community Health Survey, 38.5% of Ontarians who smoke have COPD. In patients with a significant history of smoking, COPD is usually present with symptoms of progressive dyspnea (shortness of breath), cough, and sputum production. Patients with COPD who smoke have a particularly high level of nicotine dependence, and about 30.4% to 43% of patients with moderate to severe COPD continue to smoke. Despite the severe symptoms that COPD patients suffer, the majority of patients with COPD are unable to quit smoking on their own; each year only about 1% of smokers succeed in quitting on their own initiative.
Technology
Smoking cessation is the process of discontinuing the practice of inhaling a smoked substance. Smoking cessation can help to slow or halt the progression of COPD. Smoking cessation programs mainly target tobacco smoking, but may also encompass other substances that can be difficult to stop smoking due to the development of strong physical addictions or psychological dependencies resulting from their habitual use.
Smoking cessation strategies include both pharmacological and nonpharmacological (behavioural or psychosocial) approaches. The basic components of smoking cessation interventions include simple advice, written self-help materials, individual and group behavioural support, telephone quit lines, nicotine replacement therapy (NRT), and antidepressants. As nicotine addiction is a chronic, relapsing condition that usually requires several attempts to overcome, cessation support is often tailored to individual needs, while recognizing that in general, the more intensive the support, the greater the chance of success. Success at quitting smoking decreases in relation to:
a lack of motivation to quit,
a history of smoking more than a pack of cigarettes a day for more than 10 years,
a lack of social support, such as from family and friends, and
the presence of mental health disorders (such as depression).
Research Question
What are the effectiveness and cost-effectiveness of smoking cessation interventions compared with usual care for patients with COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on June 24, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations (1950 to June Week 3 2010), EMBASE (1980 to 2010 Week 24), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, and the Centre for Reviews and Dissemination for studies published between 1950 and June 2010. A single reviewer reviewed the abstracts and obtained full-text articles for those studies meeting the eligibility criteria. Reference lists were also examined for any additional relevant studies not identified through the search. Data were extracted using a standardized data abstraction form.
Inclusion Criteria
English-language, full reports from 1950 to week 3 of June, 2010;
either randomized controlled trials (RCTs), systematic reviews and meta-analyses, or non-RCTs with controls;
a proven diagnosis of COPD;
adult patients (≥ 18 years);
a smoking cessation intervention that comprised at least one of the treatment arms;
≥ 6 months’ abstinence as an outcome; and
patients followed for ≥ 6 months.
Exclusion Criteria
case reports
case series
Outcomes of Interest
≥ 6 months’ abstinence
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Nine RCTs were identified from the literature search. The sample sizes ranged from 74 to 5,887 participants. A total of 8,291 participants were included in the nine studies. The mean age of the patients in the studies ranged from 54 to 64 years. The majority of studies used the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD staging criteria to stage the disease in study subjects. Studies included patients with mild COPD (2 studies), mild-moderate COPD (3 studies), moderate–severe COPD (1 study) and severe–very severe COPD (1 study). One study included persons at risk of COPD in addition to those with mild, moderate, or severe COPD, and 1 study did not define the stages of COPD. The individual quality of the studies was high. Smoking cessation interventions varied across studies and included counselling or pharmacotherapy or a combination of both. Two studies were delivered in a hospital setting, whereas the remaining 7 studies were delivered in an outpatient setting. All studies reported a usual care group or a placebo-controlled group (for the drug-only trials). The follow-up periods ranged from 6 months to 5 years. Due to excessive clinical heterogeneity in the interventions, studies were first grouped into categories of similar interventions; statistical pooling was subsequently performed, where appropriate. When possible, pooled estimates using relative risks for abstinence rates with 95% confidence intervals were calculated. The remaining studies were reported separately.
Abstinence Rates
Table ES1 provides a summary of the pooled estimates for abstinence, at longest follow-up, from the trials included in this review. It also shows the respective GRADE qualities of evidence.
Summary of Results*
Abbreviations: CI, confidence interval; NRT, nicotine replacement therapy.
Statistically significant (P < 0.05).
One trial used in this comparison had 2 treatment arms each examining a different antidepressant.
Conclusions
Based on a moderate quality of evidence, compared with usual care, abstinence rates are significantly higher in COPD patients receiving intensive counselling or a combination of intensive counselling and NRT.
Based on limited and moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving NRT compared with placebo.
Based on a moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving the antidepressant bupropion compared to placebo.
PMCID: PMC3384371  PMID: 23074432
2.  Experiences of Living and Dying With COPD 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective of Analysis
The objective of this analysis was to review empirical qualitative research on the experiences of patients with chronic obstructive pulmonary disease (COPD), informal caregivers (“carers”), and health care providers—from the point of diagnosis, through daily living and exacerbation episodes, to the end of life.
Clinical Need and Target Population
Qualitative empirical studies (from social sciences, clinical, and related fields) can offer important information about how patients experience their condition. This exploration of the qualitative literature offers insights into patients’ perspectives on COPD, their needs, and how interventions might affect their experiences. The experiences of caregivers are also explored.
Research Question
What do patients with COPD, their informal caregivers (“carers”), and health care providers experience over the course of COPD?
Research Methods
Literature Search
Search Strategy
Literature searches for studies published from January 1, 2000, to November 2010 were performed on November 29, 2010, using OVID MEDLINE; on November 26, 2010, using ISI Web of Science; and on November 28, 2010, using EBSCO Cumulative Index to Nursing and Allied Health Literature (CINAHL). Titles and abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. One additional report, highly relevant to the synthesis, appeared in early 2011 during the drafting of this analysis and was included post hoc.
Inclusion Criteria
English-language full reports
studies published between January 1, 2000, and November 2010
primary qualitative empirical research (using any descriptive or interpretive qualitative methodology, including the qualitative component of mixed-methods studies) and secondary syntheses of primary qualitative empirical research
studies addressing any aspect of the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers; studies addressing multiple conditions were included if COPD was addressed explicitly
Exclusion Criteria
studies addressing topics other than the experiences of living or dying with COPD from the perspective of persons at risk, patients, health care providers, or informal carers
studies labelled “qualitative” but not using a qualitative descriptive or interpretive methodology (e.g., case studies, experiments, or observational analysis using qualitative categorical variables)
quantitative research (i.e., using statistical hypothesis testing, using primarily quantitative data or analyses, or expressing results in quantitative or statistical terms)
studies that did not pose an empirical research objective or question, or involve the primary or secondary analysis of empirical data
Outcomes of Interest
qualitative descriptions and interpretations (narrative or theoretical) of personal and social experiences of COPD
Summary of Findings
Experiences at Diagnosis
Patients typically seek initial treatment for an acute episode rather than for chronic early symptoms of COPD.
Many patients initially misunderstand terms such as COPD, chronic obstructive pulmonary disease, or exacerbation.
Patients may not realize that COPD is incurable and fatal; some physicians themselves do not consider early COPD to be a fatal disease.
Smokers may not readily understand or agree with the idea that smoking caused or worsens their COPD. Those who believe there is a causal link may feel regret or shame.
Experiences of Living Day to Day
COPD patients experience alternating good days and bad days. A roller-coaster pattern of ups and downs becomes apparent, and COPD becomes a way of life.
Patients use many means (social, psychological, medical, organizational) to control what they can, and to cope with what they cannot. Economic hardship, comorbidities, language barriers, and low health literacy can make coping more difficult.
Increasing vulnerability and unpredictable setbacks make patients dependent on others for practical assistance, but functional limitations, institutional living or self-consciousness can isolate patients from the people they need.
For smokers, medical advice to quit can conflict with increased desire to smoke as a coping strategy.
Many of the factors that isolate COPD patients from social contact also isolate them from health care.
Experiences of Exacerbations
Patients may not always attribute repeated exacerbations to advancing disease, instead seeing them as temporary setbacks caused by activities, environmental factors, faltering self-management, or infection.
Lack of confidence in community-based services leads some patients to seek hospital admission, but patients also feel vulnerable when hospitalized. They may feel dependent on others for care or traumatized by hospital care routines.
Upon hospital discharge following an exacerbation, patients may face new levels of uncertainty about their illness, prognosis, care providers, and supports.
Experiences of the End of Life
Patients tend to be poorly informed about the long-term prognosis of COPD and what to expect toward the end of life; this lack of understanding impairs quality of life as the disease progresses.
As the end of life approaches, COPD patients face the usual challenges of daily living, but in a context of increasing exacerbations and deepening dependency. Activities and mobility decrease, and life may become confined.
Some clinicians have difficulty identifying the beginning of “the end of life,” given the unpredictable course of COPD. Long-term physician-patient relationships, familiarity and understanding, trust, good communication skills, sensitivity, and secure discussion settings can help facilitate end-of-life discussions.
Divergent meanings and goals of palliative care in COPD lead to confusion about whether such services are the responsibility of home care, primary care, specialty care, or even critical care. Palliative end-of-life care may not be anticipated prior to referral for such care. A palliative care referral can convey the demoralizing message that providers have “given up.”
Experiences of Carers
Carers’ challenges often echo patients’ challenges, and include anxiety, uncertainty about the future, helplessness, powerlessness, depression, difficulties maintaining employment, loss of mobility and freedoms, strained relationships, and growing social isolation.
Carers feel pressured by their many roles, struggling to maintain patience when they feel overwhelmed, and often feeling guilty about not doing enough.
Carers often face their own health problems and may have difficulty sustaining employment.
Synthesis: A Disease Trajectory Reflecting Patient Experiences
The flux of needs in COPD calls for service continuity and flexibility to allow both health care providers and patients to respond to the unpredictable yet increasing demands of the disease over time.
PMCID: PMC3384365  PMID: 23074423
3.  Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients with Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to compare hospital-at-home care with inpatient hospital care for patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) who present to the emergency department (ED).
Clinical Need: Condition and Target Population
Acute Exacerbations of Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease is a disease state characterized by airflow limitation that is not fully reversible. This airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The natural history of COPD involves periods of acute-onset worsening of symptoms, particularly increased breathlessness, cough, and/or sputum, that go beyond normal day-to-day variations; these are known as acute exacerbations.
Two-thirds of COPD exacerbations are caused by an infection of the tracheobronchial tree or by air pollution; the cause in the remaining cases is unknown. On average, patients with moderate to severe COPD experience 2 or 3 exacerbations each year.
Exacerbations have an important impact on patients and on the health care system. For the patient, exacerbations result in decreased quality of life, potentially permanent losses of lung function, and an increased risk of mortality. For the health care system, exacerbations of COPD are a leading cause of ED visits and hospitalizations, particularly in winter.
Technology
Hospital-at-home programs offer an alternative for patients who present to the ED with an exacerbation of COPD and require hospital admission for their treatment. Hospital-at-home programs provide patients with visits in their home by medical professionals (typically specialist nurses) who monitor the patients, alter patients’ treatment plans if needed, and in some programs, provide additional care such as pulmonary rehabilitation, patient and caregiver education, and smoking cessation counselling.
There are 2 types of hospital-at-home programs: admission avoidance and early discharge hospital-at-home. In the former, admission avoidance hospital-at-home, after patients are assessed in the ED, they are prescribed the necessary medications and additional care needed (e.g., oxygen therapy) and then sent home where they receive regular visits from a medical professional. In early discharge hospital-at-home, after being assessed in the ED, patients are admitted to the hospital where they receive the initial phase of their treatment. These patients are discharged into a hospital-at-home program before the exacerbation has resolved. In both cases, once the exacerbation has resolved, the patient is discharged from the hospital-at-home program and no longer receives visits in his/her home.
In the models that exist to date, hospital-at-home programs differ from other home care programs because they deal with higher acuity patients who require higher acuity care, and because hospitals retain the medical and legal responsibility for patients. Furthermore, patients requiring home care services may require such services for long periods of time or indefinitely, whereas patients in hospital-at-home programs require and receive the services for a short period of time only.
Hospital-at-home care is not appropriate for all patients with acute exacerbations of COPD. Ineligible patients include: those with mild exacerbations that can be managed without admission to hospital; those who require admission to hospital; and those who cannot be safely treated in a hospital-at-home program either for medical reasons and/or because of a lack of, or poor, social support at home.
The proposed possible benefits of hospital-at-home for treatment of exacerbations of COPD include: decreased utilization of health care resources by avoiding hospital admission and/or reducing length of stay in hospital; decreased costs; increased health-related quality of life for patients and caregivers when treated at home; and reduced risk of hospital-acquired infections in this susceptible patient population.
Ontario Context
No hospital-at-home programs for the treatment of acute exacerbations of COPD were identified in Ontario. Patients requiring acute care for their exacerbations are treated in hospitals.
Research Question
What is the effectiveness, cost-effectiveness, and safety of hospital-at-home care compared with inpatient hospital care of acute exacerbations of COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on August 5, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 1990, to August 5, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
English language full-text reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies including patients with COPD as well as patients with other conditions, if results are reported for COPD patients separately;
studies performed in patients with acute exacerbations of COPD who present to the ED;
studies published between January 1, 1990, and August 5, 2010;
studies comparing hospital-at-home and inpatient hospital care for patients with acute exacerbations of COPD;
studies that include at least 1 of the outcomes of interest (listed below).
Cochrane Collaboration reviews have defined hospital-at-home programs as those that provide patients with active treatment for their acute exacerbation in their home by medical professionals for a limited period of time (in this case, until the resolution of the exacerbation). If a hospital-at-home program had not been available, these patients would have been admitted to hospital for their treatment.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
Outcomes of Interest
Patient/clinical outcomes
mortality
lung function (forced expiratory volume in 1 second)
health-related quality of life
patient or caregiver preference
patient or caregiver satisfaction with care
complications
Health system outcomes
hospital readmissions
length of stay in hospital and hospital-at-home
ED visits
transfer to long-term care
days to readmission
eligibility for hospital-at-home
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1; otherwise, results were summarized descriptively. Data from RCTs were analyzed using intention-to-treat protocols. In addition, a sensitivity analysis was done assigning all missing data/withdrawals to the event. P values less than 0.05 were considered significant. A priori subgroup analyses were planned for the acuity of hospital-at-home program, type of hospital-at-home program (early discharge or admission avoidance), and severity of the patients’ COPD. Additional subgroup analyses were conducted as needed based on the identified literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Fourteen studies met the inclusion criteria and were included in this review: 1 health technology assessment, 5 systematic reviews, and 7 RCTs.
The following conclusions are based on low to very low quality of evidence. The reviewed evidence was based on RCTs that were inadequately powered to observe differences between hospital-at-home and inpatient hospital care for most outcomes, so there is a strong possibility of type II error. Given the low to very low quality of evidence, these conclusions must be considered with caution.
Approximately 21% to 37% of patients with acute exacerbations of COPD who present to the ED may be eligible for hospital-at-home care.
Of the patients who are eligible for care, some may refuse to participate in hospital-at-home care.
Eligibility for hospital-at-home care may be increased depending on the design of the hospital-at-home program, such as the size of the geographical service area for hospital-at-home and the hours of operation for patient assessment and entry into hospital-at-home.
Hospital-at-home care for acute exacerbations of COPD was associated with a nonsignificant reduction in the risk of mortality and hospital readmissions compared with inpatient hospital care during 2- to 6-month follow-up.
Limited, very low quality evidence suggests that hospital readmissions are delayed in patients who received hospital-at-home care compared with those who received inpatient hospital care (mean additional days before readmission comparing hospital-at-home to inpatient hospital care ranged from 4 to 38 days).
There is insufficient evidence to determine whether hospital-at-home care, compared with inpatient hospital care, is associated with improved lung function.
The majority of studies did not find significant differences between hospital-at-home and inpatient hospital care for a variety of health-related quality of life measures at follow-up. However, follow-up may have been too late to observe an impact of hospital-at-home care on quality of life.
A conclusion about the impact of hospital-at-home care on length of stay for the initial exacerbation (defined as days in hospital or days in hospital plus hospital-at-home care for inpatient hospital and hospital-at-home, respectively) could not be determined because of limited and inconsistent evidence.
Patient and caregiver satisfaction with care is high for both hospital-at-home and inpatient hospital care.
PMCID: PMC3384361  PMID: 23074420
4.  Is there any relationship between plasma antioxidant capacity and lung function in smokers and in patients with chronic obstructive pulmonary disease? 
Thorax  2000;55(3):189-193.
BACKGROUND—It has been suggested that oxidative stress is an important factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have shown that an oxidant/antioxidant imbalance occurs in the distal air spaces of smokers and in patients with COPD which is reflected systemically in the plasma. A study was undertaken to determine whether plasma antioxidant status correlated with lung function as assessed by forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) in smokers and patients with COPD.
METHODS—Plasma antioxidant capacity, assessed by the Trolox equivalent antioxidant capacity (TEAC) as an index of overall systemic oxidative stress, and protein thiol levels were measured in 95patients with stable COPD, in 82 healthy smokers, and in 37 healthy non-smokers.
RESULTS—Mean (SE) plasma TEAC levels were significantly decreased in patients with COPD (0.81 (0.03) mmol/l, p<0.001) and in healthy smokers (0.87 (0.04) mmol/l, p<0.001) compared with healthy non-smokers (1.31 (0.11) mmol/l). The mean differences in plasma antioxidant capacity (mM) were (0.81, 95% confidence interval (CI) 0.22 to 1.48), (0.87, 95% CI 0.2 to 1.46), and (1.31, 95% CI 1.09 to 1.58) in patients with COPD, healthy smokers, and healthy non-smokers, respectively. This reduction was associated with a 29% (95% CI 18 to 38) and a 30% (95% CI 19 to 40) decrease in plasma protein thiol levels in COPD patients and smokers, respectively. Current smoking was not the main contributor to the reduction in antioxidant capacity in patients with COPD as those patients who were still smokers had similar TEAC levels (mean (SE) 0.78 (0.05); n = 25) to those who had stopped smoking (0.84 (0.02); n = 70). No significant correlations were found between spirometric data measured as FEV1 % predicted or FEV1/FVC % predicted and the plasma levels of TEAC in patients with COPD, healthy smokers, or healthy non-smokers. Similarly, there was no significant correlation between FEV1 %predicted or FEV1/FVC % predicted and the levels of plasma protein thiols in the three groups.
CONCLUSIONS—These data confirm decreased antioxidant capacity in smokers and patients with COPD, indicating the presence of systemic oxidative stress. However, no relationship was found between protein thiols or TEAC levels and measurements of airflow limitation in either smokers or in patients with COPD.


doi:10.1136/thorax.55.3.189
PMCID: PMC1745692  PMID: 10679536
5.  Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness and cost-effectiveness of noninvasive ventilation for stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Noninvasive ventilation is used for COPD patients with chronic respiratory failure. Chronic respiratory failure in COPD patients may be due to the inability of the pulmonary system to coordinate ventilation, leading to adverse arterial levels of oxygen and carbon dioxide. Noninvasive ventilation in stable COPD patients has the potential to improve quality of life, prolong survival, and improve gas exchange and sleep quality in patients who are symptomatic after optimal therapy, have hypercapnia or nocturnal hypoventilation and mild hypercapnia, and are frequently hospitalized.
Technology
Noninvasive positive pressure ventilation (NPPV) is any form of positive ventilatory support without the use of an endotracheal tube. For stable COPD, the standard of care when using noninvasive ventilation is bilevel positive airway pressure (BiPAP). Bilevel positive airway pressure involves both inspiratory and expiratory pressure, high during inspiration and lower during expiration. It acts as a pressure support to accentuate a patient’s inspiratory efforts. The gradient between pressures maintains alveolar ventilation and helps to reduce carbon dioxide levels. Outpatients typically use BiPAP at night. Additional advantages of using BiPAP include resting of respiratory muscles, decreased work of breathing, and control of obstructive hypopnea.
Research Question
What is the effectiveness and cost-effectiveness of noninvasive ventilation, compared with no ventilation while receiving usual care, for stable COPD patients?
Research Methods
Literature Search
Search Strategy
A literature search was performed on December 3, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 2004 to December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. When the reviewer was unsure of the eligibility of articles, a second clinical epidemiologist and then a group of epidemiologists reviewed these until consensus was reached.
Inclusion Criteria
full-text English language articles,
studies published between January 1, 2004 and December 3, 2010,
journal articles that report on the effectiveness or cost-effectiveness of noninvasive ventilation,
clearly described study design and methods, and
health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs).
Exclusion Criteria
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
cross-over RCTs
studies on noninvasive negative pressure ventilation (e.g., iron lung)
studies that combine ventilation therapy with other regimens (e.g., daytime NPPV plus exercise or pulmonary rehabilitation)
studies on heliox with NPPV
studies on pulmonary rehabilitation with NPPV
Outcomes of Interest
mortality/survival
hospitalizations/readmissions
length of stay in hospital
forced expiratory volume
arterial partial pressure of oxygen
arterial partial pressure of carbon dioxide
dyspnea
exercise tolerance
health-related quality of life
Note: arterial pressure of oxygen and carbon dioxide are surrogate outcomes.
Statistical Methods
A meta-analysis and an analysis of individual studies were performed using Review Manager Version 5. For continuous data, a mean difference was calculated, and for dichotomous data, a relative risk ratio was calculated for RCTs. For continuous variables with mean baseline and mean follow-up data, a change value was calculated as the difference between the 2 mean values.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Conclusions
The following conclusions refer to stable, severe COPD patients receiving usual care.
Short-Term Studies
Based on low quality of evidence, there is a beneficial effect of NPPV compared with no ventilation on oxygen gas exchange, carbon dioxide gas exchange, and exercise tolerance measured using the 6 Minute Walking Test.
Based on very low quality of evidence, there is no effect of NPPV therapy on lung function measured as forced expiratory volume in 1 second (Type II error not excluded).
Long-Term Studies
Based on moderate quality of evidence, there is no effect of NPPV therapy for the outcomes of mortality, lung function measured as forced expiratory volume in 1 second, and exercise tolerance measured using the 6 Minute Walking Test.
Based on low quality of evidence, there is no effect of NPPV therapy for the outcomes of oxygen gas exchange and carbon dioxide gas exchange (Type II error not excluded).
Qualitative Assessment
Based on low quality of evidence, there is a beneficial effect of NPPV compared with no ventilation for dyspnea based on reduced Borg score or Medical Research Council dyspnea score.
Based on moderate quality of evidence, there is no effect of NPPV therapy for hospitalizations.
Health-related quality of life could not be evaluated.
PMCID: PMC3384378  PMID: 23074437
6.  Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease (COPD) Using an Ontario Policy Model 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Background
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation throughout the airways, parenchyma, and pulmonary vasculature. The inflammation causes repeated cycles of injury and repair in the airway wall— inflammatory cells release a variety of chemicals and lead to cellular damage. The inflammation process also contributes to the loss of elastic recoil pressure in the lung, thereby reducing the driving pressure for expiratory flow through narrowed and poorly supported airways, in which airflow resistance is significantly increased. Expiratory flow limitation is the pathophysiological hallmark of COPD.
Exacerbations of COPD contribute considerably to morbidity and mortality, and impose a burden on the health care system. They are a leading cause of emergency room visits and hospitalizations, particularly in the winter. In Canada, the reported average cost for treating a moderate exacerbation is $641; for a major exacerbation, the cost is $10,086.
Objective
The objective of this study was to evaluate the cost-effectiveness and budget impact of the following interventions in moderate to very severe COPD, investigated in the Medical Advisory Secretariat Chronic Obstructive Pulmonary Disease Mega-Analysis Series:
smoking cessation programs in moderate COPD in an outpatient setting:
– intensive counselling (IC) versus usual care (UC)
– nicotine replacement therapy (NRT) versus UC
– IC + NRT versus placebo
– bupropion versus placebo
multidisciplinary care (MDC) teams versus UC in moderate to severe COPD in an outpatient setting
pulmonary rehabilitation (PR) versus UC following acute exacerbations in moderate to severe COPD
long-term oxygen therapy (LTOT) versus UC in severe hypoxemia in COPD in an outpatient setting
ventilation:
– noninvasive positive pressure ventilation (NPPV) + usual medical care versus usual medical care in acute respiratory failure due to an acute exacerbation in severe COPD in an inpatient setting
– weaning with NPPV versus weaning with invasive mechanical ventilation in acute respiratory failure due to an acute exacerbation in very severe COPD in an inpatient setting
Methods
A cost-utility analysis was conducted using a Markov probabilistic model. The model consists of different health states based on the Global Initiative for Chronic Obstructive Lung Disease COPD severity classification. Patients were assigned different costs and utilities depending on their severity health state during each model cycle. In addition to moving between health states, patients were at risk of acute exacerbations of COPD in each model cycle. During each cycle, patients could have no acute exacerbation, a minor acute exacerbation, or a major exacerbation. For the purposes of the model, a major exacerbation was defined as one that required hospitalization. Patients were assigned different costs and utilities in each model cycle, depending on whether they experienced an exacerbation, and its severity.
Starting cohorts reflected the various patient populations from the trials analyzed. Incremental cost-effectiveness ratios (ICERs)—that is, costs per quality-adjusted life-year (QALY)—were estimated for each intervention using clinical parameters and summary estimates of relative risks of (re)hospitalization, as well as mortality and abstinence rates, from the COPD mega-analysis evidence-based analyses.
A budget impact analysis was also conducted to project incremental costs already being incurred or resources already in use in Ontario. Using provincial data, medical literature, and expert opinion, health system impacts were calculated for the strategies investigated.
All costs are reported in Canadian dollars.
Results
All smoking cessation programs were dominant (i.e., less expensive and more effective overall). Assuming a base case cost of $1,041 and $1,527 per patient for MDC and PR, the ICER was calculated to be $14,123 per QALY and $17,938 per QALY, respectively. When the costs of MDC and PR were varied in a 1-way sensitivity analysis to reflect variation in resource utilization reported in the literature, the ICER increased to $55,322 per QALY and $56,270 per QALY, respectively. Assuming a base case cost of $2,261 per year per patient for LTOT as reported by data from the Ontario provincial program, the ICER was calculated to be $38,993 per QALY. Ventilation strategies were dominant (i.e., cheaper and more effective), as reflected by the clinical evidence of significant in-hospital days avoided in the study group.
Ontario currently pays for IC through physician billing (translating to a current burden of $8 million) and bupropion through the Ontario Drug Benefit program (translating to a current burden of almost $2 million). The burden of NRT was projected to be $10 million, with future expenditures of up to $1 million in Years 1 to 3 for incident cases.
Ontario currently pays for some chronic disease management programs. Based on the most recent Family Health Team data, the costs of MDC programs to manage COPD were estimated at $85 million in fiscal year 2010, with projected future expenditures of up to $51 million for incident cases, assuming the base case cost of the program. However, this estimate does not accurately reflect the current costs to the province because of lack of report by Family Health Teams, lack of capture of programs outside this model of care by any data set in the province, and because the resource utilization and frequency of visits/follow-up phone calls were based on the findings in the literature rather than the actual Family Health Team COPD management programs in place in Ontario. Therefore, MDC resources being utilized in the province are unknown and difficult to measure.
Data on COPD-related hospitalizations were pulled from Ontario administrative data sets and based on consultation with experts. Half of hospitalized patients will access PR resources at least once, and half of these will repeat the therapy, translating to a potential burden of $17 million to $32 million, depending on the cost of the program. These resources are currently being absorbed, but since utilization is not being captured by any data set in the province, it is difficult to quantify and estimate. Provincial programs may be under-resourced, and patients may not be accessing these services effectively.
Data from the LTOT provincial program (based on fiscal year 2006 information) suggested that the burden was $65 million, with potential expenditures of up to $0.2 million in Years 1 to 3 for incident cases.
From the clinical evidence on ventilation (i.e., reduction in length of stay in hospital), there were potential cost savings to the hospitals of $42 million and $12 million for NPPV and weaning with NPPV, respectively, if the study intervention were adopted. Future cost savings were projected to be up to $4 million and $1 million, respectively, for incident cases.
Conclusions
Currently, costs for most of these interventions are being absorbed by provider services, the Ontario Drug Benefit Program, the Assistive Devices Program, and the hospital global budget. The most cost-effective intervention for COPD will depend on decision-makers’ willingness to pay. Lack of provincial data sets capturing resource utilization for the various interventions poses a challenge for estimating current burden and future expenditures.
PMCID: PMC3384363  PMID: 23074422
7.  Echocardiography, Spirometry, and Systemic Acute-Phase Inflammatory Proteins in Smokers with COPD or CHF: An Observational Study 
PLoS ONE  2013;8(11):e80166.
Chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) may coexist in elderly patients with a history of smoking. Low-grade systemic inflammation induced by smoking may represent the link between these 2 conditions. In this study, we investigated left ventricular dysfunction in patients primarily diagnosed with COPD, and nonreversible airflow limitation in patients primarily diagnosed with CHF. The levels of circulating high-sensitive C-reactive protein (Hs-CRP), pentraxin 3 (PTX3), interleukin-1β (IL-1 β), and soluble type II receptor of IL-1 (sIL-1RII) were also measured as markers of systemic inflammation in these 2 cohorts. Patients aged ≥50 years and with ≥10 pack years of cigarette smoking who presented with a diagnosis of stable COPD (n=70) or stable CHF (n=124) were recruited. All patients underwent echocardiography, N-terminal pro-hormone of brain natriuretic peptide measurements, and post-bronchodilator spirometry. Plasma levels of Hs-CRP, PTX3, IL-1 β, and sIL-1RII were determined by using a sandwich enzyme-linked immuno-sorbent assay in all patients and in 24 healthy smokers (control subjects). Although we were unable to find a single COPD patient with left ventricular dysfunction, we found nonreversible airflow limitation in 34% of patients with CHF. On the other hand, COPD patients had higher plasma levels of Hs-CRP, IL1 β, and sIL-1RII compared with CHF patients and control subjects (p < 0.05). None of the inflammatory biomarkers was different between CHF patients and control subjects. In conclusion, although the COPD patients had no evidence of CHF, up to one third of patients with CHF had airflow limitation, suggesting that routine spirometry is warranted in patients with CHF, whereas echocardiography is not required in well characterized patients with COPD. Only smokers with COPD seem to have evidence of systemic inflammation.
doi:10.1371/journal.pone.0080166
PMCID: PMC3823838  PMID: 24244639
8.  Pulmonary Rehabilitation for Patients With Chronic Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based review was to determine the effectiveness and cost-effectiveness of pulmonary rehabilitation in the management of chronic obstructive pulmonary disease (COPD).
Technology
Pulmonary rehabilitation refers to a multidisciplinary program of care for patients with chronic respiratory impairment that is individually tailored and designed to optimize physical and social performance and autonomy. Exercise training is the cornerstone of pulmonary rehabilitation programs, though they may also include components such as patient education and psychological support. Pulmonary rehabilitation is recommended as the standard of care in the treatment and rehabilitation of patients with COPD who remain symptomatic despite treatment with bronchodilators.
For the purpose of this review, the Medical Advisory Secretariat focused on pulmonary rehabilitation programs as defined by the Cochrane Collaboration—that is, any inpatient, outpatient, or home-based rehabilitation program lasting at least 4 weeks that includes exercise therapy with or without any form of education and/or psychological support delivered to patients with exercise limitations attributable to COPD.
Research Questions
What is the effectiveness and cost-effectiveness of pulmonary rehabilitation compared with usual care (UC) for patients with stable COPD?
Does early pulmonary rehabilitation (within 1 month of hospital discharge) in patients who had an acute exacerbation of COPD improve outcomes compared with UC (or no rehabilitation)?
Do maintenance or postrehabilitation programs for patients with COPD who have completed a pulmonary rehabilitation program improve outcomes compared with UC?
Research Methods
Literature Search
Search Strategy
For Research Questions 1and 2, a literature search was performed on August 10, 2010 for studies published from January 1, 2004 to July 31, 2010. For Research Question 3, a literature search was performed on February 3, 2011 for studies published from January 1, 2000 to February 3, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
Research questions 1 and 2:
published between January 1, 2004 and July 31, 2010
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing pulmonary rehabilitation with UC (no pulmonary rehabilitation)
duration of pulmonary rehabilitation program ≥ 6 weeks
pulmonary rehabilitation program had to include at minimum exercise training
Research question 3:
published between January 1, 2000 and February 3, 2011
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing a maintenance or postrehabilitation program with UC (standard follow-up)
duration of pulmonary rehabilitation program ≥ 6 weeks
initial pulmonary rehabilitation program had to include at minimum exercise training
Exclusion Criteria
Research questions 1, 2, and 3:
grey literature
duplicate publications
non-English language publications
study population ≤ 18 years of age
studies conducted in a palliative population
studies that did not report primary outcome of interest
Additional exclusion criteria for research question 3:
studies with ≤ 2 sessions/visits per month
Outcomes of Interest
The primary outcomes of interest for the stable COPD population were exercise capacity and health-related quality of life (HRQOL). For the COPD population following an exacerbation, the primary outcomes of interest were hospital readmissions and HRQOL. The primary outcomes of interest for the COPD population undertaking maintenance programs were functional exercise capacity and HRQOL.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Research Question 1: Effect of Pulmonary Rehabilitation on Outcomes in Stable COPD
Seventeen randomized controlled trials met the inclusion criteria and were included in this review.
The following conclusions are based on moderate quality of evidence.
Pulmonary rehabilitation including at least 4 weeks of exercise training leads to clinically and statistically significant improvements in HRQOL in patients with COPD.1
Pulmonary rehabilitation also leads to a clinically and statistically significant improvement in functional exercise capacity2 (weighted mean difference, 54.83 m; 95% confidence interval, 35.63–74.03; P < 0.001).
Research Question 2: Effect of Pulmonary Rehabilitation on Outcomes Following an Acute Exacerbation of COPD
Five randomized controlled trials met the inclusion criteria and are included in this review. The following conclusion is based on moderate quality of evidence.
Pulmonary rehabilitation (within 1 month of hospital discharge) after acute exacerbation significantly reduces hospital readmissions (relative risk, 0.50; 95% confidence interval, 0.33–0.77; P = 0.001) and leads to a statistically and clinically significant improvement in HRQOL.3
Research Question 3: Effect of Pulmonary Rehabilitation Maintenance Programs on COPD Outcomes
Three randomized controlled trials met the inclusion criteria and are included in this review. The conclusions are based on a low quality of evidence and must therefore be considered with caution.
Maintenance programs have a nonsignificant effect on HRQOL and hospitalizations.
Maintenance programs have a statistically but not clinically significant effect on exercise capacity (P = 0.01). When subgrouped by intensity and quality of study, maintenance programs have a statistically and marginally clinically significant effect on exercise capacity.
PMCID: PMC3384375  PMID: 23074434
9.  Basement membrane and vascular remodelling in smokers and chronic obstructive pulmonary disease: a cross-sectional study 
Respiratory Research  2010;11(1):105.
Background
Little is known about airway remodelling in bronchial biopsies (BB) in smokers and chronic obstructive pulmonary disease (COPD). We conducted an initial pilot study comparing BB from COPD patients with nonsmoking controls. This pilot study suggested the presence of reticular basement membrane (Rbm) fragmentation and altered vessel distribution in COPD.
Methods
To determine whether Rbm fragmentation and altered vessel distribution in BB were specific for COPD we designed a cross-sectional study and stained BB from 19 current smokers and 14 ex-smokers with mild to moderate COPD and compared these to 15 current smokers with normal lung function and 17 healthy and nonsmoking subjects.
Results
Thickness of the Rbm was not significantly different between groups; although in COPD this parameter was quite variable. The Rbm showed fragmentation and splitting in both current smoking groups and ex-smoker COPD compared with healthy nonsmokers (p < 0.02); smoking and COPD seemed to have additive effects. Rbm fragmentation correlated with smoking history in COPD but not with age. There were more vessels in the Rbm and fewer vessels in the lamina propria in current smokers compared to healthy nonsmokers (p < 0.05). The number of vessels staining for vascular endothelial growth factor (VEGF) in the Rbm was higher in both current smoker groups and ex-smoker COPD compared to healthy nonsmokers (p < 0.004). In current smoker COPD VEGF vessel staining correlated with FEV1% predicted (r = 0.61, p < 0.02).
Conclusions
Airway remodelling in smokers and mild to moderate COPD is associated with fragmentation of the Rbm and altered distribution of vessels in the airway wall. Rbm fragmentation was also present to as great an extent in ex-smokers with COPD. These characteristics may have potential physiological consequences.
doi:10.1186/1465-9921-11-105
PMCID: PMC2918561  PMID: 20670454
10.  Bronchial hyperresponsiveness in women with chronic obstructive pulmonary disease related to wood smoke 
Purpose
Chronic obstructive pulmonary disease (COPD) related to wood smoke exposure is characterized by important inflammation of the central and peripheral airways without significant emphysema. The objective of this study is to describe the bronchial hyperresponsiveness (BHR) level in women with COPD related to wood smoke exposure and to compare it with the BHR in women with COPD related to tobacco smoking.
Materials and methods
Two groups of women with stable COPD were studied: (1) wood smoke exposed (WS-COPD); and (2) tobacco smoke exposed (TS-COPD). A methacholine challenge test (MCT) was performed in all patients according to American Thoracic Society criteria. BHR levels were compared using the methacholine concentration, which caused a 20% fall in the FEV1 (PC20).
Results
Thirty-one patients, 19 with WS-COPD and 12 with TS-COPD, were included. There were no significant differences between the groups in baseline FVC, FEV1, IC, FEF25–75, and FEF25–75/FVC. All 31 patients had a positive MCT (PC20 < 16 mg/mL) and the fall in the FEV1 and IC was similar in both groups. The severity of BHR was significantly higher in the WS-COPD patients (PC20: 0.39 mg/mL) than in the TS-COPD patients (PC20: 1.24 mg/mL) (P = 0.028). The presence of cough, phlegm, and dyspnea during the test were similar in both groups.
Conclusion
We found moderate to severe BHR in women with WS-COPD, which was more severe than in the TS-COPD women with similar age and airflow obstruction. This paper suggests that the structural and inflammatory changes induced by the chronic exposure to wood smoke, described in other studies, can explain the differences with TS-COPD patients. Future studies may clarify our understanding of the impact of BHR on COPD physiopathology, phenotypes, and treatment strategies.
doi:10.2147/COPD.S30410
PMCID: PMC3393338  PMID: 22791990
biomass fuels; indoor air pollution; wood smoke; COPD; methacholine challenge test
11.  Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of multidisciplinary care (MDC) compared with usual care (UC, single health care provider) for the treatment of stable chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Chronic obstructive pulmonary disease is a progressive disorder with episodes of acute exacerbations associated with significant morbidity and mortality. Cigarette smoking is linked causally to COPD in more than 80% of cases. Chronic obstructive pulmonary disease is among the most common chronic diseases worldwide and has an enormous impact on individuals, families, and societies through reduced quality of life and increased health resource utilization and mortality.
The estimated prevalence of COPD in Ontario in 2007 was 708,743 persons.
Technology
Multidisciplinary care involves professionals from a range of disciplines, working together to deliver comprehensive care that addresses as many of the patient’s health care and psychosocial needs as possible.
Two variables are inherent in the concept of a multidisciplinary team: i) the multidisciplinary components such as an enriched knowledge base and a range of clinical skills and experiences, and ii) the team components, which include but are not limited to, communication and support measures. However, the most effective number of team members and which disciplines should comprise the team for optimal effect is not yet known.
Research Question
What is the effectiveness and cost-effectiveness of MDC compared with UC (single health care provider) for the treatment of stable COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on July 19, 2010 using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 1, 1995 until July 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
health technology assessments, systematic reviews, or randomized controlled trials
studies published between January 1995 and July 2010;
COPD study population
studies comparing MDC (2 or more health care disciplines participating in care) compared with UC (single health care provider)
Exclusion Criteria
grey literature
duplicate publications
non-English language publications
study population less than 18 years of age
Outcomes of Interest
hospital admissions
emergency department (ED) visits
mortality
health-related quality of life
lung function
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Six randomized controlled trials were obtained from the literature search. Four of the 6 studies were completed in the United States. The sample size of the 6 studies ranged from 40 to 743 participants, with a mean study sample between 66 and 71 years of age. Only 2 studies characterized the study sample in terms of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria, and in general the description of the study population in the other 4 studies was limited. The mean percent predicted forced expiratory volume in 1 second (% predicted FEV1) among study populations was between 32% and 59%. Using this criterion, 3 studies included persons with severe COPD and 2 with moderate COPD. Information was not available to classify the population in the sixth study.
Four studies had MDC treatment groups which included a physician. All studies except 1 reported a respiratory specialist (i.e., respiratory therapist, specialist nurse, or physician) as part of the multidisciplinary team. The UC group was comprised of a single health care practitioner who may or may not have been a respiratory specialist.
A meta-analysis was completed for 5 of the 7 outcome measures of interest including:
health-related quality of life,
lung function,
all-cause hospitalization,
COPD-specific hospitalization, and
mortality.
There was only 1 study contributing to the outcome of all-cause and COPD-specific ED visits which precluded pooling data for these outcomes. Subgroup analyses were not completed either because heterogeneity was not significant or there were a small number of studies that were meta-analysed for the outcome.
Quality of Life
Three studies reported results of quality of life assessment based on the St. George’s Respiratory Questionnaire (SGRQ). A mean decrease in the SGRQ indicates an improvement in quality of life while a mean increase indicates deterioration in quality of life. In all studies the mean change score from baseline to the end time point in the MDC treatment group showed either an improvement compared with the control group or less deterioration compared with the control group. The mean difference in change scores between MDC and UC groups was statistically significant in all 3 studies. The pooled weighted mean difference in total SGRQ score was −4.05 (95% confidence interval [CI], −6.47 to 1.63; P = 0.001). The GRADE quality of evidence was assessed as low for this outcome.
Lung Function
Two studies reported results of the FEV1 % predicted as a measure of lung function. A negative change from baseline infers deterioration in lung function and a positive change from baseline infers an improvement in lung function. The MDC group showed a statistically significant improvement in lung function up to 12 months compared with the UC group (P = 0.01). However this effect is not maintained at 2-year follow-up (P = 0.24). The pooled weighted mean difference in FEV1 percent predicted was 2.78 (95% CI, −1.82 to −7.37). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
Hospital Admissions
All-Cause
Four studies reported results of all-cause hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 4 studies were pooled to determine a summary estimate. There is a statistically significant 25% relative risk (RR) reduction in all-cause hospitalizations in the MDC group compared with the UC group (P < 0.001). The index of heterogeneity (I2) value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
COPD-Specific Hospitalization
Three studies reported results of COPD-specific hospital admissions in terms of number of persons with at least 1 admission during the follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically significant 33% RR reduction in all-cause hospitalizations in the MDC group compared with the UC group (P = 0.002). The I2 value is 0%, indicating no statistical heterogeneity between studies. The GRADE quality of evidence was assessed as moderate for this outcome, indicating that further research may change the estimate of effect.
Emergency Department Visits
All-Cause
Two studies reported results of all-cause ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically nonsignificant reduction in all-cause ED visits when data from these 2 studies are pooled (RR, 0.64; 95% CI, 0.31 to −1.33; P = 0.24). The GRADE quality of evidence was assessed as very low for this outcome indicating that an estimate of effect is uncertain.
COPD-Specific
One study reported results of COPD-specific ED visits in terms of number of persons with at least 1 visit during the follow-up period. There is a statistically significant 41% reduction in COPD-specific ED visits when the data from these 2 studies are pooled (RR, 0.59; 95% CI, 0.43−0.81; P < 0.001). The GRADE quality of evidence was assessed as moderate for this outcome.
Mortality
Three studies reported the mortality during the study follow-up period. Estimates from these 3 studies were pooled to determine a summary estimate. There is a statistically nonsignificant reduction in mortality between treatment groups (RR, 0.81; 95% CI, 0.52−1.27; P = 0.36). The I2 value is 19%, indicating low statistical heterogeneity between studies. All studies had a 12-month follow-up period. The GRADE quality of evidence was assessed as low for this outcome.
Conclusions
Significant effect estimates with moderate quality of evidence were found for all-cause hospitalization, COPD-specific hospitalization, and COPD-specific ED visits (Table ES1). A significant estimate with low quality evidence was found for the outcome of quality of life (Table ES2). All other outcome measures were nonsignificant and supported by low or very low quality of evidence.
Summary of Dichotomous Data
Abbreviations: CI, confidence intervals; COPD, chronic obstructive pulmonary disease; n, number.
Summary of Continuous Data
Abbreviations: CI, confidence intervals; FEV1, forced expiratory volume in 1 second; n, number; SGRQ, St. George’s Respiratory Questionnaire.
PMCID: PMC3384374  PMID: 23074433
12.  Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness, cost-effectiveness, and safety of long-term oxygen therapy (LTOT) for chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Oxygen therapy is used in patients with COPD with hypoxemia, or very low blood oxygen levels, because they may have difficulty obtaining sufficient oxygen from inspired air.
Technology
Long-term oxygen therapy is extended use of oxygen. Oxygen therapy is delivered as a gas from an oxygen source. Different oxygen sources are: 1) oxygen concentrators, electrical units delivering oxygen converted from room air; 2) liquid oxygen systems, which deliver gaseous oxygen stored as liquid in a tank; and 3) oxygen cylinders, which contain compressed gaseous oxygen. All are available in portable versions. Oxygen is breathed in through a nasal cannula or through a mask covering the mouth and nose. The treating clinician determines the flow rate, duration of use, method of administration, and oxygen source according to individual patient needs. Two landmark randomized controlled trials (RCTs) of patients with COPD established the role of LTOT in COPD. Questions regarding the use of LTOT, however, still remain.
Research Question
What is the effectiveness, cost-effectiveness, and safety of LTOT compared with no LTOT in patients with COPD, who are stratified by severity of hypoxemia?
Research Methods
Literature Search
Search Strategy
A literature search was performed on September 8, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, the Cochrane Library, and INAHTA for studies published from January 1, 2007 to September 8, 2010.
A single clinical epidemiologist reviewed the abstracts, obtained full-text articles for studies meeting the eligibility criteria, and examined reference lists for additional relevant studies not identified through the literature search. A second clinical epidemiologist and then a group of epidemiologists reviewed articles with an unknown eligibility until consensus was established.
Inclusion Criteria
patients with mild, moderate, or severe hypoxemia;
English-language articles published between January 1, 2007 and September 8, 2010;
journal articles reporting on effectiveness, cost-effectiveness, or safety for the comparison of interest;
clearly described study design and methods;
health technology assessments, systematic reviews, RCTs, or prospective cohort observational studies;
any type of observational study for the evaluation of safety.
Exclusion Criteria
no hypoxemia
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
studies comparing different oxygen therapy regimens
studies on nocturnal oxygen therapy
studies on short-burst, palliative, or ambulatory oxygen (supplemental oxygen during exercise or activities of daily living)
Outcomes of Interest
mortality/survival
hospitalizations
readmissions
forced expiratory volume in 1 second (FEV1)
forced vital capacity (FVC)
FEV1/FVC
pulmonary hypertension
arterial partial pressure of oxygen (PaO2)
arterial partial pressure of carbon dioxide (PaCO2)
end-exercise dyspnea score
endurance time
health-related quality of life
Note: Outcomes of interest were formulated according to existing studies, with arterial pressure of oxygen and carbon dioxide as surrogate outcomes.
Summary of Findings
Conclusions
Based on low quality of evidence, LTOT (~ 15 hours/day) decreases all-cause mortality in patients with COPD who have severe hypoxemia (PaO2 ~ 50 mm Hg) and heart failure.
The effect for all-cause mortality had borderline statistical significance when the control group was no LTOT: one study.
Based on low quality of evidence, there is no beneficial effect of LTOT on all-cause mortality at 3 and 7 years in patients with COPD who have mild-to-moderate hypoxemia (PaO2 ~ 59-65 mm Hg)1
Based on very low quality of evidence, there is some suggestion that LTOT may have a beneficial effect over time on FEV1 and PaCO2 in patients with COPD who have severe hypoxemia and heart failure: improved methods are needed.
Based on very low quality of evidence, there is no beneficial effect of LTOT on lung function or exercise factors in patients with COPD who have mild-to-moderate hypoxemia, whether survivors or nonsurvivors are assessed.
Based on low to very low quality of evidence, LTOT does not prevent readmissions in patients with COPD who have severe hypoxemia. Limited data suggest LTOT increases the risk of hospitalizations.
Limited work has been performed evaluating the safety of LTOT by severity of hypoxemia.
Based on low to very low quality of evidence, LTOT may have a beneficial effect over time on health-related quality of life in patients with COPD who have severe hypoxemia. Limited work using disease-specific instruments has been performed.
Ethical constraints of not providing LTOT to eligible patients with COPD prohibit future studies from examining LTOT outcomes in an ideal way.
PMCID: PMC3384376  PMID: 23074435
13.  Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to conduct an evidence-based assessment of home telehealth technologies for patients with chronic obstructive pulmonary disease (COPD) in order to inform recommendations regarding the access and provision of these services in Ontario. This analysis was one of several analyses undertaken to evaluate interventions for COPD. The perspective of this assessment was that of the Ontario Ministry of Health and Long-Term Care, a provincial payer of medically necessary health care services.
Clinical Need: Condition and Target Population
Canada is facing an increase in chronic respiratory diseases due in part to its aging demographic. The projected increase in COPD will put a strain on health care payers and providers. There is therefore an increasing demand for telehealth services that improve access to health care services while maintaining or improving quality and equality of care. Many telehealth technologies however are in the early stages of development or diffusion and thus require study to define their application and potential harms or benefits. The Medical Advisory Secretariat (MAS) therefore sought to evaluate telehealth technologies for COPD.
Technology
Telemedicine (or telehealth) refers to using advanced information and communication technologies and electronic medical devices to support the delivery of clinical care, professional education, and health-related administrative services.
Generally there are 4 broad functions of home telehealth interventions for COPD:
to monitor vital signs or biological health data (e.g., oxygen saturation),
to monitor symptoms, medication, or other non-biologic endpoints (e.g., exercise adherence),
to provide information (education) and/or other support services (such as reminders to exercise or positive reinforcement), and
to establish a communication link between patient and provider.
These functions often require distinct technologies, although some devices can perform a number of these diverse functions. For the purposes of this review, MAS focused on home telemonitoring and telephone only support technologies.
Telemonitoring (or remote monitoring) refers to the use of medical devices to remotely collect a patient’s vital signs and/or other biologic health data and the transmission of those data to a monitoring station for interpretation by a health care provider.
Telephone only support refers to disease/disorder management support provided by a health care provider to a patient who is at home via telephone or videoconferencing technology in the absence of transmission of patient biologic data.
Research Questions
What is the effectiveness, cost-effectiveness, and safety of home telemonitoring compared with usual care for patients with COPD?
What is the effectiveness, cost-effectiveness, and safety of telephone only support programs compared with usual care for patients with COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on November 3, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 until November 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, and then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low, or very low according to GRADE methodology.
Inclusion Criteria – Question #1
frequent transmission of a patient’s physiological data collected at home and without a health care professional physically present to health care professionals for routine monitoring through the use of a communication technology;
monitoring combined with a coordinated management and feedback system based on transmitted data;
telemonitoring as a key component of the intervention (subjective determination);
usual care as provided by the usual care provider for the control group;
randomized controlled trials (RCTs), controlled clinical trials (CCTs), systematic reviews, and/or meta-analyses;
published between January 1, 2000 and November 3, 2010.
Inclusion Criteria – Question #2
scheduled or frequent contact between patient and a health care professional via telephone or videoconferencing technology in the absence of transmission of patient physiological data;
monitoring combined with a coordinated management and feedback system based on transmitted data;
telephone support as a key component of the intervention (subjective determination);
usual care as provided by the usual care provider for the control group;
RCTs, CCTs, systematic reviews, and/or meta-analyses;
published between January 1, 2000 and November 3, 2010.
Exclusion Criteria
published in a language other than English;
intervention group (and not control) receiving some form of home visits by a medical professional, typically a nurse (i.e., telenursing) beyond initial technology set-up and education, to collect physiological data, or to somehow manage or treat the patient;
not recording patient or health system outcomes (e.g., technical reports testing accuracy, reliability or other development-related outcomes of a device, acceptability/feasibility studies, etc.);
not using an independent control group that received usual care (e.g., studies employing historical or periodic controls).
Outcomes of Interest
hospitalizations (primary outcome)
mortality
emergency department visits
length of stay
quality of life
other […]
Subgroup Analyses (a priori)
length of intervention (primary)
severity of COPD (primary)
Quality of Evidence
The quality of evidence assigned to individual studies was determined using a modified CONSORT Statement Checklist for Randomized Controlled Trials. (1) The CONSORT Statement was adapted to include 3 additional quality measures: the adequacy of control group description, significant differential loss to follow-up between groups, and greater than or equal to 30% study attrition. Individual study quality was defined based on total scores according to the CONSORT Statement checklist: very low (0 to < 40%), low (≥ 40 to < 60%), moderate (≥ 60 to < 80%), and high (≥ 80 to 100%).
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Six publications, representing 5 independent trials, met the eligibility criteria for Research Question #1. Three trials were RCTs reported across 4 publications, whereby patients were randomized to home telemonitoring or usual care, and 2 trials were CCTs, whereby patients or health care centers were nonrandomly assigned to intervention or usual care.
A total of 310 participants were studied across the 5 included trials. The mean age of study participants in the included trials ranged from 61.2 to 74.5 years for the intervention group and 61.1 to 74.5 years for the usual care group. The percentage of men ranged from 40% to 64% in the intervention group and 46% to 72% in the control group.
All 5 trials were performed in a moderate to severe COPD patient population. Three trials initiated the intervention following discharge from hospital. One trial initiated the intervention following a pulmonary rehabilitation program. The final trial initiated the intervention during management of patients at an outpatient clinic.
Four of the 5 trials included oxygen saturation (i.e., pulse oximetry) as one of the biological patient parameters being monitored. Additional parameters monitored included forced expiratory volume in one second, peak expiratory flow, and temperature.
There was considerable clinical heterogeneity between trials in study design, methods, and intervention/control. In relation to the telemonitoring intervention, 3 of the 5 included studies used an electronic health hub that performed multiple functions beyond the monitoring of biological parameters. One study used only a pulse oximeter device alone with modem capabilities. Finally, in 1 study, patients measured and then forwarded biological data to a nurse during a televideo consultation. Usual care varied considerably between studies.
Only one trial met the eligibility criteria for Research Question #2. The included trial was an RCT that randomized 60 patients to nurse telephone follow-up or usual care (no telephone follow-up). Participants were recruited from the medical department of an acute-care hospital in Hong Kong and began receiving follow-up after discharge from the hospital with a diagnosis of COPD (no severity restriction). The intervention itself consisted of only two 10-to 20-minute telephone calls, once between days 3 to 7 and once between days 14 to 20, involving a structured, individualized educational and supportive programme led by a nurse that focused on 3 components: assessment, management options, and evaluation.
Regarding Research Question #1:
Low to very low quality evidence (according to GRADE) finds non-significant effects or conflicting effects (of significant or non-significant benefit) for all outcomes examined when comparing home telemonitoring to usual care.
There is a trend towards significant increase in time free of hospitalization and use of other health care services with home telemonitoring, but these findings need to be confirmed further in randomized trials of high quality.
There is severe clinical heterogeneity between studies that limits summary conclusions.
The economic impact of home telemonitoring is uncertain and requires further study.
Home telemonitoring is largely dependent on local information technologies, infrastructure, and personnel, and thus the generalizability of external findings may be low. Jurisdictions wishing to replicate home telemonitoring interventions should likely test those interventions within their jurisdictional framework before adoption, or should focus on home-grown interventions that are subjected to appropriate evaluation and proven effective.
Regarding Research Question #2:
Low quality evidence finds significant benefit in favour of telephone-only support for self-efficacy and emergency department visits when compared to usual care, but non-significant results for hospitalizations and hospital length of stay.
There are very serious issues with the generalizability of the evidence and thus additional research is required.
PMCID: PMC3384362  PMID: 23074421
14.  The relationship between COPD and lung cancer in African American patients 
Clinical lung cancer  2011;13(2):149-156.
Rationale
Airflow obstruction and/or emphysema have been associated with lung cancer risk, however this relationship and the joint occurrence of these conditions are not well studied in the African American population.
Objective
Describe the prevalence of airflow obstruction and/or emphysema in African Americans with lung cancer and evaluate their impact on the management and outcome of lung cancer.
Methods
Medical records were reviewed for 114 African Americans who had participated in population-based case-control studies of lung cancer and who sought medical care at the Karmanos Cancer Center in Detroit, Michigan. The medical records of these patients were reviewed for demographics, type and stage of lung cancer, spirometry, treatment and outcome. The chest CT scans around the time of the diagnosis of lung cancer were reviewed by a radiologist for evidence of emphysema. COPD was diagnosed when there were changes consistent with emphysema on CT scan and/or airflow obstruction by spirometry.
Results
There were no differences by sex for age at lung cancer diagnosis (p=0.78) and tumor histology (p=0.43). Men were more likely to present at a later stage of lung cancer diagnosis compared to women (p=0.04) and women were more likely to have surgery than men (p=0.03). Overall, 94% of men and 78% of women in this population had spirometry and/or CT evidence of COPD. Men were somewhat more likely to have COPD diagnosed by either CT or spirometry than women (p=0.06), but the GOLD Classification scores did not differ by gender among those with spirometry-diagnosed COPD (p=0.34). Seventy eight percent of individuals who did not report a previous diagnosis of COPD had clinical evidence of COPD, whereas 94% of individuals who reported a previous diagnosis of COPD also had clinical evidence of COPD (p=0.03). Among individuals who had both spirometry and CT data available, 29% had CT evidence of emphysema but normal spirometry. No differences in COPD diagnosis (p=0.82) or emphysema diagnosis (p=0.51) were noted by tumor histology. Stage at diagnosis also did not differ by COPD or emphysema diagnosis (p=0.30 and p=0.06, respectively), nor did treatment modality (p=0.54 and p=0.10, respectively). Lung cancer patients with COPD diagnosed either via spirometry or CT did not show an increased risk of death compared to lung cancer patients without COPD after adjusting for age at diagnosis, gender and stage (HR=1.31 95% CI: 0.68-2.53).
Conclusion
There is a high incidence of COPD, emphysema in particular, in a selected group of African American patients with lung cancer. A significant number of these patients were not aware that they had COPD. There was no significant difference in the outcome of lung cancer in relation to the presence or absence of COPD.
doi:10.1016/j.cllc.2011.09.006
PMCID: PMC3422020  PMID: 22129972
15.  Epicardial Adipose Tissue in Patients with Chronic Obstructive Pulmonary Disease 
PLoS ONE  2013;8(6):e65593.
Rationale
Epicardial Adipose Tissue (EAT) volume as determined by chest computed tomography (CT) is an independent marker of cardiovascular events in the general population. COPD patients have an increased risk of cardiovascular disease, however nothing is known about the EAT volume in this population.
Objectives
To assess EAT volume in COPD and explore its association with clinical and physiological variables of disease severity.
Methods
We measured EAT using low-dose CT in 171 stable COPD patients and 70 controls matched by age, smoking history and BMI. We determined blood pressure, cholesterol, glucose and HbA1c levels, microalbuminuria, lung function, BODE index, co-morbidity index and coronary artery calcium score (CAC). EAT volume were compared between groups. Uni and multivariate analyses explored the relationship between EAT volume and the COPD related variables.
Results
COPD patients had a higher EAT volume [143.7 (P25–75, 108.3–196.6) vs 129.1 (P25–75, 91.3–170.8) cm3, p = 0.02)] and the EAT volume was significantly associated with CAC (r = 0.38, p<0.001) and CRP (r = 0.32, p<0.001) but not with microalbuminuria (r = 0.12, p = 0.13). In COPD patients, EAT volume was associated with: age, pack-years, BMI, gender, FEV1%, 6 MWD, MMRC and HTN. Multivariate analysis showed that only pack-years (B = 0.6, 95% CI: 0.5–1.3), BMI (B = 7.8, 95% CI: 5.7–9.9) and 6 MWD (B = −0.2, 95% CI: −0.3–−0.1), predicted EAT volume.
Conclusions
EAT volume is increased in COPD patients and is independently associated with smoking history, BMI and exercise capacity, all modifiable risk factors of future cardiovascular events. EAT volume could be a non-invasive marker of COPD patients at high risk for future cardiovascular events.
doi:10.1371/journal.pone.0065593
PMCID: PMC3675061  PMID: 23762399
16.  Changes of HMGB1 and sRAGE during the recovery of COPD exacerbation 
Journal of Thoracic Disease  2014;6(6):734-741.
Background
Acute exacerbation of chronic obstructive pulmonary disease is associated with increased airway and systemic inflammation. However, the correlation between acute exacerbation/convalescence of chronic obstructive pulmonary disease (COPD) and simultaneous changes of high mobility group protein B1 (HMGB1) and soluble RAGE (sRAGE) levels has not been clearly clarified. The aim of this study was to assess these issues.
Methods
A total of 44 COPD patients were recruited. Following a structured interview, plasma levels of HMGB1, sRAGE, fibrinogen and serum level of high-sensitivity C-reactive protein (hsCRP) were measured in patients with acute exacerbation of COPD (AECOPD) within 24 h of hospitalization and pre-discharge (convalescence). All patients were examined with spirometry in convalescence of COPD.
Results
There was a significant decline in plasma HMGB1 (P<0.01), sRAGE (P<0.05), fibrinogen (P<0.01) and serum hsCRP (P<0.01) levels from acute exacerbation to convalescence phase of COPD. Changes of sRAGE was significantly correlated with changes of HMGB1 (r=0.4, P=0.007). COPD disease status correlated with the ratio of HMGB1/sRAGE, but not gender, age, course of disease, smoking history and FEV1% pred. Levels of HMGB1 and sRAGE were the highest in the current smoker group, and significantly decreased in ex-smoker group in both acute exacerbation and convalescence phase of COPD, however, their levels in never smoker group were higher than ex-smoker group in either phase of COPD.
Conclusions
HMGB1 and sRAGE levels were dynamically changed between exacerbation and convalescence phase of COPD, HMGB1 and sRAGE were likely not only a potential marker in COPD exacerbation but also a therapeutic target for COPD treatment.
doi:10.3978/j.issn.2072-1439.2014.04.31
PMCID: PMC4073385  PMID: 24976997
Chronic obstructive pulmonary disease (COPD); high mobility group protein B1 (HMGB1); soluble RAGE (sRAGE); biomarker; exacerbation; convalescence
17.  Systemic Biomarkers of Neutrophilic Inflammation, Tissue Injury and Repair in COPD Patients with Differing Levels of Disease Severity 
PLoS ONE  2012;7(6):e38629.
The identification and validation of biomarkers to support the assessment of novel therapeutics for COPD continues to be an important area of research. The aim of the current study was to identify systemic protein biomarkers correlated with measures of COPD severity, as well as specific protein signatures associated with comorbidities such as metabolic syndrome. 142 protein analytes were measured in serum of 140 patients with stable COPD, 15 smokers without COPD and 30 non-smoking controls. Seven analytes (sRAGE, EN-RAGE, NGAL, Fibrinogen, MPO, TGF-α and HB-EGF) showed significant differences between severe/very severe COPD, mild/moderate COPD, smoking and non-smoking control groups. Within the COPD subjects, univariate and multivariate analyses identified analytes significantly associated with FEV1, FEV1/FVC and DLCO. Most notably, a set of 5 analytes (HB-EGF, Fibrinogen, MCP-4, sRAGE and Sortilin) predicted 21% of the variability in DLCO values. To determine common functions/pathways, analytes were clustered in a correlation network by similarity of expression profile. While analytes related to neutrophil function (EN-RAGE, NGAL, MPO) grouped together to form a cluster associated with FEV1 related parameters, analytes related to the EGFR pathway (HB-EGF, TGF-α) formed another cluster associated with both DLCO and FEV1 related parameters. Associations of Fibrinogen with DLCO and MPO with FEV1/FVC were stronger in patients without metabolic syndrome (r  =  −0.52, p  = 0.005 and r  =  −0.61, p  = 0.023, respectively) compared to patients with coexisting metabolic syndrome (r  =  −0.25, p  = 0.47 and r  =  −0.15, p  = 0.96, respectively), and may be driving overall associations in the general cohort. In summary, our study has identified known and novel serum protein biomarkers and has demonstrated specific associations with COPD disease severity, FEV1, FEV1/FVC and DLCO. These data highlight systemic inflammatory pathways, neutrophil activation and epithelial tissue injury/repair processes as key pathways associated with COPD.
doi:10.1371/journal.pone.0038629
PMCID: PMC3373533  PMID: 22701684
18.  COPD association and repeatability of blood biomarkers in the ECLIPSE cohort 
Respiratory Research  2011;12(1):146.
Background
There is a need for biomarkers to better characterise individuals with COPD and to aid with the development of therapeutic interventions. A panel of putative blood biomarkers was assessed in a subgroup of the Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE) cohort.
Methods
Thirty-four blood biomarkers were assessed in 201 subjects with COPD, 37 ex-smoker controls with normal lung function and 37 healthy non-smokers selected from the ECLIPSE cohort. Biomarker repeatability was assessed using baseline and 3-month samples. Intergroup comparisons were made using analysis of variance, repeatability was assessed through Bland-Altman plots, and correlations between biomarkers and clinical characteristics were assessed using Spearman correlation coefficients.
Results
Fifteen biomarkers were significantly different in individuals with COPD when compared to former or non-smoker controls. Some biomarkers, including tumor necrosis factor-α and interferon-γ, were measurable in only a minority of subjects whilst others such as C-reactive protein showed wide variability over the 3-month replication period. Fibrinogen was the most repeatable biomarker and exhibited a weak correlation with 6-minute walk distance, exacerbation rate, BODE index and MRC dyspnoea score in COPD subjects. 33% (66/201) of the COPD subjects reported at least 1 exacerbation over the 3 month study with 18% (36/201) reporting the exacerbation within 30 days of the 3-month visit. CRP, fibrinogen interleukin-6 and surfactant protein-D were significantly elevated in those COPD subjects with exacerbations within 30 days of the 3-month visit compared with those individuals that did not exacerbate or whose exacerbations had resolved.
Conclusions
Only a few of the biomarkers assessed may be useful in diagnosis or management of COPD where the diagnosis is based on airflow obstruction (GOLD). Further analysis of more promising biomarkers may reveal utility in subsets of patients. Fibrinogen in particular has emerged as a potentially useful biomarker from this cohort and requires further investigation.
Trial Registration
SCO104960, clinicaltrials.gov identifier NCT00292552
doi:10.1186/1465-9921-12-146
PMCID: PMC3247194  PMID: 22054035
Biomarkers; Chronic Obstructive Pulmonary Disease (COPD); Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE); Inflammation
19.  Characteristics of chronic obstructive pulmonary disease in Spain from a gender perspective 
Background
The objective of this study was to analyze the clinical and management characteristics of chronic obstructive pulmonary disease (COPD) in men and women, to determine possible gender-associated differences between the two groups of patients.
Methods
An observational and descriptive epidemiological study (EPIDEPOC study). The study included patients with stable COPD and aged ≥ 40 years, evaluated in primary care. Data were collected relating to sociodemographic variables, clinical characteristics, quality of life (SF-12), severity of disease and treatment. The results obtained in men and women were compared.
Results
A total of 10,711 patients (75.6% males and 24.4% females) were evaluated. Significant differences were found between males and females in relation to the following parameters: age (67.4 ± 9.2 years in men vs 66.1 ± 10.8 in women, p < 0.05), smoking (91.9% of the men were smokers or ex-smokers vs 30% of the women), comorbidity (the frequency of hypertension, diabetes, anxiety and depression was greater in women, while ischemic heart disease was more common in men), mental component of quality of life (49.4 ± 10.3 in men vs 44.6 ± 11.9 in women, p < 0.05) and severity of disease (56.5 ± 13.3% in men vs 60.7 ± 3.2 in women, p < 0.05). As regards treatment, the percentage use of long-acting b2-adrenergic agonists, anticholinergic agents, theophyllines and mucolytic agents was significant greater in men. The total annual cost of COPD was greater in males than in females (1989.20 ± 2364.47 € vs 1724.53 ± 2106.90, p < 0.05).
Conclusion
The women with COPD evaluated in this study were younger, smoked less and have more comorbidity, a poorer quality of life, and lesser disease severity than men with COPD. However, they generated a lesser total annual cost of COPD than men.
doi:10.1186/1471-2466-9-2
PMCID: PMC2633274  PMID: 19121205
20.  Vascular endothelial growth factor: an angiogenic factor reflecting airway inflammation in healthy smokers and in patients with bronchitis type of chronic obstructive pulmonary disease? 
Respiratory Research  2007;8(1):53.
Background
Patients with bronchitis type of chronic obstructive pulmonary disease (COPD) have raised vascular endothelial growth factor (VEGF) levels in induced sputum. This has been associated with the pathogenesis of COPD through apoptotic and oxidative stress mechanisms. Since, chronic airway inflammation is an important pathological feature of COPD mainly initiated by cigarette smoking, aim of this study was to assess smoking as a potential cause of raised airway VEGF levels in bronchitis type COPD and to test the association between VEGF levels in induced sputum and airway inflammation in these patients.
Methods
14 current smokers with bronchitis type COPD, 17 asymptomatic current smokers with normal spirometry and 16 non-smokers were included in the study. VEGF, IL-8, and TNF-α levels in induced sputum were measured and the correlations between these markers, as well as between VEGF levels and pulmonary function were assessed.
Results
The median concentrations of VEGF, IL-8, and TNF-α were significantly higher in induced sputum of COPD patients (1,070 pg/ml, 5.6 ng/ml and 50 pg/ml, respectively) compared to nonsmokers (260 pg/ml, 0.73 ng/ml, and 15.4 pg/ml, respectively, p < 0.05) and asymptomatic smokers (421 pg/ml, 1.27 ng/ml, p < 0.05, and 18.6 pg/ml, p > 0.05, respectively). Significant correlations were found between VEGF levels and pack years (r = 0.56, p = 0.046), IL-8 (r = 0.64, p = 0.026) and TNF-α (r = 0.62, p = 0.031) levels both in asymptomatic and COPD smokers (r = 0.66, p = 0.027, r = 0.67, p = 0.023, and r = 0.82, p = 0.002, respectively). No correlation was found between VEGF levels in sputum and pulmonary function parameters.
Conclusion
VEGF levels are raised in the airways of both asymptomatic and COPD smokers. The close correlation observed between VEGF levels in the airways and markers of airway inflammation in healthy smokers and in smokers with bronchitis type of COPD is suggestive of VEGF as a marker reflecting the inflammatory process that occurs in smoking subjects without alveolar destruction.
doi:10.1186/1465-9921-8-53
PMCID: PMC1939848  PMID: 17631682
21.  Gender associated differences in determinants of quality of life in patients with COPD: a case series study 
Background
The influence of gender on the expression of COPD has received limited attention. Quality of Life (QoL) has become an important outcome in COPD patients. The aim of our study was to explore factors contributing to gender differences in Quality of Life of COPD patients.
Methods
In 146 men and women with COPD from a pulmonary clinic we measured: Saint George's Respiratory Questionnaire (SGRQ), age, smoking history, PaO2, PaCO2, FEV1, FVC, IC/TLC, FRC, body mass index (BMI), 6 minute walk distance (6MWD), dyspnea (modified MRC), degree of comorbidity (Charlson index) and exacerbations in the previous year. We explored differences between genders using Mann-Whitney U-rank test. To investigate the main determinants of QoL, a multiple lineal regression analysis was performed using backward Wald's criteria, with those variables that significantly correlated with SGRQ total scores.
Results
Compared with men, women had worse scores in all domains of the SGRQ (total 38 vs 26, p = 0.01, symptoms 48 vs 39, p = 0.03, activity 53 vs 37, p = 0.02, impact 28 vs 15, p = 0.01). SGRQ total scores correlated in men with: FEV1% (-0.378, p < 0.001), IC/TLC (-0.368, p = 0.002), PaO2 (-0.379, p = 0.001), PaCO2 (0.256, p = 0.05), 6MWD (-0.327, p = 0.005), exacerbations (0.366, p = 0.001), Charlson index (0.380, p = 0.001) and MMRC (0.654, p < 0.001). In women, the scores correlated only with FEV1% (-0.293, p = 0.013) PaO2 (-0.315, p = 0.007), exacerbations (0.290, p = 0.013) and MMRC (0.628, p < 0.001). Regression analysis (B, 95% CI) showed that exercise capacity (0.05, 0.02 to 0.09), dyspnea (17.6, 13.4 to 21.8), IC/TLC (-51.1, -98.9 to -3.2) and comorbidity (1.7, 0.84 to 2.53) for men and dyspnea (9.7, 7.3 to 12.4) and oxygenation (-0.3, -0.6 to -0.01) for women manifested the highest independent associations with SGRQ scores.
Conclusion
In moderate to severe COPD patients attending a pulmonary clinic, there are gender differences in health status scores. In turn, the clinical and physiological variables independently associated with those scores differed in men and women. Attention should be paid to the determinants of QoL scores in women with COPD.
doi:10.1186/1477-7525-4-72
PMCID: PMC1592076  PMID: 17007639
22.  Comparison of clinical features between non-smokers with COPD and smokers with COPD: a retrospective observational study 
Background
Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD); however, the similarities and differences in clinical presentation between smokers and nonsmokers are not fully described in patients with COPD. This study was designed to address this issue in a general teaching hospital in the People’s Republic of China.
Methods
The medical records of patients hospitalized with a lung mass for further evaluation at Zhongshan Hospital, Fudan University, from January 2006 to December 2010 were reviewed and the data of interest were collected. The definition of COPD was according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric criteria. Participants who had a previous exacerbation within 4 weeks of admission, airflow limitation due to abnormalities in the large airways, or with other pulmonary diseases were excluded. Included subjects were divided into nonsmokers with COPD and smokers with COPD by a cutoff of a 5 pack-year smoking history.
Results
A total of 605 subjects were included in the final analysis. The average age was 64.8±8.5 years and 62.0% (375/605) were smokers. Eighty percent of the patients had mild to moderate disease (GOLD grade 1–2). Age and years with COPD were comparable between the two groups. Compared with smokers with COPD, nonsmokers with COPD were more likely to be female, reported less chronic cough and sputum, have less emphysema on radiologic examination, and higher measures of forced expiratory volume in the first second percent predicted (FEV1), forced expiratory volume in one second/forced vital capacity (FEV1/FVC%) percent predicted, maximal voluntary ventilation percent predicted, diffusing capacity of lung (DLCO) percent predicted, and DLCO/alveolar volume percent predicted, with lower levels of residual volume percent predicted and residual volume/total lung capacity percent predicted. There were no significant differences between the two groups with regard to distribution of disease severity, vital capacity percent predicted, total lung capacity percent predicted, PaO2, PaCO2, modified Medical Research Council dyspnea score, wheezing, airway reversibility, and comorbidities. Smoking amount (pack-years) was correlated negatively with FEV1 percent predicted, FEV1/FVC% percent predicted, inspiratory capacity percent predicted, inspiratory capacity/total lung capacity percent predicted, and DLCO percent predicted, and correlated positively with GOLD grade and symptoms.
Conclusion
Non-smokers with COPD had less impairment in airflow limitation and gas exchange, and a lower prevalence of emphysema, chronic cough, and sputum compared with their smoking counterparts. Tobacco cessation is warranted in smokers with COPD.
doi:10.2147/COPD.S52416
PMCID: PMC3890400  PMID: 24426780
chronic obstructive pulmonary disease; smokers; non-smokers; lung function; symptoms; emphysema
23.  Study of the burden on patients with chronic obstructive pulmonary disease 
Background:
Health-related quality of life measures are widely used in patients with chronic obstructive pulmonary disease (COPD). However, they are extremely limited when used to evaluate patients outside the clinical trials. The aim of this study was to analyse the burden of the disease using a simple, validated, self-administered questionnaire specifically developed for patients in daily clinical practice.
Methods:
A total of 3935 patients (74.5% men; mean age, 67 years) participated in a cross-sectional study. The burden of COPD on patients was measured using the Clinical COPD Questionnaire (CCQ). COPD was rated at four levels by the forced expiratory volume in one second (FEV1) according to The Global Initiative for Chronic Obstructive Lung Disease (GOLD) scale.
Results:
The disease mainly affects old men (more than 50% were over 65 years of age) and non-employed men (23% were employed). Of the patients studied, 22.7% continued smoking, especially men (24.4% of men vs. 18.1% of women). Most patients (54%) were diagnosed with moderate stage II COPD. Severity of COPD was lower in women: 29.6% of men had severe COPD compared with 13.7% of women. During the last year, 65.1% had at least one acute exacerbation and 36.6% were admitted to hospital because of COPD exacerbation. No association was found between the body mass index and COPD stage. The variable that most influenced the disease burden was dyspnoea, as progression from grade 0 to grade 4 increased the disease burden by 1.78 points for symptoms, 2.43 for functional state and 1.53 for mental state. The functional classification of COPD also had a significant influence on the disease burden.
Conclusions:
The present findings show that dyspnoea and the degree of airflow limitation are the clinical variables that most affect the burden of COPD from the patient’s point of view.
doi:10.1111/j.1742-1241.2008.01936.x
PMCID: PMC2705822  PMID: 19125996
24.  Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to examine the effectiveness, safety, and cost-effectiveness of noninvasive positive pressure ventilation (NPPV) in the following patient populations: patients with acute respiratory failure (ARF) due to acute exacerbations of chronic obstructive pulmonary disease (COPD); weaning of COPD patients from invasive mechanical ventilation (IMV); and prevention of or treatment of recurrent respiratory failure in COPD patients after extubation from IMV.
Clinical Need and Target Population
Acute Hypercapnic Respiratory Failure
Respiratory failure occurs when the respiratory system cannot oxygenate the blood and/or remove carbon dioxide from the blood. It can be either acute or chronic and is classified as either hypoxemic (type I) or hypercapnic (type II) respiratory failure. Acute hypercapnic respiratory failure frequently occurs in COPD patients experiencing acute exacerbations of COPD, so this is the focus of this evidence-based analysis. Hypercapnic respiratory failure occurs due to a decrease in the drive to breathe, typically due to increased work to breathe in COPD patients.
Technology
There are several treatment options for ARF. Usual medical care (UMC) attempts to facilitate adequate oxygenation and treat the cause of the exacerbation, and typically consists of supplemental oxygen, and a variety of medications such as bronchodilators, corticosteroids, and antibiotics. The failure rate of UMC is high and has been estimated to occur in 10% to 50% of cases.
The alternative is mechanical ventilation, either invasive or noninvasive. Invasive mechanical ventilation involves sedating the patient, creating an artificial airway through endotracheal intubation, and attaching the patient to a ventilator. While this provides airway protection and direct access to drain sputum, it can lead to substantial morbidity, including tracheal injuries and ventilator-associated pneumonia (VAP).
While both positive and negative pressure noninvasive ventilation exists, noninvasive negative pressure ventilation such as the iron lung is no longer in use in Ontario. Noninvasive positive pressure ventilation provides ventilatory support through a facial or nasal mask and reduces inspiratory work. Noninvasive positive pressure ventilation can often be used intermittently for short periods of time to treat respiratory failure, which allows patients to continue to eat, drink, talk, and participate in their own treatment decisions. In addition, patients do not require sedation, airway defence mechanisms and swallowing functions are maintained, trauma to the trachea and larynx are avoided, and the risk for VAP is reduced. Common complications are damage to facial and nasal skin, higher incidence of gastric distension with aspiration risk, sleeping disorders, and conjunctivitis. In addition, NPPV does not allow direct access to the airway to drain secretions and requires patients to cooperate, and due to potential discomfort, compliance and tolerance may be low.
In addition to treating ARF, NPPV can be used to wean patients from IMV through the gradual removal of ventilation support until the patient can breathe spontaneously. Five to 30% of patients have difficultly weaning. Tapering levels of ventilatory support to wean patients from IMV can be achieved using IMV or NPPV. The use of NPPV helps to reduce the risk of VAP by shortening the time the patient is intubated.
Following extubation from IMV, ARF may recur, leading to extubation failure and the need for reintubation, which has been associated with increased risk of nosocomial pneumonia and mortality. To avoid these complications, NPPV has been proposed to help prevent ARF recurrence and/or to treat respiratory failure when it recurs, thereby preventing the need for reintubation.
Research Questions
What is the effectiveness, cost-effectiveness, and safety of NPPV for the treatment of acute hypercapnic respiratory failure due to acute exacerbations of COPD compared with
usual medical care, and
invasive mechanical ventilation?
What is the effectiveness, cost-effectiveness, and safety of NPPV compared with IMV in COPD patients after IMV for the following purposes:
weaning COPD patients from IMV,
preventing ARF in COPD patients after extubation from IMV, and
treating ARF in COPD patients after extubation from IMV?
Research Methods
Literature Search
A literature search was performed on December 3, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), Wiley Cochrane, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Since there were numerous studies that examined the effectiveness of NPPV for the treatment of ARF due to exacerbations of COPD published before 2004, pre-2004 trials which met the inclusion/exclusion criteria for this evidence-based review were identified by hand-searching reference lists of included studies and systematic reviews.
Inclusion Criteria
English language full-reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies performed with patients with a mix of conditions if results are reported for COPD patients separately;
patient population: (Question 1) patients with acute hypercapnic respiratory failure due to an exacerbation of COPD; (Question 2a) COPD patients being weaned from IMV; (Questions 2b and 2c) COPD patients who have been extubated from IMV.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
studies examining noninvasive negative pressure ventilation
studies comparing modes of ventilation
studies comparing patient-ventilation interfaces
studies examining outcomes not listed below, such as physiologic effects including heart rate, arterial blood gases, and blood pressure
Outcomes of Interest
mortality
intubation rates
length of stay (intensive care unit [ICU] and hospital)
health-related quality of life
breathlessness
duration of mechanical ventilation
weaning failure
complications
NPPV tolerance and compliance
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1, otherwise, the results were summarized descriptively. Dichotomous data were pooled into relative risks using random effects models and continuous data were pooled using weighted mean differences with a random effects model. Analyses using data from RCTs were done using intention-to-treat protocols; P values < 0.05 were considered significant. A priori subgroup analyses were planned for severity of respiratory failure, location of treatment (ICU or hospital ward), and mode of ventilation with additional subgroups as needed based on the literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
NPPV for the Treatment of ARF due to Acute Exacerbations of COPD
NPPV Plus Usual Medical Care Versus Usual Medical Care Alone for First Line Treatment
A total of 1,000 participants were included in 11 RCTs1; the sample size ranged from 23 to 342. The mean age of the participants ranged from approximately 60 to 72 years of age. Based on either the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria or the mean percent predicted forced expiratory volume in 1 second (FEV1), 4 of the studies included people with severe COPD, and there was inadequate information to classify the remaining 7 studies by COPD severity. The severity of the respiratory failure was classified into 4 categories using the study population mean pH level as follows: mild (pH ≥ 7.35), moderate (7.30 ≤ pH < 7.35), severe (7.25 ≤ pH < 7.30), and very severe (pH < 7.25). Based on these categories, 3 studies included patients with a mild respiratory failure, 3 with moderate respiratory failure, 4 with severe respiratory failure, and 1 with very severe respiratory failure.
The studies were conducted either in the ICU (3 of 11 studies) or general or respiratory wards (8 of 11 studies) in hospitals, with patients in the NPPV group receiving bilevel positive airway pressure (BiPAP) ventilatory support, except in 2 studies, which used pressure support ventilation and volume cycled ventilation, respectively. Patients received ventilation through nasal, facial, or oronasal masks. All studies specified a protocol or schedule for NPPV delivery, but this varied substantially across the studies. For example, some studies restricted the amount of ventilation per day (e.g., 6 hours per day) and the number of days it was offered (e.g., maximum of 3 days); whereas, other studies provided patients with ventilation for as long as they could tolerate it and recommended it for much longer periods of time (e.g., 7 to 10 days). These differences are an important source of clinical heterogeneity between the studies. In addition to NPPV, all patients in the NPPV group also received UMC. Usual medical care varied between the studies, but common medications included supplemental oxygen, bronchodilators, corticosteroids, antibiotics, diuretics, and respiratory stimulators.
The individual quality of the studies ranged. Common methodological issues included lack of blinding and allocation concealment, and small sample sizes.
Need for Endotracheal Intubation
Eleven studies reported the need for endotracheal intubation as an outcome. The pooled results showed a significant reduction in the need for endotracheal intubation in the NPPV plus UMC group compared with the UMC alone group (relative risk [RR], 0.38; 95% confidence interval [CI], 0.28−0.50). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Inhospital Mortality
Nine studies reported inhospital mortality as an outcome. The pooled results showed a significant reduction in inhospital mortality in the NPPV plus UMC group compared with the UMC group (RR, 0.53; 95% CI, 0.35−0.81). When subgrouped by severity of respiratory failure, the results remained significant for the moderate and severe respiratory failure groups.
GRADE: moderate
Hospital Length of Stay
Eleven studies reported hospital length of stay (LOS) as an outcome. The pooled results showed a significant decrease in the mean length of stay for the NPPV plus UMC group compared with the UMC alone group (weighted mean difference [WMD], −2.68 days; 95% CI, −4.41 to −0.94 days). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Complications
Five studies reported complications. Common complications in the NPPV plus UMC group included pneumonia, gastrointestinal disorders or bleeds, skin abrasions, eye irritation, gastric insufflation, and sepsis. Similar complications were observed in the UMC group including pneumonia, sepsis, gastrointestinal disorders or bleeds, pneumothorax, and complicated endotracheal intubations. Many of the more serious complications in both groups occurred in those patients who required endotracheal intubation. Three of the studies compared complications in the NPPV plus UMC and UMC groups. While the data could not be pooled, overall, the NPPV plus UMC group experienced fewer complications than the UMC group.
GRADE: low
Tolerance/Compliance
Eight studies reported patient tolerance or compliance with NPPV as an outcome. NPPV intolerance ranged from 5% to 29%. NPPV tolerance was generally higher for patients with more severe respiratory failure. Compliance with the NPPV protocol was reported by 2 studies, which showed compliance decreases over time, even over short periods such as 3 days.
NPPV Versus IMV for the Treatment of Patients Who Failed Usual Medical Care
A total of 205 participants were included in 2 studies; the sample sizes of these studies were 49 and 156. The mean age of the patients was 71 to 73 years of age in 1 study, and the median age was 54 to 58 years of age in the second study. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, patients in 1 study had very severe COPD. The COPD severity could not be classified in the second study. Both studies had study populations with a mean pH less than 7.23, which was classified as very severe respiratory failure in this analysis. One study enrolled patients with ARF due to acute exacerbations of COPD who had failed medical therapy. The patient population was not clearly defined in the second study, and it was not clear whether they had to have failed medical therapy before entry into the study.
Both studies were conducted in the ICU. Patients in the NPPV group received BiPAP ventilatory support through nasal or full facial masks. Patients in the IMV group received pressure support ventilation.
Common methodological issues included small sample size, lack of blinding, and unclear methods of randomization and allocation concealment. Due to the uncertainty about whether both studies included the same patient population and substantial differences in the direction and significance of the results, the results of the studies were not pooled.
Mortality
Both studies reported ICU mortality. Neither study showed a significant difference in ICU mortality between the NPPV and IMV groups, but 1 study showed a higher mortality rate in the NPPV group (21.7% vs. 11.5%) while the other study showed a lower mortality rate in the NPPV group (5.1% vs. 6.4%). One study reported 1-year mortality and showed a nonsignificant reduction in mortality in the NPPV group compared with the IMV group (26.1% vs. 46.1%).
GRADE: low to very low
Intensive Care Unit Length of Stay
Both studies reported LOS in the ICU. The results were inconsistent. One study showed a statistically significant shorter LOS in the NPPV group compared with the IMV group (5 ± 1.35 days vs. 9.29 ± 3 days; P < 0.001); whereas, the other study showed a nonsignificantly longer LOS in the NPPV group compared with the IMV group (22 ± 19 days vs. 21 ± 20 days; P = 0.86).
GRADE: very low
Duration of Mechanical Ventilation
Both studies reported the duration of mechanical ventilation (including both invasive and noninvasive ventilation). The results were inconsistent. One study showed a statistically significant shorter duration of mechanical ventilation in the NPPV group compared with the IMV group (3.92 ± 1.08 days vs. 7.17 ± 2.22 days; P < 0.001); whereas, the other study showed a nonsignificantly longer duration of mechanical ventilation in the NPPV group compared with the IMV group (16 ± 19 days vs. 15 ± 21 days; P = 0.86). GRADE: very low
Complications
Both studies reported ventilator-associated pneumonia and tracheotomies. Both showed a reduction in ventilator-associated pneumonia in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 34.6%, P = 0.07; and 6.4% vs. 37.2%, P < 0.001, respectively). Similarly, both studies showed a reduction in tracheotomies in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 23.1%, P = 0.29; and 6.4% vs. 34.6%; P < 0.001).
GRADE: very low
Other Outcomes
One of the studies followed patients for 12 months. At the end of follow-up, patients in the NPPV group had a significantly lower rate of needing de novo oxygen supplementation at home. In addition, the IMV group experienced significant increases in functional limitations due to COPD, while no increase was seen in the NPPV group. Finally, no significant differences were observed for hospital readmissions, ICU readmissions, and patients with an open tracheotomy, between the NPPV and IMV groups.
NPPV for Weaning COPD Patients From IMV
A total of 80 participants were included in the 2 RCTs; the sample sizes of the studies were 30 and 50 patients. The mean age of the participants ranged from 58 to 69 years of age. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, both studies included patients with very severe COPD. Both studies also included patients with very severe respiratory failure (mean pH of the study populations was less than 7.23). Chronic obstructive pulmonary disease patients receiving IMV were enrolled in the study if they failed a T-piece weaning trial (spontaneous breathing test), so they could not be directly extubated from IMV.
Both studies were conducted in the ICU. Patients in the NPPV group received weaning using either BiPAP or pressure support ventilation NPPV through a face mask, and patients in the IMV weaning group received pressure support ventilation. In both cases, weaning was achieved by tapering the ventilation level.
The individual quality of the studies ranged. Common methodological problems included unclear randomization methods and allocation concealment, lack of blinding, and small sample size.
Mortality
Both studies reported mortality as an outcome. The pooled results showed a significant reduction in ICU mortality in the NPPV group compared with the IMV group (RR, 0.47; 95% CI, 0.23−0.97; P = 0.04).
GRADE: moderate
Intensive Care Unit Length of Stay
Both studies reported ICU LOS as an outcome. The pooled results showed a nonsignificant reduction in ICU LOS in the NPPV group compared with the IMV group (WMD, −5.21 days; 95% CI, −11.60 to 1.18 days).
GRADE: low
Duration of Mechanical Ventilation
Both studies reported duration of mechanical ventilation (including both invasive and noninvasive ventilation) as an outcome. The pooled results showed a nonsignificant reduction in duration of mechanical ventilation (WMD, −3.55 days; 95% CI, −8.55 to 1.44 days).
GRADE: low
Nosocomial Pneumonia
Both studies reported nosocominal pneumonia as an outcome. The pooled results showed a significant reduction in nosocomial pneumonia in the NPPV group compared with the IMV group (RR, 0.14; 95% CI, 0.03−0.71; P = 0.02).
GRADE: moderate
Weaning Failure
One study reported a significant reduction in weaning failure in the NPPV group compared with the IMV group, but the results were not reported in the publication. In this study, 1 of 25 patients in the NPPV group and 2 of 25 patients in the IMV group could not be weaned after 60 days in the ICU.
NPPV After Extubation of COPD Patients From IMV
The literature was reviewed to identify studies examining the effectiveness of NPPV compared with UMC in preventing recurrence of ARF after extubation from IMV or treating acute ARF which has recurred after extubation from IMV. No studies that included only COPD patients or reported results for COPD patients separately were identified for the prevention of ARF postextubation.
One study was identified for the treatment of ARF in COPD patients that recurred within 48 hours of extubation from IMV. This study included 221 patients, of whom 23 had COPD. A post hoc subgroup analysis was conducted examining the rate of reintubation in the COPD patients only. A nonsignificant reduction in the rate of reintubation was observed in the NPPV group compared with the UMC group (7 of 14 patients vs. 6 of 9 patients, P = 0.67). GRADE: low
Conclusions
NPPV Plus UMC Versus UMC Alone for First Line Treatment of ARF due to Acute Exacerbations of COPD
Moderate quality of evidence showed that compared with UMC, NPPV plus UMC significantly reduced the need for endotracheal intubation, inhospital mortality, and the mean length of hospital stay.
Low quality of evidence showed a lower rate of complications in the NPPV plus UMC group compared with the UMC group.
NPPV Versus IMV for the Treatment of ARF in Patients Who Have Failed UMC
Due to inconsistent and low to very low quality of evidence, there was insufficient evidence to draw conclusions on the comparison of NPPV versus IMV for patients who failed UMC.
NPPV for Weaning COPD Patients From IMV
Moderate quality of evidence showed that weaning COPD patients from IMV using NPPV results in significant reductions in mortality, nosocomial pneumonia, and weaning failure compared with weaning with IMV.
Low quality of evidence showed a nonsignificant reduction in the mean LOS and mean duration of mechanical ventilation in the NPPV group compared with the IMV group.
NPPV for the Treatment of ARF in COPD Patients After Extubation From IMV
Low quality of evidence showed a nonsignificant reduction in the rate of reintubation in the NPPV group compared with the UMC group; however, there was inadequate evidence to draw conclusions on the effectiveness of NPPV for the treatment of ARF in COPD patients after extubation from IMV
PMCID: PMC3384377  PMID: 23074436
25.  Passive smoking and chronic obstructive pulmonary disease: cross-sectional analysis of data from the Health Survey for England 
BMJ Open  2011;1(2):e000153.
Objectives
There is increasing evidence that passive smoking is associated with chronic respiratory diseases, but its association with chronic obstructive pulmonary disease (COPD) requires more study. In this cross-sectional analysis of data from 3 years of the Health Survey for England, the association between passive smoking exposure and risk of COPD is evaluated.
Design
Cross-sectional analysis of the 1995, 1996 and 2001 Health Surveys for England including participants of white ethnicity, aged 40+ years with valid lung function data. COPD was defined using the lower limit of normal spirometric criteria for airflow obstruction. Standardised questions elicited self-reported information on demography, smoking history, ethnicity, occupation, asthma and respiratory symptoms (dyspnoea, chronic cough, chronic phlegm, wheeze). Passive smoking was measured by self-report of hours of exposure to cigarette smoke per week.
Results
Increasing passive smoke exposure was independently associated with increased risk of COPD, with adjusted OR 1.05 (95% CI 0.93 to 1.18) for 1–19 h and OR 1.18 (95% CI 1.01 to 1.39) for 20 or more hours of exposure per week. Similar patterns (although attenuated and non-significant) were observed among never smokers. More marked dose–response relationships were observed between passive smoking exposure and respiratory symptoms, but the most marked effects were on the development of clinically significant COPD (airflow obstruction plus symptoms), where the risk among never smokers was doubled (OR 1.98 (95% CI 1.03 to 3.79)) if exposure exceeded 20 h/week.
Conclusion
This analysis adds weight to the evidence suggesting an association between passive smoking exposure and COPD.
Article summary
Article focus
Passive exposure to cigarette smoke is established as an important independent risk factor for the development of chronic conditions such as heart disease and lung cancer.
Although there is growing evidence implicating passive smoking in asthma and other respiratory diseases, the evidence for its effect on chronic obstructive pulmonary disease (COPD) is inconsistent.
Using cross-sectional data from the annual Health Survey for England, we examined the association between self-reported exposure to passive smoking and COPD.
Key messages
We have demonstrated a significant dose–response relationship between hours of exposure to passive smoking and increasing risk of COPD.
The most marked effects were observed on the development of clinically significant COPD (airflow obstruction plus symptoms), where the risk among never smokers was doubled (OR 1.98 (95% CI 1.03 to 3.79)) if exposure exceeded 20 h/week.
Passive smoking is prevalent worldwide, and even after the 2007 public smoking ban in the UK, 20% of the adult English population are still exposed to up to 20 h of passive smoking per week, with 5% exposed to more than 20 h/week; further measures are needed to investigate and reduce exposures in the home and elsewhere.
Strengths and limitations of this study
Our study has the advantage of being a large sample representative of the English population (>21 000 participants), conducted over 3 separate years, with a standardised protocol and objective measure of lung function.
However, due to the cross-sectional nature of the design, temporal associations cannot necessarily be inferred.
The Health Survey for England was not designed for the specific analyses presented in this paper, and thus some of the measures are crude.
Self-reported passive smoke exposure is only a proxy for true exposure levels, but is accepted as the most practical method of assessment.
doi:10.1136/bmjopen-2011-000153
PMCID: PMC3191589  PMID: 22021874

Results 1-25 (1463433)