Search tips
Search criteria

Results 1-25 (849732)

Clipboard (0)

Related Articles

1.  Determination of Endothelial Stalk versus Tip Cell Potential during Angiogenesis by H2.0-like Homeobox-1 
Current Biology  2012;22(19):1789-1794.
Tissue branching morphogenesis requires the hierarchical organization of sprouting cells into leading “tip” and trailing “stalk” cells [1, 2]. During new blood vessel branching (angiogenesis), endothelial tip cells (TCs) lead sprouting vessels, extend filopodia, and migrate in response to gradients of the secreted ligand, vascular endothelial growth factor (Vegf) [3]. In contrast, adjacent stalk cells (SCs) trail TCs, generate the trunk of new vessels, and critically maintain connectivity with parental vessels. Here, we establish that h2.0-like homeobox-1 (Hlx1) determines SC potential, which is critical for angiogenesis during zebrafish development. By combining a novel pharmacological strategy for the manipulation of angiogenic cell behavior in vivo with transcriptomic analyses of sprouting cells, we identify the uniquely sprouting-associated gene, hlx1. Expression of hlx1 is almost entirely restricted to sprouting endothelial cells and is excluded from adjacent nonangiogenic cells. Furthermore, Hlx1 knockdown reveals its essential role in angiogenesis. Importantly, mosaic analyses uncover a cell-autonomous role for Hlx1 in the maintenance of SC identity in sprouting vessels. Hence, Hlx1-mediated maintenance of SC potential regulates angiogenesis, a finding that may have novel implications for sprouting morphogenesis of other tissues.
► Expression of hlx1 is associated with angiogenic cell behavior in vivo ► hlx1 selectively marks sprouting endothelial cells during zebrafish development ► Hlx1 is required for intersegmental vessel angiogenesis in zebrafish embryos ► Hlx1 cell-autonomously maintains endothelial stalk cell potential
PMCID: PMC3471071  PMID: 22921365
2.  Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis 
PLoS Computational Biology  2009;5(10):e1000549.
Vascular abnormalities contribute to many diseases such as cancer and diabetic retinopathy. In angiogenesis new blood vessels, headed by a migrating tip cell, sprout from pre-existing vessels in response to signals, e.g., vascular endothelial growth factor (VEGF). Tip cells meet and fuse (anastomosis) to form blood-flow supporting loops. Tip cell selection is achieved by Dll4-Notch mediated lateral inhibition resulting, under normal conditions, in an interleaved arrangement of tip and non-migrating stalk cells. Previously, we showed that the increased VEGF levels found in many diseases can cause the delayed negative feedback of lateral inhibition to produce abnormal oscillations of tip/stalk cell fates. Here we describe the development and implementation of a novel physics-based hierarchical agent model, tightly coupled to in vivo data, to explore the system dynamics as perpetual lateral inhibition combines with tip cell migration and fusion. We explore the tipping point between normal and abnormal sprouting as VEGF increases. A novel filopodia-adhesion driven migration mechanism is presented and validated against in vivo data. Due to the unique feature of ongoing lateral inhibition, ‘stabilised’ tip/stalk cell patterns show sensitivity to the formation of new cell-cell junctions during fusion: we predict cell fates can reverse. The fusing tip cells become inhibited and neighbouring stalk cells flip fate, recursively providing new tip cells. Junction size emerges as a key factor in establishing a stable tip/stalk pattern. Cell-cell junctions elongate as tip cells migrate, which is shown to provide positive feedback to lateral inhibition, causing it to be more susceptible to pathological oscillations. Importantly, down-regulation of the migratory pathway alone is shown to be sufficient to rescue the sprouting system from oscillation and restore stability. Thus we suggest the use of migration inhibitors as therapeutic agents for vascular normalisation in cancer.
Author Summary
Abnormal vasculature exacerbates many diseases such as cancer and diabetic retinopathy. In angiogenesis new blood vessels, headed by a migrating tip cell, sprout from pre-existing vessels in response to chemical signals. The signals are released from newly oxygen deficient tissue. The signals are known to be different in disease and are thought to cause the process of angiogenesis to progress abnormally, though the reasons for this remain unclear. Normalisation of angiogenesis has great potential as a therapeutic strategy; it has been shown to reduce metastasis and improve drug delivery in tumours. Here we focus on the behaviours of three inter-related initial angiogenic pathways associated with changes in tissue signal conditions, utilising both in silico and in vivo approaches. By the construction and implementation of a novel computational model for cell motility and signal processing we present a new theory on why angiogenesis exhibits such sensitivity to signal changes and show that the behaviour in disease is surprisingly more robust than normal functioning. This we attribute to the positive feedback of cell migration reinforcing abnormal oscillations in cell fate selection. We make the unique prediction that normalisation could be achieved by reducing cell migration alone.
PMCID: PMC2762315  PMID: 19876379
3.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia 
The Journal of Cell Biology  2003;161(6):1163-1177.
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.
PMCID: PMC2172999  PMID: 12810700
VEGF; endothelial cell; filopodia; astrocyte; migration; proliferation
4.  Comparing the angiogenic potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells 
Angiogenesis is a critical part of the endogenous repair process in brain injury and disease, and requires at least two sequential steps. First, angiogenic sprouting of endothelial cells occurs, which entails the initial proliferation of endothelial cells and remodeling of the surrounding extracellular matrix. Second, vessel stabilization is necessary to prevent vascular regression, which relies on vascular smooth muscle recruitment to surround the young vessels. Marrow stromal cells (MSCs) have been shown to promote revascularization after hindlimb ischemia, cardiac ischemia, and stroke. SB623 cells are derived from marrow stromal cells by transfection with a Notch1 intracellular domain (NICD)-expressing plasmid and are known to elicit functional improvement in experimental stroke. These cells are currently used in human clinical testing for treatment of chronic stroke. In the current study, the angiogenic property of SB623 cells was investigated using cell-based assays.
Angiogenic paracrine factors secreted by SB623 cells and the parental MSCs were identified using the Qantibody Human Angiogenesis Array. To measure the angiogenic activity of conditioned medium from SB623 cells and MSCs, endothelial tube formation in the human umbilical vein endothelial cell (HUVEC) assay and endothelial cell sprouting and branching in the rodent aortic ring assay were quantified. To validate the angiogenic contribution of VEGF in conditioned medium, endothelial cells and aortic rings were treated with SU5416, which inhibits VEGFR2 at low dose.
Conditioned medium from SB623 cells promoted survival and proliferation of endothelial cells under serum-deprived conditions and supports HUVEC vascular tube formation. In a rodent aortic ring assay, there was enhanced endothelial sprouting and branching in response to SB623-derived conditioned medium. SU5416 treatment partially reversed the effect of conditioned medium on endothelial cell survival and proliferation while completely abrogate HUVEC tube formation and endothelial cell sprouting and branching in aortic ring assays.
These data indicate that SB623 cell-secreted angiogenic factors promoted several aspects of angiogenesis, which likely contribute to promoting recovery in the injured brain.
PMCID: PMC3615967  PMID: 23531336
Marrow stromal cells; SB623 cells; Angiogenesis; Stroke; Aortic ring assay; HUVECs
5.  Nestin expressing progenitor cells during establishment of the neural retina and its vasculature 
Anatomy & Cell Biology  2012;45(1):38-46.
In order to test if nestin is a useful marker for various types of progenitor cells, we explored nestin expression in the retina during development. Nestin expression was co-evaluated with bromodeoxyuridine (BrdU) labeling and Griffonia simplicifolia isolectin B4 (GSIB4) histochemistry. Nestin immunoreactivity appears in cell soma of dividing neural progenitor cells and their leading processes in retinas from embryonic day (E) 13 to E20, in accordance with a BrdU-labeled pattern. At postnatal day (P) 5, it is restricted to the end feet of Müller cells. BrdU-labeled nuclei were mainly in the inner part of the inner nuclear layer in postnatal neonates. The retinal vessels demarcated with GSIB4-positive endothelial cells were first distributed in the nerve fiber layer from P3. Afterward the vascular branches sprouted and penetrated deeply into the retina. The endothelial cells positive for GSIB4 and the pericytes in the microvessels were additionally immunoreactive for nestin. Interestingly, the presumed migrating microglial cells showing only GSIB4 reactivity preceded the microvessels throughout the neuroblast layer during vascular sprouting and extension. These findings may suggest that nestin expression represents the proliferation and movement potential of the neural progenitor cells as well as the progenitor cells of the endothelial cell and the pericyte during retinal development. Thus, Müller glial cells might be potential neural progenitor cells of the retina, and the retinal microvasculature established by both the endothelial and the pericyte progenitor cells via vasculogenesis along microglia migrating routes sustains its angiogenic potential.
PMCID: PMC3328739  PMID: 22536550
Neurogenesis; Vasculogenesis; Retina; Nestin; Proliferation; Migration
6.  Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis 
The translocator protein (18 kDa) (TSPO) is a mitochondrial protein expressed on reactive glial cells and a biomarker for gliosis in the brain. TSPO ligands have been shown to reduce neuroinflammation in several mouse models of neurodegeneration. Here, we analyzed TSPO expression in mouse and human retinal microglia and studied the effects of the TSPO ligand XBD173 on microglial functions.
TSPO protein analyses were performed in retinoschisin-deficient mouse retinas and human retinas. Lipopolysaccharide (LPS)-challenged BV-2 microglial cells were treated with XBD173 and TSPO shRNAs in vitro and pro-inflammatory markers were determined by qRT-PCR. The migration potential of microglia was determined with wound healing assays and the proliferation was studied with Fluorescence Activated Cell Sorting (FACS) analysis. Microglial neurotoxicity was estimated by nitrite measurement and quantification of caspase 3/7 levels in 661 W photoreceptors cultured in the presence of microglia-conditioned medium. The effects of XBD173 on filopodia formation and phagocytosis were analyzed in BV-2 cells and human induced pluripotent stem (iPS) cell-derived microglia (iPSdM). The morphology of microglia was quantified in mouse retinal explants treated with XBD173.
TSPO was strongly up-regulated in microglial cells of the dystrophic mouse retina and also co-localized with microglia in human retinas. Constitutive TSPO expression was high in the early postnatal Day 3 mouse retina and declined to low levels in the adult tissue. TSPO mRNA and protein were also strongly induced in LPS-challenged BV-2 microglia while the TSPO ligand XBD173 efficiently suppressed transcription of the pro-inflammatory marker genes chemokine (C-C motif) ligand 2 (CCL2), interleukin 6 (IL6) and inducible nitric oxide (NO)-synthase (iNOS). Moreover, treatment with XBD173 significantly reduced the migratory capacity and proliferation of microglia, their level of NO secretion and their neurotoxic activity on 661 W photoreceptor cells. Furthermore, XBD173 treatment of murine and human microglial cells promoted the formation of filopodia and increased their phagocytic capacity to ingest latex beads or photoreceptor debris. Finally, treatment with XBD173 reversed the amoeboid alerted phenotype of microglial cells in explanted organotypic mouse retinal cultures after challenge with LPS.
These findings suggest that TSPO is highly expressed in reactive retinal microglia and a promising target to control microglial reactivity during retinal degeneration.
PMCID: PMC3895821  PMID: 24397957
Translocator protein (18 kDa); Microglia; Retinal degeneration; Phagocytosis
7.  Reciprocal interactions of mouse bone marrow-derived mesenchymal stem cells and BV2 microglia after lipopolysaccharide stimulation 
Mesenchymal stem cells (MSCs) are immunosuppressive, but we lack an understanding of how these adult stem cells are in turn affected by immune cells and the surrounding tissue environment. As MSCs have stromal functions and exhibit great plasticity, the influence of an inflamed microenvironment on their responses is important to determine. MSCs downregulate microglial inflammatory responses, and here we describe the mutual effects of coculturing mouse bone marrow MSCs with BV2 microglia in a lipopolysaccharide (LPS) inflammatory paradigm.
Mouse MSCs were cultured from femoral and tibial bone marrow aspirates and characterized. MSCs were cocultured with BV2 microglia at four seeding-density ratios (1:0.2, 1:0.1, 1:0.02, and 1:0.01 (BV2/MSC)), and stimulated with 1 μg/ml LPS. In certain assays, MSCs were separated from BV2 cells with a cell-culture insert to determine the influence of soluble factors on downstream responses. Inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine (C-C motif) ligand 2 (CCL2) were measured in cocultures, and MSC and BV2 chemotactic ability determined by migration assays.
We demonstrated MSCs to increase expression of NO and IL-6 and decrease TNF-α in LPS-treated cocultures. These effects are differentially mediated by soluble factors and cell-to-cell contact. In response to an LPS stimulus, MSCs display distinct behaviors, including expressing IL-6 and very high levels of the chemokine CCL2. Microglia increase their migration almost fourfold in the presence of LPS, and interestingly, MSCs provide an equal impetus for microglia locomotion. MSCs do not migrate toward LPS but migrate toward microglia, with their chemotaxis increasing when microglia are activated. Similarly, MSCs do not produce NO when exposed to LPS, but secrete large amounts when exposed to soluble factors from activated microglia. This demonstrates that certain phenotypic changes of MSCs are governed by inflammatory microglia, and not by the inflammatory stimulus. Nonetheless, LPS appears to "prime" the NO-secretory effects of MSCs, as prior treatment with LPS triggers a bigger NO response from MSCs after exposure to microglial soluble factors.
These effects demonstrate the multifaceted and reciprocal interactions of MSCs and microglia within an inflammatory milieu.
PMCID: PMC3706938  PMID: 23356521
8.  Gas6 Stimulates Angiogenesis of Human Retinal Endothelial Cells and of Zebrafish Embryos via ERK1/2 Signaling 
PLoS ONE  2014;9(1):e83901.
To determine if growth arrest-specific 6 (Gas6) plays an important role in the regulation of angiogenesis in human retinal microvascular endothelial cells (HRMECs) and in vessel development of zebrafish.
Proliferation, wound-healing cell migration, and tube formation were measured in HRMECs treated with recombinant human Gas6 (rhGas6). Sprague-Dawley rat aortas in Matrigels were treated with rhGas6, and microvessel sprouting emanating from arterial rings was analyzed. Transgenic zebrafish embryos (flk:GFP) were microinjected with rhGas6 at 50 hours post-fertilization (hpf), and ectopic sprouting of subintestinal vessels (SIVs) was observed under a confocal microscope. Morpholino oligonucleotides (MOs) were microinjected to knockdown gas6 in zebrafish embryos, and intersegmental vessel impairment was observed. The effect of the extracellular signal-regulated kinase (ERK1/2) inhibitor on the migration of HRMECs and on vessel development in zebrafish embryos was tested.
rhGas6 stimulated proliferation, migration, and tube formation in HRMECs in a dose-dependent manner. In rat aortas, rhGas6 induced vessel outgrowth, and the sprouting length was longer than that of controls. The rhGas6-microinjected zebrafish embryos had significantly increased vessel outgrowth in the SIVs. Recombinant human vascular endothelial growth factor (rhVEGF) served as a positive control. Knockdown of gas6 inhibited angiogenesis in the developing vessels of zebrafish. The ERK1/2 inhibitor inhibited HRMEC migration and intersegmental vessel formation in zebrafish embryos.
These data suggest that Gas6 plays a pivotal role in proliferation, migration, and sprouting of angiogenic endothelial cells in the retina and in zebrafish embryos. Furthermore, Gas6 induced angiogenic processes are induced via phosphorylation of ERK1/2.
PMCID: PMC3883657  PMID: 24409287
9.  Fatty Acid Binding Protein 4 Deficiency Protects against Oxygen-Induced Retinopathy in Mice 
PLoS ONE  2014;9(5):e96253.
Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4−/− mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4−/− OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies.
PMCID: PMC4011730  PMID: 24802082
10.  The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase 
PLoS ONE  2014;9(4):e95731.
Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved.
Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM.
Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM.
The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.
PMCID: PMC3995762  PMID: 24755675
11.  Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth 
PLoS Computational Biology  2008;4(9):e1000163.
Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier–Graner–Hogeweg model (also called Cellular Potts Model) simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller–Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin–mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface–normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell–cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.
Author Summary
A better understanding of the mechanisms by which endothelial cells (the cells lining the inner walls of blood vessels) organize into blood vessels is crucial if we need to enhance or suppress blood vessel growth under pathological conditions, including diabetes, wound healing, and tumor growth. During embryonic development, endothelial cells initially self-organize into a network of solid cords via blood vessel growth. The vascular network expands by splitting of existing blood vessels and by sprouting. Using computer simulations, we have captured a small set of biologically plausible cell behaviors that can reproduce the initial self-organization of endothelial cells, the sprouting of existing vessels, and the immediately subsequent remodeling of the resulting networks. In this model, endothelial cells both secrete diffusible chemoattractants and move up gradients of those chemicals by extending and retracting small pseudopods. By itself, this behavior causes simulated cells to accumulate to aggregate into large, round clusters. We propose that endothelial cells stop extending pseudopods along a given section of cell membrane as soon as the membrane touches the membrane of another endothelial cell (contact inhibition). Adding such contact-inhibition to our simulations allows vascular cords to form sprouts under a wide range of conditions.
PMCID: PMC2528254  PMID: 18802455
12.  Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina 
Microglia and Müller cells are prominent participants in retinal responses to injury and disease that shape eventual tissue adaptation or damage. This investigation examined how microglia and Müller cells interact with each other following initial microglial activation.
Mouse Müller cells were cultured alone, or co-cultured with activated or unactivated retinal microglia, and their morphological, molecular, and functional responses were evaluated. Müller cell-feedback signaling to microglia was studied using Müller cell-conditioned media. Corroborative in vivo analyses of retinal microglia-Müller cell interactions in the mouse retina were also performed.
Our results demonstrate that Müller cells exposed to activated microglia, relative to those cultured alone or with unactivated microglia, exhibit marked alterations in cell morphology and gene expression that differed from those seen in chronic gliosis. These Müller cells demonstrated in vitro (1) an upregulation of growth factors such as GDNF and LIF, and provide neuroprotection to photoreceptor cells, (2) increased pro-inflammatory factor production, which in turn increased microglial activation in a positive feedback loop, and (3) upregulated chemokine and adhesion protein expression, which allowed Müller cells to attract and adhere to microglia. In vivo activation of microglia by intravitreal injection of lipopolysaccharide (LPS) also induced increased Müller cell-microglia adhesion, indicating that activated microglia may translocate intraretinally in a radial direction using Müller cell processes as an adhesive scaffold.
Our findings demonstrate that activated microglia are able to influence Müller cells directly, and initiate a program of bidirectional microglia-Müller cell signaling that can mediate adaptive responses within the retina following injury. In the acute aftermath following initial microglia activation, Müller cell responses may serve to augment initial inflammatory responses across retinal lamina and to guide the intraretinal mobilization of migratory microglia using chemotactic cues and adhesive cell contacts. Understanding adaptive microglia-Müller cell interactions in injury responses can help discover therapeutic cellular targets for intervention in retinal disease.
PMCID: PMC3251543  PMID: 22152278
Müller cell; microglia; retina; cytokine; cellular interaction; gliosis; migration; adhesion; inflammation; neuroprotection
13.  MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells 
PLoS Computational Biology  2012;8(10):e1002724.
The healing of a fracture depends largely on the development of a new blood vessel network (angiogenesis) in the callus. During angiogenesis tip cells lead the developing sprout in response to extracellular signals, amongst which vascular endothelial growth factor (VEGF) is critical. In order to ensure a correct development of the vasculature, the balance between stalk and tip cell phenotypes must be tightly controlled, which is primarily achieved by the Dll4-Notch1 signaling pathway. This study presents a novel multiscale model of osteogenesis and sprouting angiogenesis, incorporating lateral inhibition of endothelial cells (further denoted MOSAIC model) through Dll4-Notch1 signaling, and applies it to fracture healing. The MOSAIC model correctly predicted the bone regeneration process and recapitulated many experimentally observed aspects of tip cell selection: the salt and pepper pattern seen for cell fates, an increased tip cell density due to the loss of Dll4 and an excessive number of tip cells in high VEGF environments. When VEGF concentration was even further increased, the MOSAIC model predicted the absence of a vascular network and fracture healing, thereby leading to a non-union, which is a direct consequence of the mutual inhibition of neighboring cells through Dll4-Notch1 signaling. This result was not retrieved for a more phenomenological model that only considers extracellular signals for tip cell migration, which illustrates the importance of implementing the actual signaling pathway rather than phenomenological rules. Finally, the MOSAIC model demonstrated the importance of a proper criterion for tip cell selection and the need for experimental data to further explore this. In conclusion, this study demonstrates that the MOSAIC model creates enhanced capabilities for investigating the influence of molecular mechanisms on angiogenesis and its relation to bone formation in a more mechanistic way and across different time and spatial scales.
Author Summary
The healing of a fracture largely depends on the development of a new blood vessel network (angiogenesis), which can be investigated and simulated with mathematical models. The current mathematical models of angiogenesis during fracture healing do not, however, implement all relevant biological scales (e.g. a tissue, cellular and intracellular level) rigorously in a multiscale framework. This study established a novel multiscale platform of angiogenesis during fracture healing (called MOSAIC) which allowed us to investigate the interactions of several influential factors across the different biological scales. We focused on the biological process of tip cell selection, during which a specific cell of a blood vessel, the “tip cell”, is selected to migrate away from the original vessel and lead the new branch. After showing that the MOSAIC model is able to correctly predict the bone regeneration process as well as many experimentally observed aspects of tip cell selection, we have used the model to investigate the influence of stimulating signals on the development of the vasculature and the progression of healing. These results raised an important biological question concerning the criterion for tip cell selection. This study demonstrates the potential of multiscale modeling to contribute to the understanding of biological processes like angiogenesis.
PMCID: PMC3469420  PMID: 23071433
14.  Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy 
PLoS Computational Biology  2006;2(9):e127.
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 μm) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 μm) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 μm long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.
It is not currently possible to experimentally quantify the gradients of protein concentration in the extracellular space in vivo. However, the concentration gradients of vascular endothelial growth factor (VEGF) are essential for both initiation and directed guidance of new blood vessels. The authors develop a computational model of VEGF transport in tissue in vivo (skeletal muscle, though the method is applicable to other tissues and other proteins) with realistic geometry and including biophysical interactions of VEGF, its receptors, and the extracellular matrix. Using this model, the authors predict for the first time the distribution of VEGF concentration and VEGF receptor activation throughout the tissue. VEGF concentration gradients are significant, up to 12% change in VEGF concentration over 10 μm in resting muscle. Transplanting VEGF-overexpressing myocytes (for therapeutic induction of blood vessel growth) increases the gradients significantly. Endothelial cells in sprouting vessels are approximately 50 μm long, and therefore the predicted gradients across the cell are high and sufficient for chemotactic guidance of the new vessels. The VEGF concentration gradients also result in significant heterogeneity in the activation of VEGF receptors on blood vessels throughout the tissue, a possible reason for the sporadic nature of sprout initiation.
PMCID: PMC1570371  PMID: 17002494
15.  Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis 
Gastroenterology  2012;144(3):613-623.e9.
Background & Aims
In intestinal inflammation the gut microbiota induces an innate immune response by activating epithelial and immune cells that initiate or maintain inflammation. We investigated whether the microbiota can also activate local microvascular cells and induce angiogenesis.
Human intestinal microvascular endothelial cells (HIMEC) and intestinal fibroblasts (HIF) were exposed to bacterial ligands specific for TLR2/6 and 4, and NOD1 and NOD2, and cell proliferation, migration, transmigration, tube formation and production of pro-angiogenic factors were measured. The ability of the ligands to induce ex vivo vessel sprouting in an aortic ring assay and in vivo angiogenesis using a collagen gel assay were also assessed.
Bacterial ligands induced proliferation, migration, transmigration, tube formation of HIMEC, vessel sprouting and in vivo angiogenesis; they also stimulated production of angiogenic factors from HIMEC and HIF, and HIF-derived angiogenic factors promoted HIMEC proliferation. To various degrees, all ligands induced angiogenic responses, but these were ligand- and cell type-dependent. Responses were mediated through RIP2-and TRAF6-dependent signaling, involved the MAPK and NF-κB pathways and the upregulation of VEGF-R2 and FAK. Knockdown of RIP2 and TRAF6 by RNA interference and neutralization of IL-8, bFGF and VEGF inhibited TLR/NLR-induced HIMEC angiogenesis.
The gut microbiota can selectively activate mucosal endothelial and mesenchymal cells to promote specific angiogenic responses in a TLR- and NLR-dependent fashion. This innate immunity-mediated response may expand the mucosal microvascular network, foster immune cell recruitment, and contribute to chronic intestinal inflammation.
PMCID: PMC3578104  PMID: 23149220
angiogenesis; IBD; TLR; NLR
16.  The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages 
The purpose of this study was to define early events during the angiogenic response of the aortic wall to injury. Rat aortic rings produced neovessels in collagen culture but lost this capacity over time. These quiescent rings responded to vascular endothelial growth factor (VEGF) but not to a cocktail of macrophage-stimulatory cytokines and chemokines that was angiogenically active on fresh rings. Analysis of cytokine receptor expression revealed selective loss in quiescent rings of the proangiogenic chemokine receptor CXCR2, which was expressed predominantly in aortic macrophages. Pharmacologic inhibition of CXCR2 impaired angiogenesis from fresh rings but had no effect on VEGF-induced angiogenesis from quiescent explants. Angiogenesis was also impaired in cultures of aortic rings from CXCR2-deficient mice. Reduced CXCR2 expression in quiescent rat aortic rings correlated with marked macrophage depletion. Pharmacologic ablation of macrophages from aortic explants blocked formation of neovessels in vitro and reduced aortic ring-induced angiogenesis in vivo. The angiogenic response of macrophage-depleted rings was completely restored by adding exogenous macrophages. Moreover, angiogenesis from fresh rings was promoted by macrophage colony stimulating factor (CSF-1) and inhibited with anti-CSF-1 antibody. Thus aortic angiogenic sprouting following injury is strongly influenced by conditions that modulate resident macrophage numbers and function.
PMCID: PMC2713030  PMID: 18832730
chemokines; inflammation; leukocytes; monocytes; neovascularization
17.  The Acute Phase Reactant Orosomucoid-1 Is a Bimodal Regulator of Angiogenesis with Time- and Context-Dependent Inhibitory and Stimulatory Properties 
PLoS ONE  2012;7(8):e41387.
Tissues respond to injury by releasing acute phase reaction (APR) proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα) and the acute phase reactant orosomucoid-1 (ORM1). ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα.
Methods and Results
Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM) assay.
ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic process by VEGF. The context-dependent nature of ORM1 angioregulatory function is further demonstrated in the CAM assay where ORM1 stimulates developmental angiogenesis without exerting any inhibitory activity.
PMCID: PMC3419235  PMID: 22916107
18.  Lipopolysaccharide/interferon-γ and not transforming growth factor β inhibits retinal microglial migration from retinal explant 
Background/aims: The retina possesses a rich network of CD45+ positive myeloid derived cells that both surround inner retinal vessels and lie within the retina (microglia). Microglia migrate and accumulate in response to neurodegeneration and inflammation. Although microglia express MHC class II, their role remains undefined. The aims of this study are to investigate changes in human microglia phenotype, migration, and activation status in response to pro-inflammatory and anti-inflammatory stimulation.
Methods: Donor eyes were obtained from the Bristol Eye Bank with consent and whole retina was removed. 5 mm retinal trephines were cultured in glucose enhanced RPMI on cell culture insert membranes for up to 72 hours. The effects of lipopolysaccharide/interferon-γ (LPS/IFNγ) and transforming growth factor β inhibits (TGFβ) stimulation, alone or in combination, on migration, phenotype, and activation status (iNOS expression) of microglia were studied using immunofluorescence and cytokine analysis by ELISA.
Results: CD45+ MHC class II+ retinal microglia were observed within retinal explants, and in culture microglia readily migrated, adhered to culture membrane, downregulated MHC class II expression, and produced interleukin 12 (IL-12) and tumour necrosis factor α (TNFα). Following LPS/IFNγ stimulation microglia remained MHC class II− iNOS−, and secreted IL-10. Migration was suppressed and this could be reversed by neutralising IL-10 activity. TGFβ did not affect ability of microglia to migrate and was unable to reverse LPS/IFNγ induced suppression.
Conclusions: Microglia readily migrate from retinal explants and are subsequently MHC class II−, iNOS−, and generate IL-12. In response to LPS/IFNγ microglia produce IL-10, which inhibits both their migration and activation. TGFβ was unable to counter LPS/IFNγ effects. The data infer that microglia respond coordinately, dependent upon initial cytokine stimulation, but paradoxically respond to classic myeloid activation signals.
PMCID: PMC1771595  PMID: 12642315
microglia; macrophages; cytokines; immunoregulation
19.  Histone deacetylase inhibitors enhance endothelial cell sprouting angiogenesis in vitro 
Surgery  2011;150(3):429-435.
Treatment with histone deacetylases inhibitors (HDACi) such as valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) has been shown to improve survival following lethal insults through mechanisms that are incompletely understood. Cell survival under adverse conditions requires a healthy network of capillaries to ensure adequate oxygen delivery. Angiogenetic activation of endothelial cells to migrate and to form sprouts is associated with characteristic changes in gene expression profiles. As HDACI can modulate expression of various genes involved in angiogenic activity, we investigated the effect of these agents on capillary-like sprout-formation in this study.
Human umbilical vein endothelial cells (HUVECs) were cultured as multicellular spheroids within a type I collagen matrix, which promotes formation of sprouts resembling angiogenesis in vitro. Human umbilical vein endothelial cells (HUVECs) were cultured as multicellular spheroids within a type I collagen matrix, which promotes formation of sprouts (in-vitro angiogenesis). Cells were cultured under following conditions: Control (no growth factors); VPA (1mM); VEGF (Vascular endothelial growth factor, 10 ng/ml); VPA+ VEGF; SAHA (5 mM) and SAHA+VEGF. After 24 hours of treatment the length of spheroid sprouting and cell migration was assessed quantitatively. The levels of acetylated histone H3, phosphor-ERK1/2 and β-Catenin in HUVECs were measured by Western blotting at 6 hours after treatment.
High levels of acetylated histone H3 were detected in VPA and SAHA treated-groups. Compared to VEGF alone treated group (2379 ± 147.1 μm), the spheroid sprouting was 1.7 times increased with VPA and VEGF combined treatment (3996 ± 192.5 μm) (p < 0.01). Cell migrations did not show significant difference after addition of VPA, whereas SAHA suppressed migration. Expression of β-Catenin was significantly increased by VPA and SAHA treatments. Addition of VPA greatly enhanced expression of phosphor-ERK1/2.
Exposure of HUVECs to VPA and SAHA increased the expression of β-catenin and enhanced spheroid sprout formation in vitro. Modulation of HDAC dependent pathways may offer a novel approach to alter angionegenic processes and provide a useful therapeutic target.
PMCID: PMC3164968  PMID: 21878227
Endothelial cells; angiogenesis; Histone deacetylase inhibitor
20.  Development of a culture system to induce microglia-like cells from haematopoietic cells 
Microglia are the resident immune cells in the central nervous system, originating from haematopoietic-derived myeloid cells. A microglial cell is a double-edged sword, which has both pro-inflammatory and anti-inflammatory functions. Although understanding the role of microglia in pathological conditions has become increasingly important, histopathology has been the only way to investigate microglia in human diseases.
To enable the study of microglial cells in vitro, we here establish a culture system to induce microglia-like cells from haematopoietic cells by coculture with astrocytes. The characteristics of microglia-like cells were analysed by flow cytometry and functional assay.
We show that triggering receptor expressing on myeloid cells-2-expressing microglia-like cells could be induced from lineage negative cells or monocytes by coculture with astrocytes. Microglia-like cells exhibited lower expression of CD45 and MHC class II than macrophages, a characteristic similar to brain microglia. When introduced into brain slice cultures, these microglia-like cells changed their morphology to a ramified shape on the first day of the culture. Moreover, we demonstrated that microglia-like cells could be induced from human monocytes by coculture with astrocytes. Finally, we showed that interleukin 34 was an important factor in the induction of microglia-like cells from haematopoietic cells in addition to cell–cell contact with astrocytes. Purified microglia-like cells were suitable for further culture and functional analyses.
Development of in vitro induction system for microglia will further promote the study of human microglial cells under pathological conditions as well as aid in the screening of drugs to target microglial cells.
PMCID: PMC4282385  PMID: 24016036
astrocytes; haematopoietic cells; interleukin 34; microglia; monocytes; triggering receptor expressing on myeloid cells-2 (TREM2)
21.  Mural Cell Associated VEGF Is Required for Organotypic Vessel Formation 
PLoS ONE  2009;4(6):e5798.
Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics.
Methods and Findings
To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF.
These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.
PMCID: PMC2688382  PMID: 19495422
22.  Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1 
Studies of cerebral ischemia and other neuroinflammatory states have demonstrated a strong association between new vessel formation and microglial recruitment and activation, raising the possibility that microglia may be involved in promoting angiogenesis. As endothelial cell proliferation is a fundamental early step in angiogenesis, the aim of this study was to test this hypothesis by examining the influence of microglial secreted factors on brain endothelial cell (BEC) proliferation using BrdU incorporation.
Primary cultures of mouse BEC, microglia and astrocytes were used in this study. Proliferation of BEC was examined by BrdU incorporation. ELISA was used to quantify TNF and TGF-β1 levels within cell culture supernatants.
Microglia regulated BEC proliferation in a biphasic manner; microglia conditioned medium (MG-CM) from resting microglia inhibited, while that from activated microglia promoted BEC proliferation. A screen of microglial cytokines revealed that BEC proliferation was inhibited by TGF-β1, but promoted by TNF. ELISA showed that TNF and TGF-β1 were both present in MG-CM, and that while TGF-β1 dominated in resting MG-CM, TNF levels were massively increased in activated MG-CM, shifting the balance in favor of TNF. Antibody-blocking studies revealed that the influence of MG-CM to inhibit or promote BEC proliferation was largely attributable to the cytokines TGF-β1 and TNF, respectively.
This data suggests that microglial activation state might be an important determinant of cerebral angiogenesis; inhibiting BEC proliferation and neovascularization in the normal central nervous system (CNS), but stimulating the growth of new capillaries under neuroinflammatory conditions.
PMCID: PMC3016272  PMID: 21134289
23.  How Blood Vessel Networks Are Made and Measured 
Cells, Tissues, Organs  2011;195(1-2):94-107.
Tissue and organ viability depends on the proper systemic distribution of cells, nutrients, and oxygen through blood vessel networks. These networks arise in part via angiogenic sprouting. Vessel sprouting involves the precise coordination of several endothelial cell processes including cell-cell communication, cell migration, and proliferation. In this review, we discuss zebrafish and mammalian models of blood vessel sprouting and the quantification methods used to assess vessel sprouting and network formation in these models. We also review the mechanisms involved in angiogenic sprouting, and we propose that the process consists of distinct stages. Sprout initiation involves endothelial cell interactions with neighboring cells and the environment to establish a specialized tip cell responsible for leading the emerging sprout. Furthermore, local sprout guidance cues that spatially regulate this outward migration are discussed. We also examine subsequent events, such as sprout fusion and lumenization, that lead to maturation of a nascent sprout into a patent blood vessel.
PMCID: PMC3325601  PMID: 21996655
Blood vessel formation; Angiogenesis; Vessel sprouting models, measurements
24.  Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo 
BMC Cancer  2009;9:284.
The murine homologue of human vasohibin (mVASH1), a putative antiangiogenic protein, was investigated for its effects on in vitro and in vivo angiogenesis.
Cell growth and migration were analyzed in murine fibroblasts, smooth muscle cells and endothelial cells. Angiogenic sprouting was studied in human umbilical vein endothelial cells (HUVECs) in the spheroid sprouting assay. In vivo effects on blood vessel formation were investigated in the chorioallantoic membrane (CAM) assay and in the C57BL/6 melanoma xenograft model.
Purified murine and human VASH1 protein induced apoptosis of murine fibroblasts in vitro, but not of vascular aortic smooth muscle cells (AoSMC) or endothelial cells. Adenoviral overexpression of murine and human VASH1 inhibited capillary sprouting of HUVECs in the spheroid assay. Administration of recombinant murine and human VASH1 inhibited growth of large vessels in the CAM assay and promoted the formation of a dense, fine vascular network. Murine VASH1-overexpressing B16F10 melanomas displayed a reduction in large vessels and vascular area. Moreover, tumors showed more microvessels that stained positive for the mural cell markers α-smooth muscle cell actin (ASMA) and proteoglycan (NG2).
Our data imply that murine VASH1 causes angiogenic remodelling by inhibiting angiogenic sprouting and large vessel growth, thereby supporting the formation of a vascular bed consisting predominantly of mature microvessels.
PMCID: PMC2739223  PMID: 19682397
25.  TGF-β1 blockade of microglial chemotaxis toward Aβ aggregates involves SMAD signaling and down-regulation of CCL5 
Overactivated microglia that cluster at neuritic plaques constantly release neurotoxins, which actively contribute to progressive neurodegeneration in Alzheimer's disease (AD). Therefore, attenuating microglial clustering can reduce focal neuroinflammation at neuritic plaques. Previously, we identified CCL5 and CCL2 as prominent chemokines that mediate the chemotaxis of microglia toward beta-amyloid (Aβ)aggregates. Although transforming growth factor-β1 (TGF-β1) has been shown to down-regulate the expression of chemokines in activated microglia, whether TGF-β1 can reduce the chemotaxis of microglia toward neuritic plaques in AD remains unclear.
In the present study, we investigated the effects of TGF-β1 on Aβ-induced chemotactic migration of BV-2 microglia using time-lapse recording, transwell assay, real-time PCR, ELISA, and western blotting.
The cell tracing results suggest that the morphological characteristics and migratory patterns of BV-2 microglia resemble those of microglia in slice cultures. Using this model system, we discovered that TGF-β1 reduces Aβ-induced BV-2 microglial clustering in a dose-dependent manner. Chemotactic migration of these microglial cells toward Aβ aggregates was significantly attenuated by TGF-β1. However, these microglia remained actively moving without any reduction in migration speed. Pharmacological blockade of TGF-β1 receptor I (ALK5) by SB431542 treatment reduced the inhibitory effects of TGF-β1 on Aβ-induced BV-2 microglial clustering, while preventing TGF-β1-mediated cellular events, including SMAD2 phosphorylation and CCL5 down-regulation.
Our results suggest that TGF-β1 reduces Aβ-induced microglial chemotaxis via the SMAD2 pathway. The down-regulation of CCL5 by TGF-β1 at least partially contributes to the clustering of microglia at Aβ aggregates. The attenuating effects of SB431542 upon TGF-β1-suppressed microglial clustering may be mediated by restoration of CCL5 to normal levels. TGF-β1 may ameliorate microglia-mediated neuroinflammation in AD by preventing activated microglial clustering at neuritic plaques.
PMCID: PMC2878297  PMID: 20429874

Results 1-25 (849732)